
Trinity University
Digital Commons @ Trinity

Mechatronics Final Projects Engineering Science Department

5-2016

Wallarm
Amanda Dinh
Trinity University, adinh1@trinity.edu

Kate Walls
Trinity University, kwalls@trinity.edu

Follow this and additional works at: http://digitalcommons.trinity.edu/engine_mechatronics

Part of the Engineering Commons

This Report is brought to you for free and open access by the Engineering Science Department at Digital Commons @ Trinity. It has been accepted for
inclusion in Mechatronics Final Projects by an authorized administrator of Digital Commons @ Trinity. For more information, please contact
jcostanz@trinity.edu.

Repository Citation
Dinh, Amanda and Walls, Kate, "Wallarm" (2016). Mechatronics Final Projects. 1.
http://digitalcommons.trinity.edu/engine_mechatronics/1

http://digitalcommons.trinity.edu?utm_source=digitalcommons.trinity.edu%2Fengine_mechatronics%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.trinity.edu/engine_mechatronics?utm_source=digitalcommons.trinity.edu%2Fengine_mechatronics%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.trinity.edu/engine?utm_source=digitalcommons.trinity.edu%2Fengine_mechatronics%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.trinity.edu/engine_mechatronics?utm_source=digitalcommons.trinity.edu%2Fengine_mechatronics%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/217?utm_source=digitalcommons.trinity.edu%2Fengine_mechatronics%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.trinity.edu/engine_mechatronics/1?utm_source=digitalcommons.trinity.edu%2Fengine_mechatronics%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:jcostanz@trinity.edu

Wallarm

Submitted by:

Group C

Amanda Dinh

Kate Walls

ENGR-4367

Mechatronics

Trinity University

May 2, 2016

2

Table of Contents

Design Summary……………………………………………………………………….3

System Details………………………………………………………………………….4

Design Evaluation………………………………………………………………………5

Partial Parts List…………………………….…………………………………………..5

Lessons Learned………………………………………………………………………...6

Appendix……………………………………………………………………………...7-11

3

I. Design Summary

The nature of our project is essentially an upgraded alarm clock that ensures that the user will

wake up at the time set. Figure 1 displays the hardware of the project and has colored circles to

indicate different components. The alarm functions by initially sounding a loud buzzer (red) at

the set alarm time. If the user decides to snooze the alarm by pressing the snooze button (purple),

the alarm will wait for a given amount of time before setting off the buzzer again. It will then

trigger a Servo motor (pink) that will flip a traditional toggle switch to turn the light on and then

return to sounding the buzzer until the user turns off the alarm by pressing the off button

(orange). This off button may be used at any time throughout the alarm.

The time is displayed on a liquid crystal display screen. The brightness of the screen is

adjusted automatically using a photoresistor (yellow). The photoresistor allows the screen to be

brighter in a well-lit area and dims the screen in darker settings in order to conserve power. The

user can use the numeric keypad to manually input the time in military time. The purpose of

using military time is to avoid the complexities of differentiating between AM and PM. To set

the alarm time, a switch (blue) is used to change to “set alarm” mode where the user can use the

same numeric pad and instruction set to set the alarm.

Figure 1. Diagram of the completed Wallarm project.

4

II. System Details

The clock counter is controlled by the Arduino and displayed on the LCD connected to it. It

functions using a one second delay to increment the second constant within the Arduino. The

counter is then set to increase the minute constant once the second constant exceeds 59 seconds

and the minute constant similarly controls the hour constant. As these constants exceed 59 they

are both reset to zero to count the next minute or hour respectively. This process repeats until the

hour constant exceeds 23, at which point all constants are reset to zero. As this process loops, the

minute and hour constants are displayed on the LCD screen. The photoresistor is connected to

the brightness control pin of the LCD screen in order to manipulate the brightness of the screen

with the surrounding light intensity.

The alarm can be set by flipping a toggle switch connected to the Arduino. If the switch input

is high, the LCD displays ‘set alarm’ with the minute and hour constants automatically set to

zero the first time until a user input is given from the keypad. While the switch is high, the

keypad controls the alarm hour and minute constants, otherwise the keypad controls the clock

hour and minute constants. The keypad control is condensed using a keypad decoder (74C922N)

which outputs a unique four-bit binary code to the Arduino so that it can differentiate among all

of the inputs. Once the clock and alarm hour and constants match, the Arduino outputs a digital 1

to the PIC. From here, the PIC controls the alarm system.

When the PIC reads the digital 1 from the Arduino, it begins the alarm loop which starts by

setting the buzzer to high. The buzzer will continue to sound until either the snooze button is

pressed or the off button is engaged. If the off button is pressed at any point during the alarm

loop, the loop will end and reset to wait for the next trigger. If the snooze option is chosen

instead, the buzzer will pause for 10 minutes before resounding. The buzzer will resound for

only a few seconds as a warning before the PIC outputs a binary 1 to the Arduino. At this point,

the motor is actuated by the Arduino and turns on the light switch. Figure 2 a) shows the motor

before it has been actuated and is set to 0 degrees and b) after it has been turned on and set to 90

degrees. The setup of our program is shown in the flowchart in Figure 3 and 4 for the PIC and

Arduino respectively. Likewise the interface circuits are given in Figures 5 and 6 and the wiring

diagrams in 7 and 8.

a) b)

Figure 2. The servo motor before and after turning on the light switch.

5

III. Design Evaluation

Overall, we believe that we met the requirements for each of the functional element

categories accordingly. First, we had the liquid crystal display for the output display which

showed the time or alarm mode depending on the manual inputs. The audio output device was

the piezoelectric buzzer, which appropriately functioned as the alarm sound. There was a variety

of options for the manual user input, including two buttons, a switch, and numeric keypad. This

category, specifically the keypad, required further research in regards to the keypad decoder

which we had not been introduced to before. The automatic sensor was the photoresistor, which

controlled the brightness of the LCD screen by adjusting its resistance accordingly. The actuator

of the system was the Servo motor that turned on the light switch. This too required further

knowledge as we had not attempted communication between the PIC and Arduino previously.

The logic, processing, and control category was implemented in both the PIC and Arduino. In the

case of the PIC, it included programmed logic that included multiple inputs and outputs as well

as multiple nested loops. The Arduino’s coding was more complex; it managed the time, the

keypad input, the alarm time, and motor control. The Arduino was tasked with calculations and

data storage/retrieval within its own memory as well as the PIC’s memory.

During our initial demonstration, the LCD screen did not work properly as well as the alarm

off button due to power issues that were not anticipated on the day of. However, the functionality

of both categories were ultimately fulfilled although we do anticipate a grade reduction for not

being fully functional until a day after the due date. We feel we have earned full points for the

manual inputs, actuator, and logic categories since each of these required further research. The

output display, audio output device, and automatic sensor fully fulfill the requirements but do not

exceed expectations as they are components we were already familiar with.

IV. Partial Parts List

Name/Description Model Number Source Price

Piezoelectric Buzzer 17855 Electronics Lab $2.00 (listed)

Keypad Decoder 74C922N Electronics Lab $1.70 (listed)

Arduino UNO Rev 3 Electronics Lab $24.95 (listed)

PIC 16F88 Electronics Lab $2.73 (listed)

Photoresistor CdS Electronics Lab $0.95 (listed)

Servo Motor HS-311 Electronics Lab $7.89 (listed)

Toggle Light Switch 43009 Home Depot $6.47

DPDT Toggle Switch PH-30-10048 Electronics Lab $2.99 (listed)

6

V. Lessons Learned

Our initial design was to implement multiple PICs rather than use an Arduino. Our intentions

were to use a PIC for different aspects of the alarm. However, we struggled to communicate

between multiple PICs. We attempted to learn the slave-master PIC modes. However, the

textbook directions were not sufficient for beginners. To rectify this problem, we introduced the

Arduino into our system as we were already familiar with its language and programming

capacity. With the Arduino, we were able to communicate with the PIC using digital outputs.

The original concept of our alarm clock was to use individually programmable LED strips to

display the time. We attempted to use the PIC to control the LED strip but were provided with

limited instructions. We tested the LED strips using multiple different inputs, but were provided

with no clear response patterns. In fact, the only available information was interfacing it with an

Arduino. At this point we had not decided to use the Arduino and so we scrapped the idea of the

LED strip altogether. Additionally, the Arduino program required libraries to be installed. For

future students, we recommend the individually programmable LED strip only if they intend to

begin with an Arduino and have the appropriate informative material.

If given more time, we would have liked to print a custom circuit board. We initially

designed one in Eagle and presented it to Ernest. However, the automatic wire mapping was

insufficient for the printing technology available and required that we would need to manually

draw the mapping of the wires. Considering our time frame, we decided to ultimately use a

prototyping solderable perf board and hand solder the connections. This board provided us with a

compact and sleek design that was more robust than a protoboard while not having to spend the

time designing on an unfamiliar program. Additionally, it allowed us to change circuit designs

during testing in the case where debugging was required, whereas we would not be provided

with this flexibility with a printed circuit board.

Considering we wanted to make our project as close to a finished product as possible, we

attempted to battery power the Wallarm. We could only find 9V batteries even though our PIC

and interface circuits required only 5V. The 9V battery was causing issues, mainly to the buzzer

and LCD screen. We initially corrected this by applying resistance to the supply to bring down

the voltage to 5V. Despite confirming the 5V with a multimeter, the LCD continued to

malfunction and the Piezo buzzer did not sound correctly. Because we were unable to find the

cause of the malfunctions, we decided to backtrack to the outlet power instead.

In total, we are happy with each of the solutions which we arrived at and still feel that we

have made considerable strides in PicBasic Pro and interfacing the PIC to other controllers.

Additionally, our success with the prototyping solderable perf board provided us with an

alternative to the larger protoboards that we are used to in class. Our failures allowed us to learn

the full extent of the components we were using (eg. when it works and when it does not, and

why) and encouraged us to come up with creative alternatives that still accomplished the same

functions.

7

VI. Appendix

Figure 3. Program flowchart of the PIC

8

Figure 4. Program flowchart of Arduino

9

Figure 5. PIC circuit diagram with snooze and off buttons and buzzer

Figure 6. Arduino circuit diagram with the Servo motor.

10

Figure 7. Detailed wiring diagram of the PIC.

11

Figure 8. Arduino wiring diagram

	Trinity University
	Digital Commons @ Trinity
	5-2016

	Wallarm
	Amanda Dinh
	Kate Walls
	Repository Citation

	tmp.1462242881.pdf.pSImi

