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Chapter 1

Introduction

1.1 Definitions

The ring of integer-valued polynomials, denoted Int(Z), is the set of polynomials f(x) in Q[x]

such that f(z) ∈ Z for all z ∈ Z:

Int(Z) = {f(x) ∈ Q[x]|f(z) ∈ Z,∀z ∈ Z}.

Notice that we get the following: Z[x] ⊆ Int(Z) ⊆ Q[x]. But while Z[x] and Q[x] are

unique factorization domains, Int(Z) is not.

Example 1.1. The product

x(x− 1)(x− 2) = 3 · 2
(x(x− 1)(x− 2)

3!

)
represents 2 factorizations of the polynomial g(x) = x3 − 3x2 + 2x into irreducible elements.

From Cahen and Chabert [2, Corollary VI.3.5] we know that x(x−1)...(x−n+1)
n! is irreducible for

every n ≥ 1. Also, notice that a first degree polynomial with content 1 over Z is irreducible.

That is, let ax+ b ∈ Z[x] where gcd(a, b) = 1. If ax+ b = u(x)v(x) for some u(x), v(x) ∈ Z[x]

then we know that one of u(x) or v(x) has degree 1 and the other one has degree 0. Because

if not, then the content would be greater than 1. So, a first degree polynomial in Z[x] with

content=1 is irreducible in Int(Z).



1- Introduction 4

Notice that 3!|x(x− 1)(x− 2) in Int(Z) because
(
x
3

)
is integer-valued for every x ∈ Z.

Definition 1.2. Let f(x) =
∑n

i=0 aix
i ∈ Z[x], where ai ∈ Z and an 6= 0. The content of

f(x), denoted c(f), is

c(f) = gcd(a0, a1, ..., an).

We call f(x) primitive over Z[x] if c(f) = 1.

Definition 1.3. Let f(x) ∈ Int(Z). The fixed divisor of f in Int(Z), denoted d(Z, f) is

d(Z, f) = gcd{f(z) : z ∈ Z}.

If d(Z, f) = 1, then we call f(x) image primitive over Z.

Example 1.4. The polynomial

g(x) =
x(x− 1)(x− 2)

3!

is image primitive over Z because f(3) = 1. Also notice that for the polynomial in the

numerator h(x) = x(x− 1)(x− 2), we have that d(Z, h) = 3!.

Definition 1.5. Let f(x) ∈ Int(Z). The set of lengths of factorizations of f(x) into

irreducible elements, denoted L(f(x)), is

L(f(x)) = {m|f(x) = f1(x)...fm(x), fi(x) is irreducible in Int(Z)}.

Example 1.6. From Example 1.1 the polynomial g(x) = x3 − 3x2 + 2x can be factored into

irreducibles as

x(x− 1)(x− 2) = 3 · 2
(x(x− 1)(x− 2)

3!

)
.

Now, the factorization on the left has length 3, and the factorization on the right has length

3. The following also represents irreducible factorizations of g(x) of length 3:

g(x) = 2
(

x(x− 1)
2

)
(x− 2),

g(x) = x · 2
(

(x− 1)(x− 2)
2

)
.
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We claim these are the only irreducible factorizations of g(x), so that L(g(x)) = {3}.

Even though we have not discussed the properties of irreducibles in Int(Z) yet, a sketch

of the argument is useful in beginning to understand the properties of Int(Z). Notice that

if h(x) = x(x−1)(x−2)
z ∈ Int(Z) where z is an integer, then z ≤ 3! by the results in the next

section. If z = 3, then since 2|x(x − 1) in Int(Z) the fraction is not irreducible. That is

h(x) = 2
(

x(x−1)(x−3)
2·3

)
. By similar reasoning if z = 2 the fraction is not irreducible. So

we get that z = 3! which gives us a factorization already considered. Now all combinations

that consider an irreducible polynomial of degree 2 multiplied by degree 1 have already been

considered. Thus, L(g(x)) = {3}.

1.2 Binomial Polynomials Form a Free Basis

For each positive integer n, let

Bn(x) =
x(x− 1)...(x− (n− 1))

n!
=
(

x

n

)
Theorem 1.7. Let f(x) ∈ Int(Z) of degree n. Then, there exists unique integers r0, ..., rn

such that

f(x) = r0B0(x) + r1B1(x) + ... + rnBn(x).

Proof. We will show this by induction on n. Let f(x) ∈ Int(Z) be of degree 1. Then,

f(x) = ax + b for some a, b ∈ Q. Now f(x) ∈ Z for every x ∈ Z, so f(0) = b ∈ Z. Then,

ax = c− b ∈ Z so a must be an integer also. Then,

f(x) = a

(
x

1

)
+ b

(
x

0

)
.

Now, let f(x) ∈ Int(Z) be of degree m + 1 and let the statement be true for all degree m

polynomials. Now we can find a polynomial h(x) ∈ Int(Z) where deg(h(x)) = m and h(0) =

f(0), ..., h(m) = f(m). Then by the induction hypothesis, h(x) =
∑m

i=0 ri

(
x
i

)
where ri ∈ Z for

every i. Now form a new polynomial, g(x) of degree m + 1 where g(x) = h(x) + rm+1

(
x

m+1

)
and rm+1 = f(m + 1) − h(m + 1) ∈ Z. Now, g(0) = f(0),...,g(m) = f(m) since

(
x

m+1

)
= 0
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when 0 ≤ x ≤ m. Also, g(m + 1) = f(m + 1) by construction. Thus we get that g(x) = f(x)

and,

f(x) = r0

(
x

0

)
+ .... + rm

(
n

m

)
+ rm+1

(
x

m + 1

)
.

So every polynomial in Int(Z) can be written as a unique linear combination of the Bino-

mial Polynomials. Now, given a polynomial f(x) ∈ Int(Z), C. Long [7] outlines a method to

determine its unique linear combination:

f(x) = f0

(
x

0

)
+ ... + f1

(
x

n

)
where fi ∈ Z and fn 6= 0. It is called the ”Difference Table Construction”. Let f(x) ∈

Int(Z) of degree n. We are going to set up the following ”difference table”.

f(0) = D0(0) f(1) = D1(0) ... f(n− 1) f(n)

f(1)− f(0) = D1(0) f(2)− f(1) = D1(1) ... Dn−1(n− 1) -

f(2)− 2f(1) + f(0) = D1(1)−D1(0) = D2(0) D1(2)−D1(1) = D2(1) ... - -

...
...

...
...

...

Dn(0) - ... - -

Where the entry in rth row and cth column is denoted Dr(c). In general we have,

Dr(c) = Dr−1(c + 1)−Dr−1(c).

Given the entries in the table, we get that

f(x) = D0(0)
(

x

0

)
+ D1(0)

(
x

1

)
+ ... + Dn(0)

(
x

n

)
.

Example 1.8. Let f(x) = x2 + 2x + 7. The difference table is:

f(0) = 7 f(1) = 10 f(2) = 15

3 5 -

2 - -

Which gives us that

f(x) = 7
(

x

0

)
+ 3
(

x

1

)
+ 2
(

x

2

)
= 7 + 3x + 2

(
x(x− 1)

2

)
= x2 + 2x + 7.
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1.3 Basic Properties

Here we present some basic facts properties about Int(Z). We will use many of these later

on. We leave many of the proofs to the references provided.

First, notice that the difference table construction produces the following result.

Corollary 1.9. Let f(x) ∈ Q[x] have degree n. If f(0), f(1), ..., f(n) ∈ Z, then f(x) ∈ Int(Z).

Since the binomial polynomials form a basis for Int(Z), it only makes sense that they

would be irreducible in Int(Z).

Lemma 1.10. [2, Corollary VI.3.5] For n > 0, every Bn(x) is irreducible in Int(Z).

From Gauss’ Lemma, the content behaves nicely in Int(Z). That is, given two polynomials

f(x), g(x) ∈ Int(Z), we have that c(fg) = c(f)c(g). But the fixed divisor does not behave as

nicely. In general, d(Z, fg) 6= d(Z, f)d(Z, g), but we can say the following.

Lemma 1.11. [3, Lemma 2.2] Let f(x) ∈ Int(Z) be non-zero. Suppose f1(x)...fk(x) ∈ Int(Z)

are non-zero with

f(x) = f1(x)...fk(x)

then

1) d(Z, f1) · · · d(Z, fk)|d(Z, f),

2) if f1(x) = f2(x) = ... = fk(x), then d(Z, f) = d(Z, (f1)k) = (d(Z, f1))
k.

Also, by knowing what the unique binomial expression is for a function in Int(Z), then we

can determine the fixed divisor for that function.

Lemma 1.12. [3, Lemma 2.5] Let f(x) ∈ Int(Z) have degree n, so that f(x) = f0 + f1

(
x
1

)
+

... + fn

(
x
n

)
, where fi ∈ Z and fn 6= 0. Then

d(Z, f) = gcd(f(0), f(1), ..., f(n)) = gcd(f0, f1, ..., fn).

The most useful application of this lemma is that by knowing the binomial expansion of a

polynomial in Int(Z), then we can find its fixed divisor by taking the greatest common divisor
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of the binomial coefficients. Given a polynomial, knowing how to find its fixed divisor is very

important. That is because the fixed divisor plays a key role in determining the irreducibility

of an element in Int(Z).

Theorem 1.13. [3, Theorem 2.8] Let f(x) be a nonconstant primitive polynomial in Z[x].

The following statements are equivalent.

a) f(x)
d(Z,f) is irreducible in Int(Z).

b) Either f(x) is irreducible in Z[x] or for every pair of nonconstant polynomials f1(x), f2(x)

in Z[x] with f(x) = f1(x)f2(x), d(Z, f)) - d(Z, f1)d(Z, f2).

From [3, Lemma 2.7], it is known that every image primitive polynomial f(x) ∈ Int(Z)

can be expressed uniquely (up to associates) as

f(x) =
f∗(x)

n
(1.1)

where f∗(x) ∈ Z[x] and n ∈ Z. It is also known that f(x) ∈ Z[x] is irreducible in Int(Z) if

and only if f(x) is irreducible and image primitive in Z[x]. So using these facts, Theorem

1.13 and [2] we can characterize the irreducibles of Int(Z).

Corollary 1.14. [3, Corollary 2.9] Let f(x) be a nonunit in Int(Z). f(x) is irreducible in

Int(Z) if and only if

1) deg(f(x)) = 0 and f(x) is a prime integer.

2) deg(f(x)) > 0, f(x) is image primitive in Int(Z), and when expressed in the form of (1.1)

either

• f∗(x) is irreducible in Z[x] and n = d(Z, f∗), or

• n = d(Z, f∗) and for every factorization f∗(x) = f1(x)f2(x) into non-units of Z[x],

n - d(Z, f∗
1 )d(Z, f∗

2 ).

While Int(Z) is not a unique factorization domain, there are elements in Int(Z) that have

unique factorization.
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Theorem 1.15. [3, Theorem 3.1] Let f(x) ∈ Z[x] be of degree d ≥ 1. If f(x) is image

primitive, then f(x) factors uniquely as a product of irreducible elements of Int(Z).

One way to explore the degree of non-unique factorization in Int(Z) is to consider the

elasticity of polynomials in Int(Z) and the elasticity of Int(Z) itself.

Definition 1.16. Let f(x) ∈ Int(Z). The elasticity of f(x), denoted ρ(f(x)), is

ρ(f(x)) =
maxL(f(x))
minL(f(x))

.

Now, ρ(f(x)) describes the character of non-unique factorizations of one polynomial. We

can extend ρ to describe the global character of Int(Z).

Definition 1.17. The elasticity of Int(Z), denoted ρ(Int(Z)), is

ρ(Int(Z)) = sup{ρ(f(x))|f(x) ∈ Int(Z)}.

Since n can be chosen to have as many prime factors as desired, notice the following shows

that ρ(Int(Z)) = ∞:

n

(
x

n

)
=
(

x

n− 1

)
(x− (n− 1)).

Besides elasticity, there is another way to measure the global character of non-unique

factorization in Int(Z). For a polynomial in Int(Z) we consider the differences between con-

secutive factorization lengths.

Definition 1.18. Let f(x) ∈ Int(Z) and order the elements of L(f(x)) = {m1, ...,mk} where

m1 < ... < mk. The delta set of f(x), denoted ∆(f(x)), is

∆(f(x)) = {n : (mi −mi−1) = n, 2 ≤ i ≤ k}.

Definition 1.19. Let Int(Z)• denote the subset of Int(Z) consisting of the nonzero nonunit

elements of Int(Z). The delta set of Int(Z), denoted ∆(Int(Z)), is

⋃
f(x)∈ Int(Z)•

∆(f(x)).
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So, ∆(Int(Z)) contains the magnitude of differences between consecutive factorization

lengths of all integer-valued polynomials. In [3, Lemma 4.3] Chapman and McClain showed

that p−2 ∈ ∆(Int(Z)) for every prime p. We show in Chapter 4 that ∆(Int(Z)) = N. That is,

we can find a polynomial in Int(Z) for every natural number n such that a difference between

consecutive lengths of factorizations of that polynomial is n.

Before that, in Chapter 2 we briefly explore another measure of non-unique factorization

in Int(Z), the Omega Function. And in Chapter 3 we discuss properties of some polynomials

in Int(Z) that are formed from complete and incomplete sets of residues.



Chapter 2

The Omega Function

An interesting way to look at division and irreducible properties of an element in Int(Z) is

to look at the omega function of an element. Let H be an atomic monoid and u ∈ H. The

omega function of u with respect to H, denoted ω(H,u), is the smallest N such that whenever

u divides a product of n things say u|a1...an then u divides a sub product of N factors say

u|
∏
ı∈ Ω

ai, |Ω| ≤ N.

We start with an observation about the omega function.

Proposition 2.1. Let H be an atomic monoid and p be a prime element in H. Then,

Ω(H, p) = 1.

Proof. Let p|a1a2...an where ai ∈ H for all i. If p|a1 then we are done. If not, then because

p is prime we know that p|a2...an. Now, if p|a2 then we are done. If not, then p|a3...an. We

can continue this process until we find p|ai for some 1 ≤ i ≤ n. Thus, ω(H, p) = 1.

Hence, the Omega Function can be considered a measure of how far away an element is

to being prime. In Int(Z), there are no prime elements. That is, there does not exist any

element n such that when n|ab we have that n|a or a|b. Because there are no prime elements

in Int(Z), studying the omega function of elements in Int(Z) yields interesting results. An

exhaustive study of the omega function in other settings can be found in [4].
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Lemma 2.2. Suppose p - a where f(x) = ax + b. Then there exists a unique i with 0 ≤ i < p

where p|f(i) and p - f(j) for 0 ≤ j < p and i 6= j.

Proof. Consider the set F = {f(0), f(1), ..., f(p− 1)}. If f(i) = f(j) for some i, j, then

ai + b ≡ aj + b (mod p)

ai ≡ aj (mod p)

i ≡ j (mod p)

since gcd(a, p) = 1. Thus, there is only one element in F for each residue class mod p. Since

|F | = p, then F forms a complete set of residues modulo p and there exists a unique i with

0 ≤ i < p for every x such that p|f(i) and p - f(j) where i 6= j.

Lemma 2.3. Suppose p - b where f(x) = ax + b and p|a. Then, p - f(x) for every x.

Proof. let p - b and p|a. Then, ax + b ≡ 0 + b ≡ b (mod p). Now b 6≡ 0 (mod p), thus p|f(x)

for ever x.

Proposition 2.4. Let p ∈ Z be a prime integer. Then, ω(Int(Z), p) ≥ p.

Proof. In Int(Z), p|x(x − 1)...(x − p + 1). But, since I = {0, ..., p − 1} is a complete set of

residues modulo p, p -
∏

i∈Ω(x− i) where Ω ⊂ I and |Ω| < p. Thus, ω(Int(Z), p) ≥ p.

Proposition 2.5. Let fk(x) =
(
x−k

n

)
+
(
x−k
n−1

)
+ ...+

(
x−k

1

)
+
(
x−k

0

)
. Then, fk(x) is irreducible

in Int(Z).

Proof. Notice that f0(x) =
(

x
n

)
+ ... +

(
x
0

)
is irreducible in Int(Z) by Anderson, Cahen,

Chapman and Smith [1, Corollary 2.2] because an = 1.

Let k ∈ Z and k ≥ 0. Now if fk(x) is not irreducible, then it can be written as a product of

two polynomials s(x), r(x) ∈ Int(Z). So, fk(x) = s(x)r(x). Now, fk(x−k) =
(

x
n

)
+ ...+

(
x
0

)
=

s(x)r(x) which is a contradiction since
(

x
n

)
+ ... +

(
x
0

)
is irreducible by above. Thus, fk(x) is

irreducible in Int(Z).

Proposition 2.6. ω(Int(Z), 2) = ∞.
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Proof. Pick k ∈ N. Let 2|f0(x)...fk(x). From above, f0(x), ..., fk(x) are all irreducible poly-

nomials in Int(Z). Now consider the values of the polynomials f0(x), .., fk(x) modulo 2 from

0 to k. It is displayed in the following table:

x f0(x) f1(x) f2(x) f3(x) ... fk(x)

0 1 0 0 0 ... 0

1 0 1 0 0 0

2 0 0 1 0 0

3 0 0 0 1 0
...

...

k 0 0 0 0 ... 1

Notice that when k = 0, ..., k then there is only 1 irreducible polynomial from f0(x), .., fk(x)

that is in the residue class equivalent to 1 modulo 2. So, in order for 2 to divide the whole

product f0(x), ..., fk(x) must form a complete set of residues modulo 2. So we could not

remove any of the polynomials because then we would get an incomplete set of residues at

some value of x. Thus, there is no smaller subgroup of irreducible polynomials that 2 divides

from f0(x)...fk(x). Now, the same thing can be done for k + 1, k + 2, ... and so on. Thus,

there exists a larger group of irreducibles that 2 would divide given any number of irreducible

elements that 2 divides. Thus, ω(Int(Z), 2) = ∞.



Chapter 3

Complete and Incomplete Sets

of Residues from the Images of

Polynomials

Chapman and McClain[3, Proposition 3.4] showed that given a prime p, there exists a set

I = {i1, i2, ..., it} of integers such that the polynomial

fp(x) =
(x− i1)(x− i2)...(x− it)

p

is irreducible in Int(Z). The set I was found by using the Chinese Remainder Theorem. That

is, we want to find a set of integers I that form a complete set of residues modulo the prime

p, and that form an incomplete set of residues modulo every prime q 6= p. This can be done

by setting up p systems of linear congruences.

We extend the idea behind this by considering different conditions on the set I, and the

polynomials formed by (x− i1)(x− i2)...(x− it).

Proposition 3.1. Let I = {i0, ..., in−1} form a complete set of residues modulo the composite

integer m, then I forms a complete set of residues modulo p where p is any prime divisor of

m.
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Proof. Let I = {i0, i1, ..., im−2, im−1} form a complete set of residues modulo the integer

m = qr1
1 qr2

2 ...qrt
t where q1, q2, ..., qr are distinct primes and r1, r2, ..., rt ∈ N and m is not

prime.

Since I forms a complete set of residues modulo m, without loss of generality let (x−ij) ≡ j

(mod m).

Consider the prime divisor qk.

Now for j < qk consider x−ij ≡ j (mod m), so x−ij−j = mh1 = (qr1
1 qr2

2 ...qrt
t )h1 for some

h1 ∈ Z. Thus, qk|(x− ij)− j and x− ij ≡ j (mod qk). Now x− ij+qk
≡ j + qk (mod qk). So

x− ij+qk
= mh2 +j+qk = (qr1

1 qr2
2 ...qrt

t )h2 +j+qk for some h2 ∈ Z and thus qk|(x− ij+qk
)−j.

So, x− ij ≡ x− ij+qk
≡ j (mod qk). This can be done with each subsequent multiple of qk to

show that x− ij ≡ x− iqk+j ≡ x− i2qk+j ≡ ... ≡ x− im−qk+j ≡ j (mod qk). Now there are

qk different j′s, so the set {x− i0, x− i1, ..., x− iqk−1} forms a complete residue class modulo

qk. So there exists a complete set of residues modulo every prime divisor of m.

Corollary 3.2. Let I = {i0, i1, ..., im−1} form a complete set of residues modulo the composite

integer m. The polynomial

fm(x) =
(x− i0)(x− i1)...(x− im−1)

m

is reducible in Int(Z).

Proof. Let the composite integer m = qr1
1 qr2

2 ...qrt
t where q1, q2, ..., qr are distinct primes and

r1, r2, ..., rt ∈ N. Now consider the smallest prime divisor of m, which without loss of generality

is q1. Let k = m
q1

= qr1−1
1 qr2

2 ...qrt
t . From the proof of Proposition 3.1 we can partition

I into k distinct sets that form a complete set of residues modulo q1. Now the set I ′ =

{iq1 , iq1+1, ..., im−1} = I − {i0, ..., iq1−1} must have k − 1 distinct sets that form a complete

set of residues modulo r1. Notice that I ′ is the set I minus 1 complete set of residues modulo

q1. Now notice that r1 ≤ k = m
q1

, because if r1 > m
q1

then q1r1 > m = qr1
1 ...qrt

t which is a

contradiction. So because r1 − 1 ≤ k − 1, I ′ forms a complete set of residues modulo qr1−1
1 .

Now consider qj 6= q1. Once again by Proposition 3.1, we know that we can partition I

into k′ = m
qj

distinct sets that form a complete set of residues modulo qj . So the set I ′ can
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be partitioned into k′ − 1 complete sets of residues modulo qj since q1 is the smallest prime

divisor of m. Once again, notice that rj < m
qj

= k′, because if rj ≥ m
qj

then qjr1 ≥ m = which

can’t happen because qj 6= 2. So because rj ≤ k′−1 we have that the set I ′ forms a complete

set of residues modulo q
rj

j .

So, we can factor fm(x) as

fm(x) =
(

(x− i0)...(x− iq1−1)
q1

)(
(x− iq1)...(x− im−1)

k

)
where the fraction on the left is irreducible by [3, Proposition 3.4]. Thus, fm(x) is reducible.

3.1 Complete and Incomplete Sets of Residues

Let q1 ≤ q2 ≤ ... ≤ qk be primes, and Q = {q1, q2, ..., qk}. Since the primes in Q aren’t

necessarily distinct, let W denote the set of distinct primes from Q. W is ordered so that

w1 < w2 < ... < wt. Now let p be a prime such that p > w1 + ... + wt. We will assume

throughout section 3.1 that p is always greater than the sum of the distinct primes in W. Now

let S denote the set of primes less than p that are not in W. Finally, let I = {i0, i1, ..., ip−1}

be a set of integers where |I| = p. In the case that I forms a complete set of residues modulo

any prime qj or wj we denote such a subset as Qj or Wj .

Definition 3.3. A set I is firm for the prime p (p > w1 + ... + wt) and for the set of primes

Q if:

1) I does not form a complete set of residues modulo p.

2) I forms a complete set of residues modulo wi ∀i where wi ∈ W.

3) I fails to form a complete set of residues modulo si ∀i where si ∈ S.

Firm sets can be constructed using p systems of linear congruences and the Chinese Re-

mainder Theorem. We prove this and then give an example.

Proposition 3.4. Given a set of primes Q and a prime p it is possible to construct a firm

set I.
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Proof. We need to construct p systems of linear congruences with solutions x0, x1, ..., xp−1 as

follows:

• For all i, xi ≡ 1 (mod p).

• For all i and all j, xi ≡ 1 (mod sj).

• For all j and 0 ≤ i ≤ wj − 1, xi ≡ i (mod wj).

• For all j and wj ≤ i ≤ p− 1, xi ≡ 1 (mod wj).

This can be seen in a matrix form. Every row of the matrix refers to all linear congruences

modulo the same prime. We will have a row for every prime less than or equal to p. Every

column of the matrix refers to 1 system of linear congruences. To compute the I set, we use

the Chinese Remainder Theorem p times, once for each column of the matrix.

Entry c = (r, xa), where r is a prime p, si or wi, corresponds to the desired solution of the

linear congruence xa ≡ c (mod r). The entry refers to the desired solution for the system of

linear congruences whose column it is in modulo the prime whose row it is in.

x0 x1 x2 ... w1 − 1 w1 ... wt−1 − 1 wt−1 ... wt − 1 wt ... xp−1

p 1 1 1 ... 1 1 ... 1 1 ... 1 1 ... 1

wt 0 1 2 ... w1 − 1 w1 ... wt−1 − 1 wt−1 ... wt − 1 1 ... 1

wt−1 0 1 2 ... w1 − 1 w1 ... wt−1 − 1 1 ... 1 1 ... 1

...
...

...
...

w1 0 1 2 ... w1 − 1 1 ... 1 1 ... 1 1 ... 1

sj 1 1 1 ... 1 1 ... 1 1 ... 1 1 ... 1

Since every solution to the systems of congruences is congruent to 1 modulo p, it is not

possible for I to form a complete set of residues modulo p. Similarly, since every solution to

the systems of congruences is congruent to 1 modulo si, ∀ si ∈ S, it is not possible for I to

form a complete set of residues for any si ∈ S.

Finally, notice that the first wi solutions to the systems of congruences forms a complete

set of residues modulo wi, ∀ wi ∈ W, so we have constructed a firm set.
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Example 3.5. Consider Q = {3, 5, 7} and p = 17.

IF = {398685, 1, 11827, 393823, 335479, 72931, 218791, 510511, 1021021, 10531531,

2042041, 2552551, 3063061, 3573571, 4084081, 4594591, 5105101}

is a firm set. This can be found by setting up the following 17 systems of linear congruences:

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16

17 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

13 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

7 0 1 2 3 4 5 6 1 1 1 1 1 1 1 1 1 1

5 0 1 2 3 4 1 1 1 1 1 1 1 1 1 1 1 1

3 0 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1

2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

There are many more ways to construct firm sets as mentioned above. The next set

we construct is a specific type of Firm set. In this construction, we utilize the fact that

p > w1 + ...wt.

Definition 3.6. A set I is completely firm for a prime p (p > w1 + ... + wt) and for the

set of primes Q if:

1) I is firm.

2) Every subset in I of wj elements that forms a complete set of residues modulo wj fails to

form a complete set of residues modulo wi for every i < j.

3) There exists a complete set of residues modulo wi in the subset I −Wj for all i 6= j.

4) There does not exist a complete set of residues modulo wi in the subset I −Wi for all i.

Once again, to construct a completely firm set we need to use p systems of linear congru-

ences and then utilize the Chinese Remainder Theorem. We prove the existence of such sets

and then give an example.

Proposition 3.7. Given a set of primes Q and a prime p > w1 + ... + wt it is possible to

construct a completely firm set I.
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Proof. We need to construct p systems of linear congruences with solutions x0, x1, ..., xp−1 as

follows:

• For all i, xi ≡ 1 (mod p).

• For all i and all j, xi ≡ 1 (mod sj).

• For 0 ≤ i ≤ wt − 1, xi ≡ i (mod wt); for the remaining i, xi ≡ 1 (mod wt).

• For wt ≤ i ≤ wt−1 − 1, xi ≡ i− wt (mod wt−1); for the remaining i, xi ≡ 1 (mod wt−1).
...

• For wt + ... + w2 ≤ i ≤ wt + ... + w2 + w1 − 1, xi ≡ i− wt − wt−1 − ...− w2 (mod w1); for

the remaining i, xi ≡ 1 (mod w1).

Basically the first wt solutions to the congruences form a complete set of residues modulo

wt and are equivalent to 1 modulo every other prime less than p. Then the next wt−1 solutions

to the congruences form a complete set of residues modulo wt−1 and are equivalent to 1 modulo

every other prime less than p. This process is repeated for each subsequent prime in W. You

should notice that this is possible since p > w1 + ... + wt.

Once again, it can be seen more easily what’s going on if we view it in matrix form.

x1 x2 x3 ... xwt−1 xwt xwt+1 ... xwt+wt−1−1 ... xwt+...+w2 ... xp−1

p 1 1 1 ... 1 1 1 ... 1 ... 1 ... 1

wt 0 1 2 .. wt − 1 1 1 ... 1 ... 1 ... 1

wt−1 1 1 1 ... 1 0 1 ... wt−1 − 1 ... 1 ... 1

...
...

...
...

w1 1 1 1 ... 1 1 1 ... 1 ... 0 ... 1

sj 1 1 1 ... 1 1 1 ... 1 ... 1 ... 1

Notice by our construction we have found a set satisfying all conditions to be completely

firm.
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Example 3.8. Consider Q = {3, 5, 7} and p = 17.

ICF = {364651, 1, 145861, 291721, 437581, 72931, 218791, 204205, 510511, 306307,

102103, 408409, 340341, 1021021, 170171, 1531531, 2042041}

is a completely firm set. This can be found by setting up the following 17 systems of linear

congruences:

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16

17 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

13 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

7 0 1 2 3 4 5 6 1 1 1 1 1 1 1 1 1 1

5 1 1 1 1 1 1 1 0 1 2 3 4 1 1 1 1 1

3 1 1 1 1 1 1 1 1 1 1 1 1 0 1 2 1 1

2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

3.2 Firm Polynomials

Definition 3.9. Let I = {i0, ..., ip−1} be a completely-firm set with the set of primes Q =

{q1, ..., qk}. We can call the polynomial

Ck(x) = (x− i0)...(x− ip−1)

a completely-firm(CF) polynomial.

Proposition 3.10. Let I, Q, and Ck(x) be as in Definition 3.9. We have

L(Ck(x)) = {p}

+ {p− qj1 + 2|1 ≤ j1 ≤ k}

+ {p− qj1 − qj2 + 4|1 ≤ j1 ≤ k, 1 ≤ j2 ≤ k, and j1 6= j2}
...

+ {p− qj1 − ...− qjz + 2z|1 ≤ ji ≤ k and j1 6= ... 6= jz}.
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Proof. For notation purposes let qj(x) = (x− qj0)...(x− qjqj−1) where Qj = {qj0, ..., qjqj−1}

forms a complete set of residues modulo qj . Notice that we can factor the polynomial in the

following ways:

Ck(x) = (x− i0)...(x− ip)

= qj1

(qj1(x)
qj1

)
(x− iqj1

)...(x− ip−1)

= qj1qj2

(qj1(x)
qj1

)(qj2

qj2

)
(x− iqj1+qj2

)...(x− ip−1)

...

= q1...qk

(q1(x)
q1

)
...
(qk(x)

qk

)
(x− iq1+..+qk

)...(x− ip−1)

So, {p}+ {p− qj1 + 2|1 ≤ j1 ≤ k}+ {p− qj1 − qj2 + 4|1 ≤ j1 ≤ k, 1 ≤ j2 ≤ k}+ ... + {p−

qj1 − ...− qjz
+ 2z|1 ≤ ji ≤ k} ∈ L(Ck(x)).

Now if L(Ck(x)) is not equal to what’s above, then there exists factorizations of other

lengths of Ck(x). Notice that the only integers that divide Ck(x) are q1, ..., qk, so any new

factorization of Ck(x) must be in the form Ck(x) = h1(x)
c h2(x) where h1(x)

c is irreducible in

Z[x], h1(x), h2(x) ∈ Z[x], and c is composed of some of the primes q1, .., qk. The only factors

in that form that are not above are fm(x) = h1(x)
c

h3(x)
c′ h4(x) where h3(x), h4(x) ∈ Z[x] and

c′ shares a prime divisor with c, say qt. But then I − Qt forms a complete set of residues

modulo qt, which is a contradiction. Thus, we have given all factorizations of Ck(x)

Notice that if I was a complete set of residues modulo p, then we could factor the poly-

nomial as

Ck(x) = pq1...qk

( (x− i0)...(x− ip−1)
pq1...qk

)
The factor length of this polynomial is k + 2. It is difficult to determine if p− q3 + 2 ≥ k + 2

adding another problem to taking the difference of consecutive lengths. Thus, we decided it

best to have I an incomplete set of residues modulo p.

Proposition 3.11. Let q1 ≤ q2 ≤ q3 be primes, and q3 ≥ q1 + q2− 2. Then q3− q1− q2 +2 ∈

4(C3(x)).
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Proof. From proposition 3.10 we can factor C3(x) as:

C3(x) = (x− i0)...(x− ip−1)

= q1

(
q1(x)

q1

)
(x− iq1)...(x− ip−1)

= q2

(
q2(x)

q2

)
(x− iq2)...(x− ip−1)

= q3

(
q3(x)

q3

)
(x− iq3)...(x− ip−1)

= q1q2

(
q1(x)

q1

)(
q2(x)

q2

)
(x− iq1+q2)...(x− ip−1)

= q1q3

(
q1(x)

q1

)(
q3(x)

q3

)
(x− iq1+q3)...(x− ip−1)

= q2q3

(
q2(x)

q2

)(
q3(x)

q3

)
(x− iq1+q3)...(x− ip−1)

= q1q2q3

(
q1(x)

q1

)(
q2(x)

q2

)(
q3(x)

q3

)
(x− iq1+q2+q3)...(x− ip−1)

So p, p−q1+2, p−q2+2, p−q3+2, p−q1−q2+4, p−q1−q3+4, p−q2−q3+4, p−q1−q2−q3+6 ∈

L(C3(x)).

Now q1 > 2, so q1 − 2 > 0 and p − q1 + 2 < p. Now q2 ≥ q1, so p − q2 + 2 ≤ p − q1 + 2.

Now q1 > 2, so q1 + q2 > 2 + q2 and p − q1 − q2 + 4 < p − q2 + 2. Now q3 ≥ q1 + q2 − 2,

so q3 + 2 ≥ q1 + q2 and p − q3 + 2 ≤ p − q1 − q2 + 4. Now q1 > 2, so q1 + q3 > 2 + q3 and

p−q1−q3+4 < p−q3+2. Now q2 ≥ q1, so q3+q2 ≥ q3+q1 and p−q2−q3+4 ≤ p−q1−q3+4.

Now q1 > 2, so q1 + q2 + q3 > q2 + q3 + 2 and p− q2 − q3 − q1 + 6 < p− q2 − q3 + 4.

Thus p > p − q1 + 2 ≥ p − q2 + 2 > p − q1 − q2 + 4 ≥ p − q3 + 2 > p − q1 − q3 + 4 ≥

p− q2 − q3 + 4 > p− q1 − q2 − q3 + 6.

So by taking consecutive differences we find that q3 − q1 − q2 + 2 ∈ 4(C3(x)).

We show that q3−q1−q2+2 produces all odd numbers up to 3∗1017 when q1 ≤ q2 ≤ q3 are

primes and q3 ≥ q1 +q2−2. Since showing this relies on showing sums of primes equal natural

numbers, we assume the Goldbach conjecture which is where we get the bound 3 ∗ 1017.

Proposition 3.12. Every natural odd number n such that 1 ≤ n < 3 ∗ 1017 can be written as

n = q3 − q1 − q2 where q1, q2, q3 are primes such that q3 ≥ q1 + q2 − 2 and q1 ≤ q2 ≤ q3.
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Proof. Proof by Induction on n. Let n = 1, 1 = 11− 7− 3 and 11 ≥ 7 + 3− 2 = 8 is true and

3 ≤ 7 ≤ 11.

Let n = q3 − q1 − q2 where q3 ≥ q1 + q2 − 2 and q1 ≤ q2 ≤ q3. We show that there

exists primes p1, p2, p3 for n + 2 where p1 ≤ p2 ≤ p3, and p3 ≥ p1 + p2 − 2. Now n + 2 =

q3 − q1 − q2 + 2 = q3 − (q1 + q2 − 2). Let x = q1 + q2 − 2. According to the Goldbach

Conjecture, x = p1 + p2 where p1, p2 are primes. Now n + 2 = q3 − p1 − p2. We know that

q1 + q2 − 2 = p1 + p2 ≤ q3. Thus, p1 + p2 − 2 ≤ q3. Now if p2 ≤ q3 then we are done since we

have found our 3 primes p1, p2, q3 = p3 for n+2. If not, then p2 > q3. So, p2 > q3 ≥ p1+p2−2.

Then 0 > q3 − p2 ≥ p1 − 2, so 0 > p1 − 2 → 2 > p1 which is a contradiction since 2 ≤ p1

because p1 is prime.

Thus n + 2 = q3 − p1 − p2 where p1 + p2 − 2 ≤ q3 and p1 ≤ p2 ≤ q3.

Corollary 3.13. Every odd natural number less than 3 ∗ 1017 is in ∆(Int(Z)).



Chapter 4

The Delta Set of Int(Z)

We will improve the arguments of Chapter 3 and explicitly compute ∆(Int(Z)).

4.1 Incomplete Binomial Polynomials

Let K = {k1, ..., kn} be a set of integers such that 0 ≤ k1 < k2 < ... < kn < m and

mK,n(x) = xα0(x− 1)α1(x− 2)α2 ...(x−m + 1)αm−1

with αk1 = αk2 = ... = αkn
= 0 and the rest of the α’s equal 1.

Proposition 4.1. For every 1 ≤ i ≤ n,

mK,n(ki) = ki!(m− ki − 1)!(−1)m−ki−1

 n∏
j=1,j 6=i

1
(ki − kj)


Proof. Proof by Induction on n. Let n = 1. Then, K = {k1} and

mK,1(x) = x(x− 1)...(x− k1 + 1)(x− k1 − 1)...(x−m + 1),

and

mK,1(k1) = k1(k1 − 1)...(1)(−1)(−2)...(k1 −m + 1)

mK,1(k1) = k1!(−1)m−k1−1(1)(2)...(m− k1 − 1) = k1!(m− k1 − 1)!(−1)m−k1−1.
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Let K = {k1, ...., kn} be a set of integers such that 0 ≤ k1 < ... < kn < m and the statement

be true for every n− 1 subset of the integers. Then, using the induction hypothesis for every

0 ≤ i ≤ m− 1 and K̂t = {k1, ..., kt−1, kt+1, ..., kn} for some t 6= i,

mK,n(ki) =
mK̂t,n

(ki)

(ki − kt)

= ki!(m− ki − 1)!(−1)m−ki−1

 n−1∏
j=1,j 6=i

1
(ki − kj)

[ 1
(ki − kt)

]
.

= ki!(m− ki − 1)!(−1)m−ki−1

 n∏
j=1,j 6=i

1
(ki − kj)

 .

Proposition 4.2. For every K = {k1, ...., kn},

gcd
(
mK,n(k1)...mK,n(kn)

)
|d
(
Z,mK,n(x)

)
and

d
(
Z,mK,n(x)

)
≤ |mK,n(k1)|.

Proof. From above, we know mK,n(k1)...mK,n(kn), and by construction mK,n(x) = 0 for

every x 6= ki for some 0 ≤ i ≤ m− 1. So, in the difference table construction of C. Long, we

know

D0(x) = 0 where 0 ≤ x < k1,

and

D0(ki) = mK,n(ki) for every 0 ≤ i ≤ m− 1.

Now

Dj(0) = Dj−1(1)−Dj−1(0),

so

Dj(0) = 0 for every 0 ≤ j < k1.

Notice that D1(k1 − 1) = D0(k1)−D0(k1 − 1) = D0(k1), and thus

D2(k1 − 2) = D1(k1 − 1) = D0(k1) = mK,n(k1).
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We can continue this until we get that

Dk1(0) = mK,n(k1).

Now

D1(x) = D0(x + 1) + D0(x) for every k1 < x ≤ m− 1.

By our construction, for every k1 < x ≤ m − 1, D0(x) = mK,n(ki) for some i or D0(x) = 0.

Thus, D1(x) for every k1 < j ≤ m− 1 will either be 0, mK,n(ki1), mK,n(ki2)−mK,n(ki1). By

doing this again for D2(x) and so on, we see that

Dj(0) = a1D
0(k1) + a2D

0(k2) + ... + anD0(kn) for every k1 < j ≤ m− 1

where a1, a2, ..., an ∈ Z. That is, Dj(0) will be a linear combination of mK,n(k1)...mK,n(kn)

for every k1 < j ≤ m− 1. Now,

d(mK,n(x), Z) = gcd
(
Dj(0)

)
for every 0 ≤ j ≤ m− 1.

So,

d(mK,n(x), Z) = a1D
0(k1) + a2D

0(k2) + ... + anD0(kn)

for some a1, a2, ..., an ∈ Z. Which means that

d(mK,n(x), Z) = a1mK,n(k1) + ... + anmK,n(kn).

Thus,

gcd
(
mK,n(k1)...mK,n(kn)

)
|d
(
mK,n(x), Z

)
,

and since Dk1(0) = mK,n(k1) we get that

d
(
Z,mK,n(x)

)
≤ |mK,n(k1)|.

Corollary 4.3. Let f(x) ∈ Q[x] with degf(x) = m. Suppose f(j) 6= 0 for 0 ≤ j ≤ m and

f(l) = 0 for l 6= j, 0 ≤ l ≤ m. Then, d(Z, f(x)) = |f(j)|.

Corollary 4.4. d(Z,m1(x)) = |m1(k1)|
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4.2 The Delta Set

Pick m ∈ N and a prime p > m. Let

1) {0, ...,m− 1} ∪ {i1, ..., ip−m} form a complete set of residues modulo p

2) {0, ...,m− 1}∪{i1, ..., ip−m} not form a complete set of residues modulo any prime r such

that m < r < p.

3) i1 ≡ ... ≡ ip−m ≡ m− 1 (mod q) for every prime q < p

Consider the polynomial

h(x) = x(x− 1)...(x−m + 1)(x− i1)...(x− ip−m)

Proposition 4.5. d(Z, h(x)) = m!p.

Proof. Since

m!|x(x− 1)...(x−m + 1) and p|h(x)

then

d(Z, h(x)) ≥ m!p and m!p|d(Z, h(x)).

Notice that if q - m! and q 6= p, then q - d(Z, h(x)). Also, because of the conditions on

ij for every i ≤ j ≤ p − m the only primes less than p that could divide d(Z, h(x)) are the

primes that also divide m!.

Let m! = pr1
1 ...prt

t , a(x) = x(x− 1)...(x−m + 1), and b(x) = (x− i1)...(x− ip−m).

If x = m, then a(x) = m(m− 1)...(1) and prk

k ||a(x) for every 1 ≤ k ≤ t. Also,

i1 ≡ ... ≡ ip−m ≡ 1 (mod pk) for every 1 ≤ k ≤ t.

So, prk

k - b(m). Thus, for every power of prime that divides m!, that power exactly divides

a(m) and does not divide b(m). Therefore, d(Z, h(x)) = m!p.

Let

f(x) =
h(x)
m!

.
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Then we can write f(x) as,

f(x) =
x(x− 1)...(x−m + 1)

m!
(x− i1)...(x− ip−m).

Now x(x−1)...(x−m+1)
m! =

(
x
m

)
which is irreducible by Corollary 2.2 in Anderson, Cahen, Chap-

man, and Smith [1]. So the above factorization of f(x) is an irreducible factorization of length

p−m + 1. Also,

f(x) = p

(
x(x− 1)...(x−m + 1)(x− i1)...(x− ip−m)

m!p

)
.

This is f(x) = p h(x)
d(Z,h(x)) . Now h(x)

d(Z,h(x)) is irreducible if and only if d(Z, h1(x))d(Z, h2(x)) <

d(Z, h(x)) for every h1(x)h2(x) = h(x). Since {0, ...,m− 1} ∪ {i1, ..., ip−m} forms a complete

set of residues modulo p, then p - (Z, h1(x)) and p - (Z, h2(x)). Thus, d(Z, h1(x))d(Z, h2(x)) <

d(Z, h(x)) and f(x) = p h(x)
d(Z,h(x)) is a factorization of f(x) of length 2.

We claim that these are the only two irreducible factorizations of f(x).

Proposition 4.6. L(f(x)) = {2, p−m + 1}.

Proof. Since d(Z, h(x)) = m!p, we can not take out any other integers from h(x) than m!p.

So, there does not exist any factorizations of f(x) where f(x) = ch(x)
m!c where c 6= p.

Thus, we only need to consider factorizations of f(x) such that

f(x) = w(x)v(x) where w(x) =
s(x)
d1

and v(x) =
r(x)
d2

where d1|d(s(x), Z), d2|d(r(x), Z) and d1, d2 ∈ Z. Notice that d1 = d(s(x), Z) and d2 =

d(r(x), Z). Because if d1 6= d(s(x), Z) then αd1 = d(s(x), Z) for some α > 1. Thus,

f(x) = α

(
s(x)
αd1

)(
r(x)
d2

)
which is a contradiction since α 6= p. The same argument can be used to show that d2 =

d(r(x), Z).

Therefore,

f(x) =
s(x)

d(Z, s(x))
r(x)

d(Z, r(x))



4- The Delta Set of Int(Z) 29

.

Also notice that s(x) and r(x) are primitive. If s(x) is not primitive, then

s(x)
d1

=
s1s

′(x)
d1

=
s′(x)
d′1

for some polynomial s′(x) and integers s1 and d′1 6= d1. But then, d′1 = d(s(x), Z) which is a

contradiction. A similar argument can also be used to show that r(x) is primitive also.

Now, notice that
h(x)
m!

=
s(x)

d(Z, s(x))
r(x)

d(Z, r(x))
,

so h(x)d(Z, s(x))d(Z, r(x)) = s(x)r(x)m!. And because h(x), s(x), r(x) are primitive we get

that d(Z, s(x))d(Z, r(x)) = m!.

Now h(x) = s(x)r(x), so s(x) and r(x) are composed of some terms from a(x) and b(x).

Remember, a(x) = x(x−1)...(x−m+1), and b(x) = (x− i1)...(x− ip−m). Notice that neither

s(x) or r(x) can have all the terms from a(x) or all the terms from b(x). Because without

loss of generality let s(x) = a(x)b′(x) where b′(x) is composed of some terms of b(x). Then,

d(Z, s(x)) = m! and d(Z, r(x)) = 1 and we get a factorization of length p − m + 1. Thus,

s(x) and r(x) are composed of some of the terms of a(x) and b(x), but neither one has all the

terms from a(x).

That is, s(x) = a1(x)b1(x) and r(x) = a2(x)b2(x). Where a1(x), a2(x) are composed of

some terms from a(x) but a1(x) 6= 1 and a2(x) 6= 1. Also, b1(x), b2(x) are composed of some

terms from b(x). So,

f(x) =
s(x)

d(Z, s(x))
r(x)

d(Z, r(x))
=

a1(x)b1(x)
d(Z, s(x))

=
a2(x)b2(x)
d(Z, r(x))

Now, d(Z, a1(x))d(Z, a2(x)) < m!. If d(Z, a1(x))d(Z, a2(x)) = m!, then(
x

m

)
=
(

a1(x)
d(Z, a1(x))

)(
a2(x)

d(Z, a2(x))

)
which contradicts the fact that

(
x
m

)
is irreducible. Thus, d(Z, a1(x))d(Z, a2(x)) < m!.

Now

s(x) =
a1(x)b1(x)
d(Z, s(x))

=
a1(x)b1(x)

kd(Z, a1(x))d(Z, b1(x))
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where k ∈ Z. Consider the case when x = m, then b1(m) ≡ 1 (mod q) for every prime q|m.

So, d(Z, b1(x)) - s(m). So, d(Z, s(x)) = kd(Z, a1(x)) and d(Z, a1(x))||s(m).

Now, d(Z, s(x)) = kd(Z, a1(x)) where k ∈ Z. Let q be a prime, q < p, q - a1(m), and

q|b1(m). Now i1 ≡ ... ≡ ip−m ≡ m − 1 (mod q). So, b1(m) ≡ m − ij ≡ m − (m − 1) ≡ 1

(mod q) for every 1 ≤ j ≤ p−m. So, q - b1(m) which is a contradiction. Thus, there does not

exist any prime q < p such that q - a1(m) and q|b1(m). Therefore, d(Z, s(x)) = d(Z, a1(x). A

similar argument can be used to show that d(Z, r(x)) = d(Z, a2(x)).

But then m! = d(Z, s(x))d(Z, r(x)) = d(Z, a1(x))d(Z, a2(x)) < m! which is a contradiction,

so the only factorizations of f(x) are the ones of length 2 and length p −m + 1. Therefore,

L(f(x)) = {2, p−m + 1}

Corollary 4.7. ∆(Int(Z)) = N
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