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Abstract. We consider the problem of representation of minimal surfaces

in the euclidean space and provide a proof of Bernstein’s theorem. This pa-

per serves as a concise and self-contained reference to the theory of minimal

surfaces.
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Preface

The study of minimal surfaces was initially motivated by the Plateau Problem

of finding a surface that minimizes the area given a fixed boundary. The analysis

of this variational problem reveals that surfaces that minimize area, hence called

minimal surfaces, have constant zero curvature. In this paper, we provide an anal-

ysis of minimal surfaces focusing on the problem of how to represent surfaces and

we provide a proof of Bernstein’s theorem which says that the plane is the only

minimal surface in R
3 that is the graph of a function. Many of the results we draw

upon can be found in [5] and [2].

In the development of Differential Geometry, we always thought of surfaces as

objects sitting in the Euclidean space. In our work, we begin with an abstract

treatment of the theory of differentiable manifolds and establish all the classical

geometric objects independently of how these objects sit in the Euclidean space.

Nevertheless, these concepts are intimately connected as we will show from Whit-

ney’s that states that every n-dimensional manifold may be embedded in R
2n+1.

This will provide us with motivation to introduce the theory of minimal surfaces

as spaces embedded into the Euclidean space. The remainder of the paper is or-

ganized to describe the solutions of the variational problem and how to represent

minimal surfaces. The project culminates in Chapter 7, where we provide a proof

of Bernstein’s theorem.

v





Part 1

Differentiable Manifolds





CHAPTER 1

Preliminaries

In this chapter, we will provide the basic definitions and constructions relevant

to the study of differentiable manifolds. We begin by studying differentiable man-

ifolds in order to prove Whitney’s theorem, which states that every n-dimensional

manifold may be embedded in R
2n+1.

1. Differentiable Manifolds

Let us begin with some preliminaries that will motivate our definition of a

differentiable manifold.

Definition 1.1. Let M be a non-empty set.

A pair (Ω,x) consisting of an open set Ω ⊂ R
n and an injective map x : Ω →M

is a local parametrization of M , at p if p ∈ x(Ω). A pair (U,ϕ) consisting of a subset

U ⊂M and a map ϕ : U → R
n such that

(
ϕ(U), ϕ−1

)
is a local parametrization of

M is a chart on M , at p if p ∈ U ; here the map ϕ is a coordinate chart.

Two charts (U,ϕ) and (V, ψ) on M have a Cr-overlap if the coordinate change

ϕ ◦ ψ−1 : ψ(U ∩ V ) → ϕ(U ∩ V )

is a Cr-diffeomorphism. Here, r can be a nonnegative integer, ∞, or ω (meaning

real-analytic).

3
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An atlas on M is a collection of charts A = {(Uα, ϕα)} on M such that

⋃
Uα = M . An atlas on M is Cr-compatible if any two charts in the atlas have a

Cr overlap.

A Cr-differential structure on M is a maximal Cr-compatible atlas on M .

Our primary objective is to study sets with a differential structure defined on

them. Though differential structures are not always easy to explicitly find, this is

not a problem since, given a set M , we may define an equivalence relation ∼ on

the collection of Cr-compatible atlases on M by A1 ∼ A2 if and only if A1 ∪A2 is

a Cr compatible atlas. Each equivalence class under ∼ contains a unique maximal

Cr-compatible atlas on M , so it suffices to give a single Cr-compatible atlas on M

to define a differential structure on M . For technical purposes, this extension will

be done without further comment. That is, we shall assume that an atlas A on a

set M is a differential structure wherever it is convenient.

Notice that the way we have defined differential structures on a set M makes

no mention of a topology on M . Since we eventually want to study general objects

that “look like” Euclidean spaces, it will be useful to define a topology on M .

Fortunately, a C0 atlas A on a set M induces a natural topology on M . Here, it

suffices to define a subset A ⊂M to be open if and only if ϕ(A ∩ U) is open in R
n

for every chart (Uϕ) ∈ A . Notice that this topology is defined in such a way that

every coordinate chart of A is a homeomorphism onto its image. We summarize

this discussion with the following proposition.

Proposition 1.1. Let M be a topological space. Then the topology of M is

induced by a C0 compatible atlas if and only if each point of M has a neighborhood

homeomorphic to R
n.
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It is precisely the property described in Proposition 1.1 that will motivate our

definition of a manifold:

Definition 1.2. A Cr-differential structure A on a set M is a Cr-manifold

structure on M if the topology on M induced by A is Hausdorff and second-

countable.

A Cr-differential manifold of dimension n is a pair (M,A ) consisting of a set

M and a Cr-manifold structure A on M .

Before giving some examples of manifolds, we give a word on notation. Al-

though a manifold is an ordered pair (M,A ), we will often suppress the manifold

structure in our notation and simply refer to the manifold as M . This abuse of

notation is harmless enough and will often prove convenient. Also, until further

notice, fix r ≥ 1 and assume that all manifolds mentioned are Cr manifolds.

Example 1.1. Observe that R
n together with the manifold structure given by

the identity map is a manifold.

Example 1.2 (The Product Manifold). If (M1,A1) and (M2,A2) are manifolds

of dimensions m and n respectively, then there exists a natural manifold structure

A on M1 ×M2 making (M1 ×M2,A ) an m + n-dimensional manifold. Namely

this structure is given by the collection

A = {(U1 × U2, ϕ1 × ϕ2) : (Ui, ϕi) ∈ Ai}

where ϕ1 × ϕ2 : U1 × U2 → R
m+n is the induced map.

Example 1.3. If (M,A ) is a manifold and W ⊆M is open, then there exists

a natural manifold structure AW on W . Namely, this structure is given by the
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collection

AU = {(U,ϕ) ∈ A : U ⊂W} .

Example 1.4 (Submanifolds). We will often find ourselves interested in man-

ifolds that are contained in other manifolds. A subset A of a manifold (M,A ) is a

Cr-submanifold of (M,A ) if there exists an integer k ≥ 0 such that each point of

A belongs to the domain of a chart (U,ϕ) ∈ A such that

U ∩A = ϕ−1
(
R
k
)

where R
k ⊂ R

n is the set of vectors whose last n− k are 0. Such a chart (U,ϕ) is

a submanifold chart for (M,A). If A is a submanifold of M , then the collection of

coordinate charts

ϕ| U∩A : U ∩A→ R
k

form a Cr atlas of A, where (U,ϕ) runs over all submanifold charts. Thus A is a

Cr manifold of dimension k. The codimension of A is n− k.

We now turn our attention to the study of maps between manifolds. One of our

main objectives is to extend the ideas of differential calculus in R
n to differentiable

manifolds. The first step in this direction is defining what it means for a map

between two manifolds to be differentiable.

Definition 1.3. Let Mm and Nn be manifolds and let f : M → N .

A pair of charts (U,ϕ) for M and (V, ψ) for N is adapted to f if f(U) ⊂ V .

Here, the map

ψ ◦ f ◦ ϕ−1 : ϕ(U) → ψ(V )

is defined; it is the expression of f in the given charts, at p if p ∈ U .
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The map f is differentiable at a point p ∈M if it has an expression at p which

is differentiable. Similarly, f is differentiable of class Cr if it has a Cr expression

at every point of M .

We observe that it is not necessary for every expression to be Cr in order for

a map to be Cr. To this extent, we have the following result.

Proposition 1.2. Given manifolds Mm and Nn, let f : M → N be of class

Cr. If (U,ϕ) and (V, ψ) are a pair of charts on M and N , respectively, adapted to

f , then the expression of f in (U,ϕ) and (V, ψ) is of class Cr.

Proof. Let p ∈ ϕ(U) and say q = ϕ−1(p). Since f is Cr, there exist charts

(U0, ϕ0) on M and (V0, ψ0) on N such that the map ψ ◦ f ◦ϕ−1 is a Cr-expression

of f at q. It follows that p ∈ U ∩U0 = W so that W 6= ∅. By replacing U0 with W ,

we may assume that U0 ⊂ U . Similarly, we may assume that V0 ⊂ V . In this way,

our new restricted charts (U0, ϕ0) and (V0, ψ0) still adapt to f and the expression

of f in these charts is still a Cr-expression of f at q.

Now, observe that

(1.1) ψ ◦ f ◦ ϕ−1 =
(
ψ ◦ ψ−1

0

)
◦
(
ψ0 ◦ f ◦ ϕ−1

0

)
◦
(
ϕ0 ◦ ϕ−1

)

on ϕ(U0). The first and third maps on the right of (1.1) are Cr since they are

coordinate changes. Hence ψ ◦ f ◦ ϕ−1 is Cr in some neighborhood of every point

of ϕ(U). Thus the expression of f in (U,ϕ) and (V, ψ) is Cr as required. �

Let f : M → N and g : N → P be Cr maps between manifolds. Then it is

clear from the definition of differentiability that the composition map g ◦ f is also

Cr. In addition, it can be easily verified that the identity map and all constant
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maps are Cr. Finally, if (U,ϕ) is a chart on a manifold M , then observe that ϕ is

a Cr-diffeomorphism onto its image.

From our observation above, we may define an equivalence relation ≈ on the

family of manifolds by definingM ≈ N whenever there exists a Cr-homeomorphism

f : M → N whose inverse is also Cr, which is the basic equivalence relation in

differential topology.

2. The Tangent Space

Our next task will be to extend the idea of a tangent vector to a curve on a

differentiable manifold. For surfaces in R
n, we think of a tangent vector to a point

p as the “velocity” in R
n of a curve on the surface passing through p. While one

may develop the theory of tangent spaces via the study of curves on a manifold, we

will develop the tangent space from the point of view of derivations.

Definition 1.4. Given a manifold M with p ∈ M , let CpM be the collection

of all real-valued functions defined in a neighborhood of p that are Cr-differentiable

at p and let ∼ be the equivalence relation on CpM defined by f ∼ g whenever there

exists a neighborhood U of p such that f = g on U . A germ is an equivalence class

of ∼ and the collection of germs of CpM is denoted by DpM .

A derivation at p is a linear map X : DpM → R such that

X(fg) = g(p)Xf + f(p)Xg

for every f, g ∈ DpM . A tangent vector at p is a derivation at p. The tangent space

of M at p is the real vector space of all tangent vectors at p and is denoted by TpM .

Although this definition does not rely on our usual geometric intuition, we will

see shortly that the tangent space has the expected geometrical properties. Namely,
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the vector space structure that coincides with the tangent plane structure of real

surfaces.

Before showing this, we give an example of a tangent space and an important

derivation.

Example 1.5. Let U be a neighborhood of a point p in a manifold M . Then

the collection of germs of Cr functions in U at p is the same as DpM . Hence

TpM = TpU .

Example 1.6. Given a chart (U,ϕ) on a manifold M at a point p, let Di| ϕp :

DpM → R be the map defined by

Di| ϕp f = Di| ϕ(p)f ◦ ϕ−1.

Then Di| ϕp ∈ TpM . Indeed, if f, g ∈ DpM , then the chain rule implies

Di| ϕp fg = Di| ϕ(p)fg ◦ ϕ−1

= Di| ϕ(p)

(
f ◦ ϕ−1

) (
g ◦ ϕ−1

)

= f(p) Di| ϕ(p)g ◦ ϕ−1 + g(p) Di| ϕ(p)f ◦ ϕ−1

= f(p) Di| ϕp g + g(p) Di| ϕp f

and the linearity of Di| ϕp can easily be verified.

We will often encounter the operator D| ϕp . It is the partial derivative at p with

respect to ϕ.

In the case that M = R
n, we observe that TpR

n is isomorphic to R
n, which

agrees with our intuition. In this direction, we prove the following result.
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Proposition 1.3. Given p ∈ R
n, let F : R

n → TpR
n be the map defined by

F (v1, . . . , vn) =
∑

vi Di| p.

Then F is a linear isomorphism.

Proof. The fact that F is linear is clear, so it suffices to show that F is

bijective.

First, we see that that F is injective. Suppose that Fv = 0 and let I =

(I1, . . . , In) be the identity on R
n. Then

vj =
∑

i

viδij =
∑

i

vi Di| pIj = Fv(Ij) = 0

for every j so that v = 0. Hence F is injective.

Next, we show that F is surjective. Let X ∈ TpM and let f : U → R be a

representative of a germ in DpR
n. Since U is a neighborhood of p, it contains an

open ball B with center p. If we restrict f to B, then f is still a representative of

the same germ, so we may assume this is done.

Now, by Taylor’s theorem (see [7]), there are Cr functions gi defined in a

neighborhood V ⊂ B of p such that

gi(p) = Di| pf

and

(1.2) f = f(p) +
∑

(Ii − pi) gi

for every x ∈ V . Applying X to (1.2) and observing that a derivation of a constant

function is 0 gives us

Xf =
∑

(XIi) gi(p) +
∑

(pi − pi)Xgi(p)
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=
∑

(XIi) Di| pf.

Hence X = Fv where v = (XI1, . . . ,XIn) so that F is surjective. �

Corollary 1.1. For p ∈ R
n, the collection {D1| p, . . . , Dn| p} is a basis for

TpR
n.

Proof. Let F be the map defined in Proposition 1.3 and let {e1, . . . , en} be

the standard basis for R
n. Then Fei = Di| p for every i. Since F is an isomorphism,

it maps the basis {e1, . . . , en} to a basis {D1| p, . . . , Dn| p} of TpR
n. �

One of the most useful properties of the tangent space is that it allows us to

generalize the notion of derivatives of smooth functions between manifolds. This

notion is known as the differential.

Definition 1.5. Given manifolds M and N with p ∈ M , let F : M → N be

Cr. Then the differential of F at p is the linear map dFp : TpM → TF (p)N given

by

dFp(X)f = X(f ◦ F )

for every f ∈ DF (p)N .

It is easy to verify that the differential map is well-defined and linear. For

details see [7].

We now consider some of the familiar and important properties of differentiable

functions on manifolds.

Theorem 1.1 (The Chain Rule). Given manifolds M , N , and P with p ∈M ,

let F : M → N and G : N → P be Cr. Then

d (G ◦ F )p = dGF (p) ◦ dFp.
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Proof. Let X ∈ TpM and let f be a germ at (G ◦ F ) (p) in P . Then

(
d (G ◦ F )pX

)
f = X (f ◦G ◦ F ) = (dFpX) (f ◦G)

=
(
dGF (p)(dFpX)

)
f =

((
dGF (p)◦dFp

X
))
f

as required. �

Proposition 1.4. Given a manifold M with p ∈M , let I be the identity map

on M . Then dIp is the identity map on TpM .

Proof. Let X ∈ TpM and let f ∈ DpM . Then

(dIpX) f = X(f ◦ I) = Xf

as required. �

Corollary 1.2. Let M and N be manifolds, let p ∈ M , and let F : M → N

be a Cr-diffeomorphism. Then dFp : TpM → TF (p)N is a linear isomorphism.

Proof. Since dFp is linear, it suffices to show that dFp is invertible. Since F is

a Cr-diffeomorphism, it has a Cr inverse F−1. Now, the chain rule and Proposition

1.4 imply that

dF−1
F (p) ◦ dFp = d

(
F−1 ◦ F

)
F (p)

= d (IN )p = ITF (P )N

and that

dFp ◦ dF−1
F (p) = d

(
F ◦ F−1

)
p

= d (IM )p = ITpM .

Hence dFp is invertible as required. �

Corollary 1.3. Let U and V be open in Rm and Rn respectively and let

F : U → V be a Cr-diffeomorphism. Then m = n.
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Proof. By Corollary 1.2, dFp : TpU → TF (p)V is a linear isomorphism. Since

TpU is isomorphic to R
m and TF (p)V is isomorphic to R

n, it follows that m = n as

required. �

Corollary 1.2 gives us a very important property of the tangent space. Given

a manifold Mn with p ∈M , let (U,ϕ) be a chart of M at p. Since ϕ : U → R
n is a

diffeomorphism onto its image, Corollary 1.2 implies that dϕp : TpM → Tϕ(p)R
n is

a linear isomorphism.

Proposition 1.5. Let (U,ϕ) be a chart of a manifold M at a point p ∈ M .

Then the collection B =
{
D1| ϕp , . . . , Dn| ϕp

}
is a basis for TpM .

Proof. Let f ∈ Dϕ(p)R
n and observe that

dϕp Di| ϕp f = Di| ϕp f ◦ ϕ = Di| ϕ(p)f ◦ ϕ ◦ ϕ−1 = Di| pf.

Since dϕp is a linear isomorphism, B is a basis as required. �

Proposition 1.6 (Transition matrix for coordinate vectors). Let M be a man-

ifold, let (U,ϕ) and (V, ψ) be charts on M , and let p ∈ U ∩ V . Then

Dj | ϕp =
∑

i

Dj | ϕpψi Di| ψp .

Proof. The collections
{
D1| ϕp , . . . , Dn| ϕp

}
and

{
D1| ψp , . . . , Dn| ψp

}
are bases

for TpM , so there exists a matrix (aij) of real numbers such that

(1.3) Dj | ϕp =
∑

k

akj Dk| ψp .

Now, applying ψi to both sides of (1.3), we obtain the relation

Dj | ϕpψi =
∑

k

akj Dk| ψp =
∑

k

akjδik = aij
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as required. �

We are now ready to show that the differential of a map between manifolds

generalizes the notion of the Jacobian:

Proposition 1.7. Given manifolds Mm and Nn with p ∈ M , let F : M →

N be Cr, let (U,ϕ) be a chart on M at p, and let (V, ψ) be a chart on N at

F (p). Then, relative to the bases BM =
{
D1| ϕp , . . . , Dm| ϕp

}
for TpM and BN =

{
D1| ψF (p), . . . , Dn| ψF (p)

}
for TF (p)N , the differential dFp : TpM → TF (p)N is rep-

resented by the matrix (aij) where

aij = Dj | ϕpψi ◦ F.

Proof. Since BM and BN are bases for M and N respectively, there exists a

matrix (aij) of real numbers such that

(1.4) dFp
(
Dj | ϕp

)
=
∑

k

akj Dk| ψF (p).

Now, apply ϕi to both sides of (1.4) to obtain the relation

aij =
∑

k

akj Dk| ψF (p)ψi

= dFp
(
Dj | ϕp

)
ψi

= Dj | ϕpψi ◦ F

as required. �

Let F : R
m → R

n be a Cr map. Then Proposition 1.7 implies that the matrix

representation (aij) of dFp relative to the bases {D1| p, . . . , Dm| p} for TpR
m and
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{
D1| F (p), . . . , Dn| p

}
for TF (p)R

n is given by

aij = Dj | pFi,

which is precisely the Jacobian of F . Hence the differential is a generalization of

the Jacobian.

We conclude this section by observing that the classical geometric interpreta-

tion of the tangent space via tangent vectors to a curve in a manifold is equivalent

to our definition.

Definition 1.6. Given a manifold M with p ∈ M , for ε > 0, a curve in M

at p is a differentiable function α : (−ε, ε) → M such that α(0) = p. The velocity

vector α′(t) at time t ∈ (−ε, ε) is the vector in Tα(t)M given by

α′(t) = dαp(D| t).

For curves in R
n, let ε > 0 and consider a curve α : (−ε, ε) → R

n. For

I = (I1, . . . , In) the identity map on R
n and t ∈ (−ε, ε), since α′(t) ∈ Tα(t)R

n and

{
D1| α(t), . . . , Dn| α(t)

}
is a basis for Tα(t)R

n, there exist real numbers a1, . . . , an

such that

(1.5) α′(t) =
∑

ai Di| α(t).

Applying Ij to both sides of (1.5) we obtain the relations

(1.6) α′(t)Ij = dαp(D| t)Ij = D| tIj ◦ α = D| tαj

and

(1.7) α′(t)Ij =
∑

i

ai Di| α(t)Ij =
∑

i

aiδij = aj .
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Hence (1.6) and (1.7) imply that

(1.8) α′(t) =




D| tα1

...

D| tαn,



.

Observe that (1.8) is precisely the tangent vector as defined for curves in R
n. This

shows that every curve α at a point p in a manifold M gives rise to a tangent vector

α′(0) in TpM . Conversely, one can show that every tangent vector X ∈ TpM is

the velocity vector of some curve at p. In fact, this is the content of the following

proposition.

Proposition 1.8. Given a manifold Mn with p ∈ M , let X ∈ TpM . Then

there exists a curve α in M at p such that α′(0) = X.

Proof. Let (U,ϕ) be a chart of M at p, let I = (I1, . . . , In) be the identity

map on R
n, and put q = ϕ−1(p). Since

{
D1| ϕp , . . . , Dn| ϕp

}
is a basis for TpM ,

there exists a vector a = (a1, . . . , an) ∈ R
n such that X =

∑
ai Di| ϕp . Now, there

exists a ε > 0 such that the trace of the curve c : (−ε, ε) → R
n given by

c(t) = at+ q

is contained in ϕ(U). Put α = ϕ−1 ◦ c. Then α(0) = p and

α′(0)f = dαp(D| 0)f = D| 0f ◦ α

= D| 0f ◦ ϕ−1 ◦ α = D| pf ◦ ϕ−1 D| 0c

=
∑

ai Di| pf ◦ ϕ−1 =
∑

ai Di| ϕ(p)f

= Xf
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for every f ∈ DpM so that α′(0) = X as required. �

Therefore the tangent space at a point can be viewed as the collection of velocity

vectors of curves at the point.

3. The Tangent Bundle

Definition 1.7. Let M be a manifold. The tangent bundle of M is the disjoint

union TM of all the tangent spaces of M . Namely,

TM =
⊔

p∈M

{p} × TpM.

We claim that the tangent bundle of a manifold M is itself a manifold. Indeed,

let us provide a topology for TM .

Given a manifold M with p ∈M , let X ∈ TpM and let (U,ϕ) be a chart of M

at p. Since the collection
{
D1| ϕp , . . . , Dn| ϕp

}
is a basis for TpM , X may be written

uniquely as

X =
∑

ai(X) Di| ϕp

where a(X) = (a1(X), . . . , an(X)) ∈ R
n. Because dϕpX =

∑
ai(X) D| ϕ(p) ∈

Tϕ(p)R
n, we have that dϕpX may be identified with the vector a(X). Now, let

TU =
⋃

p∈U

TpM

and let ϕ̃ : TU → ϕ(U) × R
n be the map given by

ϕ̃(p,X) = (dϕpX, a(X)) .

Then ϕ̃ is a bijection and ϕ̃−1 : ϕ(U) × R
n → TU is the map given by

ϕ̃−1(ϕ(p), a(X)) =
(
p,
∑

ai(X) Di| ϕp
)
.
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Using the map ϕ̃, we can define a topology on TU by letting a subset A ⊂ TU be

open if and only if ϕ̃(A) is open in ϕ(U) × R
n.

Let B be the collection of all open subsets of TUα, where Uα runs over all

coordinate open sets in M . One may check that, in this way, the topology B on

TM is Hausdorff and second-countable (see [7] for details). We will now provide a

manifold structure for TM .

Finally, one may show that the collection {(TUα, ϕ̃α)} is a manifold structure

on TM (see [7]) making TM a 2n-dimensional manifold.



CHAPTER 2

The Topology of Manifolds

In this chapter, we will address some of the background results that will be used

to establish Whitney’s Theorem. We divide this chapter into two parts. In the first,

we consider analytical results of measure theory on general manifolds. In particular,

subsets of measure zero. In the second part, we consider general topological results

that will play a fundamental role in the proof of Whitney’s Theorem.

1. Measure Theory

We denote by µ the Lebesgue measure in R
n and for background and related

results we refer to [6]. Our goal is to show that if Mm and Nn are manifolds with

m < n and f : M → N is a map of class C1, then N \ F (M) is dense in N . Let us

now consider some preliminaries in this direction.

Lemma 2.1. Given an open set U ⊂ R
n and a compact and convex subset

B ⊂ U , let f : U → R
m be C1. Then f is Lipschitz continuous on B with Lipschitz

constant κ = sup {|Df(x)| : x ∈ B}.

Proof. Let a, b ∈ B and let g : [0, 1] → R
n be the map g(t) = a + t (b− a).

Since B is convex, g([0, 1]) ⊂ B. It follows that

|f(b) − f(a)| =

∣∣∣∣
∫ 1

0

D (f ◦ g) (t) dt

∣∣∣∣

=

∣∣∣∣
∫ 1

0

Df(g(t))Dg(t) dt

∣∣∣∣

19
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≤
∫ 1

0

|Df(g(t))| |b− a| dt

≤ κ |b− a|

where κ = sup {|Df(x)| : x ∈ B}. Hence f is Lipschitz continuous on B with

Lipschitz constant κ as required. �

Lemma 2.2. Given an open set U ⊂ R
n and a subset A ⊂ U of measure zero,

let f : U → R
n be C1. Then f(A) has measure zero in R

n.

Proof. Let ε > 0. For every p ∈ E there exists an open ball Bp ⊂ U such

that p ∈ Bp. It follows that {Bp : p ∈ E} is an open cover of E. Since E is

second-countable, {Bp : p ∈ A} contains a countable subcover {Bi}. Since

f(A) =
⋃
f
(
A ∩Bi

)
,

it suffices to show that f
(
A ∩B

)
has measure zero for every B ∈ {Bi}.

In this direction, let B ∈ {Bi} and put κ = sup
{
|Df(x)| : x ∈ B

}
. By Lemma

2.1,

(2.1) |f(x) − f(y)| ≤ κ |x− y|

for every x, y ∈ B.

Since A∩B has measure zero, there exists a countable cover {Ci} of A∩B by

open balls such that

(2.2)
∑

µ(Ci) <
ε

κn
.

By (2.1), the set f
(
B ∩ Ci

)
is contained in a ball B̃i such that

(2.3) µ
(
B̃i

)
≤ κnµ(Ci).
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Now, since

f
(
A ∩B

)
⊂
⋃
f
(
B ∩ Ci

)
⊂
⋃
B̃i,

equations (2.2) and (2.3) imply that

µ
(
f
(
A ∩B

))
≤
∑

µ
(
B̃i

)
≤ κn

∑
µ(Ci) < ε.

Hence f
(
A ∩B

)
has measure zero as required. �

Lemma 2.3. Given an open set U ⊂ R
m with m < n, let f : U → R

n be C1.

Then f(U) has measure zero in R
n.

Proof. Let π : R
n → R

m be the projection on the first m coordinates, let

V = π−1(U), and let g = f ◦ π : V → R
n. Then

(2.4) f(U) = g(V ∩ R
m).

Since V ∩ R
m has measure zero in R

n, (2.4) and Lemma 2.2 imply that f(U) has

measure zero as required. �

Although our results are using the Lebesgue measure in R
n, we can extend the

measure to a manifold via charts and define sets of measure zero. For a complete

study of measures on a manifold, see [3].

Definition 2.1. Given a manifold M , let A ⊂ M . Then A has measure zero

if there exists a collection of charts {(Uα, ϕα)} on M such that {Uα} covers A and

ϕα(Uα ∩A) has measure zero in R
n for every α.

Observe that the definition above requires that A have measure zero only with

respect to one collection of charts. However, we see from the result below that this

implies that A has measure zero with respect to every chart. Hence Definition 2.1
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is well-defined, in the sense that a subset A of a manifold M has measure zero if

and only if ϕ(A ∩ U) has measure zero in R
n for every chart (U,ϕ) on M .

Lemma 2.4. Given a manifold M and a subset A ⊂ M of measure zero, let

(V, ψ) be a chart on M . Then ψ(A ∩ V ) has measure zero in R
n.

Proof. Since A has measure zero, there exists a collection {Uα, ϕα} of charts

on M such that {Uα} covers A and

(2.5) µ(ϕα(A ∩ Uα)) = 0

for every α. Since M is second-countable, {Uα} has a countable subcover {Ui}.

Since

ψ(A ∩ V ) =
⋃
ψ(A ∩ V ∩ Ui),

it suffices to show that ψ(A ∩ V ∩ U) has measure zero in R
n for every (U,ϕ) ∈

{(Ui, ϕi)}.

To do so, let (U,ϕ) ∈ {(Ui, ϕi)} and observe that

(2.6) ψ(A ∩ V ∩ U) =
(
ψ ◦ ϕ−1

)
(ϕ(A ∩ V ∩ U)).

Since ϕ(A ∩ V ∩ U) ⊂ ϕ(A ∩ U), (2.5) implies

(2.7) µ(ϕ(A ∩ V ∩ U)) = 0.

Hence (2.6), (2.7), and Lemma 2.2 imply that ψ(A ∩ V ∩ U) has measure zero in

R
n as required. �

Therefore, a subset A of a manifold M has measure zero if and only if ϕ(A ∩ U)

has measure zero in R
n for every chart (U,ϕ) on M .
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Before proving our main result for this section, we observe the close connection

between sets of measure zero and the topology of a manifold.

Lemma 2.5. Given a manifold M , let A ⊂M have measure zero. Then M \A

is dense in M .

Proof. Seeking a contradiction, suppose that M \A is not dense in M . Then

there exists a nonempty open set U ⊂ A. It follows that there exists a chart (U,ϕ)

on M such that ∅ 6= ϕ(U) = ϕ(A ∩ U). Since nonempty open sets of R
n have

positive Lebesgue measure, ϕ(A ∩ U) has positive measure, a contradiction since A

has measure zero. Hence M \A is dense in M . �

We are now ready to prove the main result of this section, which generalizes

the result in Lemma 2.3 to arbitrary manifolds. As mentioned earlier, this result

will be useful in our proof of Whitney’s theorem.

Proposition 2.1. Given manifolds Mm and Nn with m < n, let f : M → N

be C1. Then N \ f(M) is dense in N .

Proof. By Lemma 2.5, it suffices to show that f(M) has measure zero in N .

Let {(Ui, ϕi)} be a countable collection of charts on M such that {Ui} covers M

and let (V, ψ) be a chart on N . It suffices to show that ψ(f(M) ∩ V ) has measure

zero in R
n.

Observe that

(2.8) ψ(f(M) ∩ V ) =
⋃(

ψ ◦ f ◦ ϕ−1
i

) (
ϕi
(
f−1(V ) ∩ Ui

))
.

Finally, Lemma 2.3 and equation (2.8) imply that ψ(f(M) ∩ V ) has measure zero

in R
n as required. �
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2. Partitions of Unity

The second-countability condition on the topology of manifolds plays a funda-

mental role in the proofs of Lemma 2.5 and Proposition 2.1. This condition, which

is also a fundamental topological property of R
n, reveals the intimate connection

between the structure of manifolds and the structure of R
n. This connection will

become even more apparent with Whitney’s theorem.

The remainder of this section is devoted to investigating some of the topological

properties of manifolds through a list of lemmas. Since the arguments required to

prove the following lemmas are purely topological in nature, we will omit them and

reference [3] and [6] for the technical details of the proofs. We include them for the

sake of completeness.

Lemma 2.6. Let M be a manifold. Then M is a locally compact topological

space.

Lemma 2.7. Given a manifold M and an open subset U ⊂ M , let K ⊂ U be

compact. Then there exists an open subset V ⊂M with compact closure such that

K ⊂ V ⊂ V ⊂ U.

Definition 2.2. Let X be a topological space. The support of a complex

function f on X is the closure of the set

{x ∈ X : f(x) 6= 0} .

The collection of all continuous complex functions on X whose support is compact

is denoted by Cc(X). If V is open in X, then the notation

f ≺ V
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will mean that f ∈ Cc(X), that 0 ≤ f ≤ 1, and that the support of f lies in V .

Lemma 2.8. Given a manifold M and a collection V1, . . . , Vn of open subsets

of M , let K be a compact subset of M such that

K ⊂ V1 ∪ · · · ∪ Vn.

Then there exist smooth functions hi ≺ Vi such that

(2.9) h1 + · · · + hn = 1

on K.

Because of (2.9), the collection {h1, . . . , hn} is called a partition of unity on K,

subordinate to the cover {V1, . . . , Vn}.





CHAPTER 3

Embeddings

We are now ready to introduce the main nomenclature in our goal to show that

manifolds can be embedded in Euclidean space.

Definition 3.1. Given manifolds M and N with p ∈M , let f : M → N be a

map of class C1.

We say that f is immersive at p if the linear map dfp is injective. We say that

f is submersive at p if dfp is surjective.

Definition 3.2. A C1 map f : M → N between manifolds M and N is an

immersion if f is immersive at every point of M . Similiarly, f is a submersion if f

is submersive at every point of M .

Definition 3.3. A C1 map f : M → N between manifolds M and N is an

embedding if it is an immersion which maps M homeomorphically onto its image.

Geometrically, we view embeddings as instances of one manifold being con-

tained in another. Indeed, it is a result that a subset M of a manifold N is a Cr

submanifold if and only if M is the image of a Cr-embedding. For the details, see

[1]. The result that we are most interested in is Whitney’s theorem which states

that every n-dimensional manifold embeds into R
2n+1. In this direction, we have

the following lemma.

27
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Lemma 3.1. Let Mn be a compact manifold. Then there exists a Cr embedding

of M into R
N for some N ∈ N.

Proof. For every p ∈ M there exists a chart (Up, ϕp) of M at p. By Lemma

2.7, for every p ∈M , there exists an open set Vp such that

p ∈ Vp ⊆ V p ⊆ Up.

It follows that {Vp : p ∈M} is an open cover ofM and therefore has a finite subcover

{V1, . . . , Vm}. Re-indexing if necessary, we conclude that

M = V1 ∪ · · · ∪ Vm

and V i ⊂ Ui for every i ∈ {1, . . . ,m}. Lemma 2.8 ensures functions λi : M → [0, 1]

such that supp(λi) ⊂ Ui and λi = 1 on Vi for every i ∈ {1, . . . ,m}.

Now, let ϕ̂i : M → R
n be the map

ϕ̂i(x) =





λi(x)ϕi(x) if x ∈ Ui;

0 if x /∈ Ui

for every i ∈ {1, . . . ,m} and let F : M → R
m(n+1) be the map

F = (ϕ̂1, . . . , ϕ̂m, λ1, . . . , λm) .

It suffices to show that F is injective and that dFp is injective for every p ∈M .

To show that F is injective, suppose that F (x) = F (y). Since {V1, . . . , Vm}

covers M , there exists an i such that x ∈ Vi. Then λi(x) = λi(y) = 1 so that

ϕ̂i(x) = ϕ(x) and ϕ̂i(y) = ϕ(y). It follows that ϕ(x) = ϕ(y) so that x = y. Hence

F is injective.



3. EMBEDDINGS 29

Finally, to see that dFp is injective for every p ∈M , observe that if p ∈ Ui then

(
φ̂i, λi

)
is immersive at p. Hence F is an immersion as required. �

We are now ready to prove Whitney’s theorem.

Theorem 3.1 (Whitney). Let M be a compact n-dimensional manifold. Then

there exists a Cr embedding f : M → R
2n+1.

Proof. By Lemma 3.1, there exists an embedding F : M → R
N for some

N ∈ N. If N ≤ 2n + 1, then we are done, so assume that N > 2m + 1. We will

show that M embeds in R
N−1, then by an iteration of the argument we conclude

that M will be embedded into R
2n+1.

Define the map G : M ×M × R → R
N by

G(x, y, t) = t (F (x) − F (y)) ,

define the map H : TM → R
N by

(x, v) 7→ dFx(v),

and let G∗ and H∗ be the images of G and H respectively. Note that M ×M × R

has dimension 2n + 1. Since TM has dimension 2n and N > 2n + 1, Proposition

2.1 implies that there exists an a ∈ R
N \ (F ∗ ∪G∗).

Now, let π : R
N → R

N−1 be the linear projection parallel to a. It suffices to

show that π ◦ F is injective and that d (π ◦ F )p is injective for every p ∈M .

Seeking a contradiction, suppose that π ◦ F is not injective. Then there exist

x, y ∈M such that x 6= y and π(F (x)) = π(F (y)). Since π is linear, it follows that

(3.1) π(F (x) − F (y)) = 0.
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We observe that kerπ consists of all scalar multiples of a, hence (3.1) implies that

there exists a t ∈ R with t 6= 0 such that F (x) − F (y) = ta. In other words,

(3.2)
1

t
(F (x) − F (y)) = a,

a contradiction since a /∈ G∗. Thus π ◦ F is injective.

Finally, to show that d(π ◦ F )p is injective for every p, assume towards a con-

tradiction that there exists a p ∈ M such that d (π ◦ F )p is not injective. Since

d (π ◦ F )p is linear, there exists a nonzero v ∈ TpM such that d (π ◦ F )p (v) = 0. It

follows that

(3.3) π ◦ dFp(v) = 0.

Since the kernel of π consists of all scalar multiplies of a, (3.3) implies that there

exists a scalar t such that

(3.4) dFp(v) = ta.

Since F is an immersion, dFp is injective and so (3.4) implies that t 6= 0. Hence

dFp

(v
t

)
= a,

a contradiction since a /∈ H∗. Hence d (π ◦ F )p is injective for every p ∈ M as

required. �



Part 2

Minimal Surfaces





CHAPTER 4

Differential Geometry

A surface is a two-dimensional manifold. Given our previous work on embed-

dings, from Whitney’s theorem we can consider a surface to be embedded in some

R
N . Indeed, we shall consider surfaces as subsets of a Euclidean space. Since we

are interested in surfaces that have a differential structure, we restrict ourselves

to the study of a particular class of surfaces called regular parameterized surfaces.

Nevertheless, we note that there exist surfaces, even C0, that have no differential

structure whatsoever (see [1]), but these do not have the desirable properties we

are looking for.

1. Euclidean Surfaces

Let us now define the surfaces and structures that we are interested in.

Definition 4.1. Let S ⊂ R
n be nonempty. Then S is a Cr-regular parameter-

ized surface if there exists a Cr-immersion x : Ω → R
n of an open domain Ω ⊂ R

2

into R
n such that x(Ω) = S. In this case, S is parameterized by x.

From the definition above, we restrict ourselves to the study of regular pa-

rameterized surfaces, however, for the sake of brevity we refer to them simply as

surfaces.

33
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Definition 4.2. For v, w ∈ R
n, denote the inner product of v = (v1, . . . , vn)

and w = (w1, . . . , wn) by the real number

v · w =
∑

viwi

and the exterior product of v and w by

v ∧ w; v ∧ w ∈ R
N , N =

(
n

2

)
,

where the components of v ∧ w are the determinants

det



vi vj

wi wj


 , 1 ≤ i < j ≤ n.

Notation 4.1. Given a surface parameterized by (Ω,x), define the map G :

Ω → M2(R), where M2(R) denotes the family of all 2×2 matrices with real entries,

by G(p) = (dxp)
⊤

(dxp). Observe that

(4.1) detG = |D1x ∧D2x|2 =
∑

1≤i<j≤n

[det (xi, xj)]
2
.

For the surfaces we are interested in, we see that conditions on G are geo-

metrically significant. In fact, we have the following result, whose proof follows

immediately from (4.1) and elementary properties of the rank of a matrix.

Lemma 4.1. Let x : Ω → R
n be a Cr mapping of an open domain Ω ⊂ R

2 into

R
n. Then at every point of Ω the following are equivalent:

(a) the vectors D1x and D2x are independent;

(b) the Jacobian matrix Dx has rank 2;

(c) the differential dx is injective;

(d) there exist 1 ≤ i < j ≤ n such that det d(xi, xj) 6= 0;
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(e) D1x ∧D2x 6= 0;

(f ) detG > 0.

For a surface parameterized by x, the conditions of Lemma 4.1 hold every-

where. We are now interested in showing that every surface has a natural manifold

structure. For the rest of this section, let us fix r ≥ 1 and assume that our surface

S is Cr. Also, unless otherwise defined, we reserve the symbols x = (x1, . . . , xn)

and Ω for the parametrization and domain of parametrization respectively of our

surface whose parametrization may not be explicitly given.

Definition 4.3. Given a surface S, let φ : Ω̃ → Ω be a Cr-diffeomorphism of

an open domain Ω̃ ⊂ R
2 onto Ω. Then the surface S̃ parameterized by x̃ = x ◦ φ

is obtained from S by a change of parameter. A property of S is independent of

parameters if it holds at corresponding points of all surfaces S̃ obtained from S by

a change of parameter.

It is the object of differential geometry to study those properties which are

independent of parameter. Since we are interested in these properties, we will often

find that there are several choices of parameters that will often be convenient to

use.

Definition 4.4. A surface S is defined explicitly if there exists a Cr map

f : Ω → R
n−2 such that x = (I, bf) where I is the identity on Ω. In this case, the

map x is said to be explicit.

Of course, if there exist 1 ≤ i < j ≤ n such that one of the maps (xi, xj)

and (xj , xi) are the identity on Ω, a relabeling of the axes immediately gives us
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an explicit map x̃ defining a surface S̃, which is simply our original surface up to

a translation. For this reason, we assume that all explicit maps x are of the form

x = (I, f) where I and f are as in Definition 4.4, and we assume that appropriate

relabeling is done without further comment.

Observe that not every surface can be expressed in explicit form, since its orig-

inal parameter is not required to be injective. We do, however, have the following

important lemma:

Lemma 4.2. Given a surface S, let p ∈ Ω. Then there exists a neighborhood

∆ ⊂ Ω of p such that the the surface Σ obtained by restricting x to ∆ may be

expressed explicitly.

Proof. By Lemma 4.1 and by relabeling the axes if necessary, detD (x1, x2) 6=

0. By the inverse function theorem, there exists a neighborhood ∆ of p such that

the restriction of the map (x1, x2) to ∆ is a Cr-diffeomorphism. Now, letting

φ = (x1, x2)
−1

we obtain an explicit parameterization x ◦ φ of Σ. �

Lemma 4.2 has several important consequences. The first is that when studying

the local behavior of a surface we may assume that the surface is given in explicit

form. The second is that every immersion is locally injective. It is this second

property that will give insight into the manifold structure of surfaces.

Definition 4.5. Let S be a surface and let A be the collection of all pairs

(∆,y) consisting of an open domain ∆ ⊂ R
2 and an embedding y : ∆ → S. Then

A is the natural atlas of S.
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That the natural atlas of a surface is indeed an atlas is implied by Lemma 4.2.

In fact, this will be the atlas that we are interested in as it will induce a Cr-manifold

structure on S.

Proposition 4.1. Given a surface S with natural atlas A , let (Ω,x) , (∆,y) ∈

A such that x(Ω) ∩ y(∆) = W 6= ∅. Then the change of parameter h = x−1 ◦ y :

y−1(W ) → x−1(W ) is a Cr-diffeomorphism.

Proof. Since h is obtained by a composition of homeomorphisms, we trivially

have that h and h−1 are homeomorphisms. It now suffices to show that h and h−1

are Cr.

To do so, let r ∈ y−1(W ) and put q = h(r). Since x is an embedding, we

may assume, by renaming the axis if necessary, that det d(x1, x2)q 6= 0. Let F :

Ω × R
n−2 → R

n be the map

(u, v, t3, . . . , tn) 7→ x(u, v) +
n∑

i=3

tiei

where {e1, . . . , en} is the standard basis of R
n. Then F is a Cr map, F |Ω×{0}n−2 =

x, and

det (dFq) = det




D1x1 D2x1 0 · · · 0

D1x2 D2x2 0 · · · 0

D1x3 D2x3 1 · · · 0

...
...

...
. . .

...

D1xn D2xn 0 · · · 1




= det d(x1, x2)q 6= 0.

By the inverse function theorem, there exists a neighborhood U of x(q) such that

F−1 exists and is Cr on U .
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Since y is continuous, there exists a neighborhood V ⊂ ∆ of r such that

y(V ) ⊂ U . Now, observe that, when restricted to V , the map h| V = F−1 ◦ y| V is

a composition of Cr maps and is therefore Cr. Hence h is Cr. Similarly, h−1 is Cr

as required. �

Corollary 4.1. The natural atlas of a surface induces a Cr-manifold structure

on the surface.

With Corollary 4.1, we may view every surface as a Cr-manifold and therefore

apply all the notions of tangent spaces and differentiable curves as defined in Section

1. These ideas will be integral in our development of the local theory of curvature

of surfaces.

2. Mean Curvature

We will develop the local theory of curvature on a surface S by investigat-

ing curves in S. Since we are interested in local properties of S, we will assume

throughout that its parameter map is injective, which is allowed by Lemma 4.2.

Recall from Section 1 that for a surface S with p ∈ S, the tangent space TpS is

isomorphic to the collection of all vectors α′(0) such that α is a curve in S at p.

Proposition 4.2. Let S be a surface with p ∈ S and let α : (−ε, ε) → S be

a curve in S at p. Then there exists a unique curve γ : (−ε, ε) → Ω such that

α = x ◦ γ.

Proof. Put γ = x−1 ◦ α. Then α = x ◦
(
x−1 ◦ α

)
= x ◦ γ. Furthermore, if

α = x ◦ γ0 as well, then

γ = x−1 ◦ (x ◦ γ) = x ◦ α = x−1 ◦ (x ◦ γ0) = γ0.
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Hence α = x ◦ γ for a unique γ as required. �

Proposition 4.2 establishes that in order to understand curves in a surface S

it suffices to understand curves in its parameter domain Ω. Since every curve γ

obviously defines a curve α = x ◦ γ in S, Proposition 4.2 gives a natural one-to-one

correspondence between curves in S and curves in Ω.

Proposition 4.3. Given a surface S, let q ∈ S. Then TqS is isomorphic to

R
2 and to TpΩ.

Proof. Since TpΩ is isomorphic to R
2 and since x is an embedding, it suffices

to show that the differential dxp : TpΩ → TqS is surjective.

To do so, let α′(0) ∈ TqS. By Proposition 4.2, there exists a unique curve γ in

Ω such that α = x ◦ γ. It follows that

dxpγ
′(0) =

∑
γ′i(0)Dix(q) = α′(0).

Hence dxp is surjective as required. �

From Proposition 4.3, we refer to TpS as the tangent plane.

Proposition 4.4. Given a surface S with p ∈ S, let α be a curve in S at p

and let γ be the unique curve in Ω such that α = x ◦ γ. Then

|α′(0)|2 =
2∑

i,j=1

gijγ
′
i(0)γ′j(0).

Proof. Observe that

|α′(0)|2 = α′(0) · α′(0)

= d(x ◦ γ)0d(x ◦ γ)0
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=

2∑

i,j=1

γ′i(0)γ′j(0)
[
Di| γ(0)x · Dj | γ(0)x

]

=
2∑

i,j=1

gijγ
′
i(0)γ′j(0)

as required. �

Proposition 4.4 shows that the square of a tangent vector may be expressed as

a quadratic form in the corresponding tangent vector with the matrix G as defined

in Notation 4.1. This quadratic form is referred to as the first fundamental form of

the surface S.

Lemma 4.3. Given a symmetric n × n matrix A, let λ1 ≥ · · · ≥ λn be the

eigenvalues of A. Then

max
x6=0

xTAx

xTx
= λ1

and the maximum is attained at any eigenvector of A corresponding to λ1.

Proof. Since A is symmetric it may be diagonalized into A = PTΛP where

P is an orthogonal matrix. Put y = Px for x 6= 0 and compute

xTAx

xTx
=

yTΛy

yTy

=
λ1y

2
1 + · · · + λny

2
n

Y 2
1 + · · · + y2

n

≤ λ1y
2
1 + · · · + λ1y

2
n

y2
1 + · · · + y2

n

= λ1.

It follows that

max
x6=0

xTAx

xTx
≤ λ1.
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Furthermore, if x is an eigenvector corresponding to λ1, then

xTAx

xTx
= λ1

as required. �

Lemma 4.4. Let A and B be n × n matrices where A is symmetric and B is

positive definite. Then

max
x6=0

xTAx

xTBx
= µ

where µ is the largest eigenvalue of AB−1.

Proof. Observe that

max
x6=0

xTAx

xTBx
= max

x6=0

xTAx(
xTB1/2

) (
B1/2x

) = max
y 6=0

yTB−1/2AB−1/2y

yTy
.

By Lemma 4.3, the last expression equals the maximum eigenvalue ofB−1/2AB−1/2.

Since B−1/2AB−1/2 and AB−1 have the same eigenvalues, it follows that

max
x6=0

xTAx

xTBx
= µ

as required. �

Definition 4.6. Given a surface S with p ∈ S, let α be a curve in S at p.

Then the length of alpha is the real number

L(α) =

∫ ε

−ε

|α′(t)| dt.

We say α is regular if α′ > 0 everywhere. In this case, the map s : (−ε, ε) →

(0, L(α)) given by

s(t) =

∫ t

−ε

|α′(τ)| dτ
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is a diffeomorphism. The map α̂ = α◦ s−1 is the parameterization of α with respect

to arclength. Whenever α is C2 and regular, the curvature vector is the vector

α̂′′ ◦ s.

We would like to describe the totality of curvature vectors with respect to all

regular C2 curves in S evaluated at the point q = x(p). By the Projection theorem

(see [6]), every vector is determined by its projections in TqS and TqS
⊥. We will

examine the projection of the curvature vectors into T⊥
q .

Proposition 4.5. Given a surface S with q = x(p) ∈ S, let α be a C2 regular

curve in S at q and let N ∈ TqS. Then

(4.2) α̂′′(s(0)) ·N =

∑
bij(N)γ′i(0)γ′j(0)∑
gijγ′i(0)γ′j(0)

where γ is the unique curve such that α = x ◦ γ and

bij(N) = Dijx(q) ·N.

Proof. Observe that

α̂′ ◦ s = D| sα ◦ s−1 =
1

s′
α′

=
1

s′
Dx ◦ γ =

1

s′

∑
γ′i Di| γx.

(4.3)

Since TqS is spanned by D1x(p) and D2x(p), (4.3) implies

α̂′′(s(0)) ·N =
1

s′(0)
D| s(0)α̂′ ·N

=
1

[s′(0)]
2

∑
γ′i(0) [D| 0 Di| γx]

=

∑
bij(N)γ′i(0)γ′j(0)∑
gijγ′i(0)γ′j(0)

as required. �
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The numerator on the right side of (4.2) is a quadratic form in the tangent

vector γ′(0) whose matrix bij(N) only depends on the point on the surface and the

normal N . This is called the second fundamental form of S with respect to N .

Since the right hand side of (4.2) depends on α only to the extent of the tangent

vector to α at the point, we may define a function kq : TqS × TqS
⊥ → R by

kq(v,N) = α̂′′(s(0))

where α is the curve in S at q associated with v. From (4.2), we may write

(4.4) kq(v,N) =
vTB(N)v

vTGv

where B(N) is second fundamental form of S with respect to N and G is the first

fundamental form of S. Using the function kq, we can define curvature of S at q as

follows.

Definition 4.7. Given a surface S with q ∈ S, let N ∈ TqS
⊥. Then the

principal curvatures of S at q with respect to N are the quantities

k1(N) = max
v

kq(v,N), k2(N) = min
v
kq(v,N).

The mean curvature of S at q with respect to N is the average value

H(N) =
k1(N) + k2(N)

2
.

By Lemma 4.4, k1(N) and k2(N) are given by the eigenvalues of the matrix

B(N)G−1. That is, k1(N) and k2(N) are the roots of the equation

det (B(N) − λG) = 0,



44 4. DIFFERENTIAL GEOMETRY

which we may rewrite as

(4.5) detGλ2 − (g22b11(N) + g11b22(N) − 2g12b12(N))λ+ detB(N) = 0.

This gives us an expression for the mean curvature of S at q with respect to N :

(4.6) H(N) =
g22b11(N) + g11b22(N) − 2g12b12(N)

2 detG
.

Thus H is linear in TqS
⊥ and, by the Riesz Lemma (see [6]), there exists a unique

vector H such that H(N) = H · N for every N ∈ TqS
⊥. We call H the mean

curvature vector of S at q.



CHAPTER 5

Minimal Surfaces

In this chapter, we will develop the notion of what it means for a surface to be

minimal. We will do so by investigating the problem which historically led to the

theory of minimal surfaces.

1. The Variational Problem

Given a surface S, let Γ be a closed curve in Ω which bounds a subdomain ∆

and let Σ be the surface parameterized by the restriction of x to ∆. Suppose that

the area of Σ is less than or equal to the area of every surface Σ̃ parameterized by

(∆, x̃) with x = x̃ on Γ∗. Then what are the properties of Σ? In particular, can

we say anything about the mean curvature vector of Σ?

It turns out that Σ will be a minimal surface and its mean curvature vector

will vanish everywhere. Let us give a formal explanation and properly define this

interesting problem.

Definition 5.1. Let S be a surface, let ∆ be a subdomain of Ω with ∆ ⊂ Ω,

and let Σ be the surface parameterized by the restriction of x to ∆. Then the area

of Σ is the real number

A(Σ) =

∫∫

∆

√
detG.

45
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If f : ∆ → R is C1, then the integral of f with respect to surface area is the real

number
∫∫

Σ

f dA =

∫∫

∆

f
√

detG.

Now, let N : Σ → R
n be C1 such that N(p) ∈ Tx(p)S for every p ∈ Ω and let h

be a C2 real-valued function on Ω. For every real number λ, let Sλ be the surface

parameterized by the map

xλ = x + λhN.

Here, we say that xλ is a normal variation of x.

Theorem 5.1. There exists an ε > 0 such that the map A : (−ε, ε) → R given

by

A(λ) = A(Σλ)

is well defined and

A′(0) = −2

∫∫

Σ

H(N)h dA.

Proof. Let gλij be the entries of the first fundamental form of Sλ. Then

gλij = gij − 2λbij(N) + λ2cij

where cij is continuous in Ω. It follows that

detGλ = a0 + a1λ+ a2λ
2

where

a0 = detG

a1 = −2h (g11b22(N) + g22b11(N) − 2g12b12(N))

and a2 is continuous in Ω and λ.
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Since detG > 0 everywhere, detG has a positive minimum on ∆ so that there

exists an ε > 0 such that detGλ > 0 on ∆ whenever |λ| < ε. That is, for |λ| < ε,

the conditions of Lemma 4.1 hold for Sλ so that A is well defined on (−ε, ε).

The Taylor series expansion of the determinant function ensures an M > 0

such that

(5.1)

∣∣∣∣detGλ −
(√

a0 +
a1

2
√
a0

)
λ

∣∣∣∣ < Mλ2.

Integrating (5.1) over ∆ ensures an M1 > 0 such that

(5.2)

∣∣∣∣
A(λ) −A(0)

λ
−
∫∫

∆

a1

2
√
a0

∣∣∣∣ < M1λ.

Now, by (4.6),

(5.3)
a1

2
√
a0

= H(N)

and combining (5.2) with (5.3) and letting λ→ 0 gives

(5.4) A′(0) = −2

∫∫

∆

H(N) dA

as required. �

Corollary 5.1. If S minimizes area, then its mean curvature vanishes every-

where.

Proof. Seeking a contradiction, suppose that the mean curvature does not

vanish everywhere. Then there exists a point p ∈ ∆ with q = x(p) and a normal

N0 ∈ TqS
⊥ such that H(N0) 6= 0. Assume that H(N0) > 0. By Lemma 2.2

in [5], there exists a neighborhood V1 of p and a C1 map N : V1 → R
n such

that N(a) ∈ Tx(a)S for every a and N(p) = N0. It follows that H(N) > 0 on a

neighborhood V2 of p where V2 ⊂ V1.
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Now, pick h so that h(p) > 0, h ≥ 0 everywhere, and h = 0 on V c2 . Then the

integral on the right of (5.4) is strictly positive. However, if V2 is small enough such

that V2 ⊂ ∆, then xλ = x on Γ∗ so that Σλ is a surface with the same boundary

as Σ. Since Σ minimizes area by hypothesis, A(λ) ≥ A(0) for every λ. Hence A′(0)

so that the integral to the right of (5.4) is 0, a contradiction. Hence the mean

curvature vanishes everywhere. �

It is Corollary 5.1 that motivates our definition of a minimal surface.

Definition 5.2. A surface S is minimal if its mean curvature vector vanishes

at every point.

Notice that if a surface S minimizes area in the sense of the situation described

at the beginning of this chapter, then Corollary 5.1 implies that the surface is

minimal. However, if a surface is minimal, then Theorem 5.1 only guarantees that

0 is a critical point of A, and not necessarily a minimum. This is an interesting

fact and there exist minimal surfaces that do not minimize area. See [4] for the

construction.

Note that by (4.6) that the mean curvature vector H of a surface S vanishes

at a point p if and only if H(N) = 0 for every N ∈ Tx(p)S. Therefore, minimal

surfaces are characterized in terms of their first and second fundamental forms by

the equation

(5.5) g22b11(N) + g11b22(N) − 2g12b12(N) = 0.

That is, a surface S is minimal if and only if (5.5) holds at all points for every

normal N .
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2. The Minimal Surface Equation

For the rest of this section, we will investigate the properties of surfaces of class

C2 given in explicit form. This is not a restriction from a local prospective, since

every surface may be locally represented explicitly by Lemma 4.2. For our explicit

map x = (I, f), we can make the calculations

(5.6) D1x = (1, 0,D1f3, . . . ,D1fn) , D2x = (0, 1,D2f3, . . . ,D2fn)

and

(5.7)
g11 = 1 +

∑
(D1fi)

2
g12 =

∑
D1fi · · ·D2fi

g21 = g12 g22 = 1 +
∑

(D2fi)
2
,

where the gij ’s are the entries of the first fundamental form.

If we further suppose that S is minimal, then a computation in [5] shows that

(5.5) takes the form

(5.8)
(
1 + |D2f |2

)
D11f − 2 (D1f ·D2f)D12f +

(
1 + |D1f |2

)
D22f = 0.

Equation (5.8) is the minimal surface equation for explicit minimal surfaces. By

Lemma 4.2, every minimal surface provides local solutions to (5.8). This equation

allows us to give some interesting examples of minimal surfaces.

Example 5.1 (The Plane). We note that any affine linear function satisfies

(5.8), implying that the plane is indeed minimal.

Example 5.2 (The Catenoid). The Catenoid (Figure 1) may be represented

explicitly by

(5.9) f(x1, x2) = cosh−1
√
x2

1 + x2
2.
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Figure 1. The Catenoid

Example 5.3 (The Helicoid). The Helicoid (Figure 2) may be represented

explicitly by

(5.10) f(x1, x2) = tan−1 x2

x1
.

Figure 2. The Helicoid
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Example 5.4 (Scherk’s Surface). Scherk’s Surface (Figure 3) may be repre-

sented explicitly by

(5.11) f(x1, x2) = log
cosx2

cosx1
.

Figure 3. Scherk’s Surface

Each of the equations (5.10), (5.9), and (5.11) satisfy the minimal surface equa-

tion (5.8). Though we have not specified the domain of definition for these surfaces,

we observe that none of them are defined in the whole plane. This is not a coinci-

dence. Bernstein’s theorem, which we shall prove later, states that for n = 3, the

only solution to (5.8) defined in all R
2 is the plane.

Before concluding this section, we will derive a another form of the minimal

surface equation for explicitly defined surfaces that will be of use to us later. We

begin with a surface S parameterized by and explicit map x = (I, f) and adopt the

notation

(5.12) p = D1f , q = D2f , r = D11f , s = D12f , t = D22f , W =
√

detG.

Then the minimal surface equation (5.8) takes the form

(5.13)
(
1 + |q|2

)
r − 2 (p · q) s+

(
1 + |p|2

)
t = 0.
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Furthermore, we may rewrite (5.6) as

(5.14) g11 = 1 + |p|2 , g12 = g21 = p · q, g22 = 1 + |q|2

so that

(5.15) W 2 = 1 + |p|2 + |q|2 + |p|2 |q|2 − (p · q)2 .

Now, (5.13) implies

D1

(
1 + |q|2
W

)
−D2

(p · q
W

)

=
1

W 3

[
(p · q) q −

(
1 + |q|2

)
p
]
·
[(

1 + |q|2
)
r − 2 (p · q) s+

(
1 + |p|2

)
t
]

= 0

(5.16)

and similarly

(5.17) D1

(p · q
W

)
−D2

(
1 + |p|2
W

)
= 0.

Equations (5.16) and (5.17) will be of great importance to us, for together they

imply that the two equations

(5.18)

D1

(
1 + |q|2
W

)
= D2

(p · q
W

)

D1

(p · q
W

)
= D2

(
1 + |p|2
W

)

are satisfied by every explicit solution to the minimal surface equation (5.13).

It may seem that the identities in (5.16) and (5.17) have been introduced arbi-

trarily, however they arise in a quite natural setting. We may make a variation on

S by putting

(5.19) f̃ = f + λh
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where λ ∈ R and h : Ω → R
n−2 is a C1 map. Adopting the notation (5.12) to our

new surface, we obtain

(5.20) p̃ = p+ λD1h, q̃ = q + λD2h, W̃ =
√

det G̃

so that

(5.21) W̃ 2 = W 2 + 2λX + λ2Y

where

(5.22) X =
[(

1 + |q|2
)
p− (p · q) q

]
·D1h +

[(
1 + |p|2

)
q − (p · q) p

]
·D2h

and Y is continuous in Ω. By Taylor’s theorem, (5.21) gives

W̃ = W̃ (0) + W̃ ′(0)λ+O
(
λ2
)

= W +
X

W
λ+O

(
λ2
)

(5.23)

where O
(
λ2
)

are terms in λ2 and higher for λ small enough.

Now, as in the beginning of this section, let Γ be a closed curve in Ω bounding a

subdomain ∆ ⊂ Ω, let Σ be the restriction of x to ∆, and assume that Σ minimizes

area among all surfaces with the same boundary. Then, for every h such that h = 0

on Γ∗, (5.23) implies

(5.24)

∫∫

∆

W̃ ≥
∫∫

∆

W

so that

(5.25)

∫∫

∆

X

W
= 0.
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Combining (5.12), (5.22), and (5.25), integrating by parts, and using the fact that

h = 0 on Γ∗, we obtain the relation

(5.26)

∫∫

∆

[
D1

[
1 + |q|2
W

p− p · q
W

q

]
+D2

[
1 + |p|2
W

q − p · q
W

p

]]
h = 0.

By using the same argument as in the proof of Corollary 5.1 on the integrand of

the integral in (5.26), we find that the equation

(5.27) D1

[
1 + |q|2
W

p− p · q
W

q

]
+D2

[
1 + |p|2
W

q − p · q
W

p

]
= 0

holds everywhere. By the linearity of the Di’s in (5.27) and applying the product

rule, we see that (5.27) implies that

(5.28) W−1
[(

1 + |q|2
)
r − 2 (p · q) s+

(
1 + |p|2

)
t
]

+

[
D1

(
1 + |q|2
W

)
−D2

(p · q
W

)]
p

+

[
D2

(
1 + |p|2
W

)
−D1

(p · q
W

)]
q = 0

The first term of (5.28) is the minimal surface equation, which vanishes by (5.13).

Furthermore, the coefficients of p and q in (5.28) vanish by (5.18). Hence our

original identities (5.16) and (5.17) arise quite naturally. As we will see in the next

section, they will provide a connection of minimal surface theory to the study of

holomorphic functions.
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Complex Analysis

In this chapter, we will show that there exists a strong connection between the

study of minimal surfaces and the study of holomorphic functions. We begin by

showing how this connection is made and then provide a brief review of some of

the basic properties of holomorphic functions.

1. Isothermal Parameters

Since we are studying properties of a surface that are independent of param-

eters, it is often convenient to choose a parameter of our surface which makes

computations easier. In particular, we are interested in choosing a parameter in

such a way that geometric properties of our surface is reflected in our original do-

main. For instance, one condition that is useful is that our parameter x preserves

angles between curves on the surface and angles between corresponding curves in

Ω. This will motivate our definition of isothermal parameters.

Definition 6.1. Given a surface S, its parameterization x is an isothermal

parameterization of S if the first fundamental form G = (gij) of S satisfies

(6.1) G =



λ2 0

0 λ2,




or, equivalently,

(6.2) gij = λ2δij
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where λ : Ω → R.

Parameterizing a surface S in isothermal parameters considerably simplifies

some of our previous computations. For example, (6.1) and (6.2) imply that

(6.3) detG = g2
11 = λ4.

Furthermore, our formula for mean curvature (4.6) becomes

(6.4) H(N) =
b11(N) + b22(N)

2
,

which allows us to write the minimal surface equation (5.5) as

(6.5) b11(N) + b22(N) = 0.

The following lemma also allows us to make a natural connection between surfaces

given in isothermal parameters and holomorphic functions.

Lemma 6.1. Let S be a surface with an isothermal parameterization x. Then

(6.6) ∆x = 2λ2
H

where H is the mean curvature vector of S.

Proof. The definition of the first fundamental form and equation (6.1) allow

us to write

(6.7) 〈D1x,D1x〉 = 〈D2x,D2x〉 , 〈D1x,D2x〉 = 0.

Applying D1 to the first equation in (6.7) and D2 to the second gives

(6.8) 〈D11x,D1x〉 = 〈D12x,D2x〉 = −〈D22x,D1x〉
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so that

(6.9) 〈∆x,D1x〉 = (D11x +D22x) ·D1x = 0.

Similarly, applying D2 to the first equation in (6.7) and D1 to the second gives

(6.10) 〈∆x,D2x〉 = 0.

Now, since D1x and D2x span the tangent plane of S at each point, (6.9) and (6.10)

imply that ∆x is orthogonal to the tangent plane of S at every point. So, if N is an

element of the orthogonal complement of the tangent plane to S at a point, then

(6.4) implies

(6.11) 〈∆x, N〉 = 〈D11x, N〉 + 〈D22x, N〉 = b11(N) + b22(N) = 2λ2H(N).

It follows that ∆x/
(
2λ2
)

is a normal vector which satisfies the defining equation

for the mean curvature vector H. Hence ∆x = 2λ2H as required. �

Note that Lemma 6.1 gives a natural connection between isothermal parameters

and harmonic functions. Namely, from (6.6), ∆x = 0 everywhere if and only if the

mean curvature vector of S vanishes everywhere. Hence S is minimal if and only

if the coordinate functions of x are harmonic. We summarize this discussion with

the following lemma.

Lemma 6.2. Let S be a surface with a C2 isothermal parameterization x. Then

S is minimal if and only if the coordinate functions xk of x are harmonic.

From Lemma 6.2, we see that minimal surfaces arise in a quite different context

than simply minimizing area. Indeed, Lemma 6.2 will allow us to make a connection

between minimal surfaces and holomorphic functions.
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Notice that Lemmas 6.1 and 6.2 assume that our surface is already parame-

terized in isothermal parameters. To apply these lemmas usefully, we must show

that we can indeed represent our surface in this way. For the case of of minimal

surfaces, this always holds.

Lemma 6.3. Let S be a minimal surface with a ∈ Ω. Then there exists a

neighborhood ∆ ⊂ Ω of a such that the surfae Σ obtained by restricting x to ∆ has

an isothermal reparameterization.

Proof. By Lemma 4.2, there exists an open ball B ⊂ Ω with a ∈ B such

that the surface Σ1 ⊂ S obtained by restricting x to B has a reparameterization

in explicit form. Assume this is done where our explicit parameterization of Σ1 is

x = (I, f). Using the notation in (5.12), (5.18) implies that the equations

(6.12)

D1

(
1 + |q|2
W

)
= D2

(p · q
W

)

D1

(p · q
W

)
= D2

(
1 + |p|2
W

)

hold throughout B.

Now, define a vector field V : B → R
3 by

V =

(
1 + |p|2
W

,
p · q
W

, 0

)
.

Then (6.12) implies

|∇ × V | = D2

(
1 + |p|2
W

)
−D1

(p · q
W

)
= 0

so that V is conservative. It follows that there exists a map F1 : B → R such that

(6.13) D1F1 =
1 + |p|2
W

, D2F1 =
p · q
W
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everywhere. Similarly, there exists a map F2 : B → R such that

(6.14) D1F2 =
p · q
W

, D2F2 =
1 + |q|2
W

.

Let ξ : B → R
2 be the map

(6.15) ξ(x, y) =
(
x+ F1(x, y), y + F2(x, y)

)

and observe that

J = detDξ = det



D1ξ1 D2ξ1

D1ξ2 D2ξ2




= det




1 +D1F1 D2F1

D1F2 1 +D2F2


 = det




1 + 1+|p|2

W
p·q
W

p·q
W 1 + 1+|q|2

W




= 2 +
2 + |p|2 + |q|2

W

> 0.

By the inverse function theorem, there exists a neighborhood ∆ ⊂ B of a such that

ξ is a diffeomorphism when restricted to ∆. By the chain rule,

Dξ−1 = [Dξ]
−1

=
1

J



D2ξ2 −D2ξ1

−D1ξ2 D1ξ1




so that

D1ξ
−1
1 =

W + 1 + |q|2
JW

, D2ξ
−1
1 = −p · q

JW

D1ξ
−1
2 = − pq̇

JW
, D2ξ

−1
2 =

W + 1 + |p|2
JW

.

Furthermore, by the inverse function theorem,

D
(
xk ◦ ξ−1

)
= DxkDξ

−1
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=



D1xkD1ξ

−1
1 +D2xkD1ξ

−1
2

D1xkD2ξ
−1
1 +D2xkD2ξ

−1
2




so that

D1

(
xk ◦ ξ−1

)
=

W + 1 + |q|2
JW

pk −
p · q
JW

qk

D2

(
xk ◦ ξ−1

)
=

W + 1 + |p|2
JW

qk −
p · q
JW

pk.

We may compute

(6.16)
∣∣D1

(
x ◦ ξ−1

)∣∣2 =
∣∣D2

(
x ◦ ξ−1

)∣∣2 =
W

J

and

(6.17) D1

(
x ◦ ξ−1

)
·D2

(
x ◦ ξ−1

)
= 0.

If G = (gij) is the first fundamental form of the surface Σ with respect to the

parameterization x ◦ ξ−1, then (6.16) and (6.17) imply that g11 = g22 and g12 = 0.

Hence x ◦ ξ−1 is an isothermal parameterization of Σ as required. �

2. Holomorphic Functions

In this section, we will review some of the basic notions of complex analysis and

further investigate the connection between isothermal parameters and holomorphic

functions. Recall that a complex function f : Ω ⊂ C → C on an open set Ω is

holomorphic if it is complex-differentiable at each point of Ω (see [6]). A function

f : C → C is entire if it is holomorphic in the whole complex plane. Since we

may identify C with R
2, we will naturally be interested in a connection between

holomorphic functions and functions on defined in the real plane. In this direction,

we have the following results, whose proof can be found in [6].
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Lemma 6.4. Let f = (u, v) : Ω ⊂ R
2 → R

2 and suppose that the first partial

derivatives of u and v exist and that the Cauchy-Riemann Equations

(6.18) D1u = D2v, D2u = −D1v

hold on Ω. Then f : Ω ⊂ C → C is holomorphic.

Lemma 6.5. Given g : Ω ⊂ R
2 → R

2, let φ : Ω ⊂ C → C be defined by

φ = D1g − iD2g.

Then φ is holomorphic if and only if g is harmonic.

As seen in Lemma 6.2, we have a natural connection between harmonic func-

tions and minimal surfaces. Specifically, given a surface S parameterized isother-

mally by x, then S is minimal if and only if the coordinate functions xk of x are

harmonic. Thus Lemma 6.5 gives a connection to holomorphic functions.

Lemma 6.6. Given a surface S let φk : Ω ⊂ C → C be defined by

(6.19) φk = D1xk − iD2xk (k = 1, . . . , n) .

Then

(a) φk is holmomorphic if and only if xk is harmonic;

(b) x is isothermal if and only if

(6.20)
∑

φ2
k = 0

on Ω;
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(c) if x is isothermal, then

(6.21)
∑

|φk|2 6= 0

on Ω.

Proof. The proof follows from Lemma 6.5 and the identities

∑
φ2
k =

∑
(D1xk)

2 −
∑

(D2xk)
2 − 2i

∑
(D1xkD2xk)

= |D1x|2 − |D2x|2 − 2i 〈D1x,D2x〉

= g11 − g22 − 2ig12

and

∑
|φk|2 =

∑
(D1xk)

2
+
∑

(D2xk)
2

= g11 + g22. �

To strengthen the connection between minimal surfaces and holomorphic func-

tions even further, we have the following result.

Lemma 6.7. Let S be a minimal surface with isothermal parameterization x.

Then the functions φk defined in (6.19) are holomorphic and satisfy (6.20) and

(6.21). Conversely, if φ1, . . . , φn are holomorphic functions in a simply connected

domain Ω ⊂ C satisfying (6.20) and (6.21), then there exists a map x : Ω ⊂ R
2 →

R
n that parameterizes a minimal surface such that (6.19) holds.

Proof. The first statement follows immediately from Lemmas 6.2 and 6.6.

For the converse, let

xk = R

∫
φk

for k = 1, . . . , n. Then each xk is harmonic and we may apply Lemmas 6.2, 6.5,

and 6.6 to obtain the result. �
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As mentioned at the beginning of this chapter, the representation of a surface

in isothermal parameters preserves the geometry of angles between curves in the

parameter plane as well as on the surface itself. We now make this notion more

precise.

Definition 6.2. Let f : Ω ⊂ C → C where Ω ⊂ C is open. Then f is conformal

if f is holomorphic and f ′(z) 6= 0 for every z ∈ Ω.

Definition 6.3. Let f : Ω ⊂ C → C where Ω ⊂ C is open. Then f is

anti-conformal if f is conformal.

The following result will be useful to us later and the proof is straight forward.

See [6] for details.

Lemma 6.8. Let f : C → C be invertible. Then f is conformal if and only if f

is entire. Additionally, f is conformal if and only if f−1 is conformal.

We see that the geometry of a surface given in isothermal parameters is in-

timately connected to conformal maps. In fact, the following result makes this

connection more precise.

Lemma 6.9. Given a surface S with isothermal parameterization x, let φ : Ω̃ →

Ω be a Cr-diffeomorphism. Then the parameterization x ◦ φ is also isothermal if

and only if φ : Ω̃ ⊂ C → Ω ⊂ C is conformal or anti-conformal.

Proof. Suppose that x◦φ is isothermal, let G and G̃ be the first fundamental

forms of S with respect to x and x◦φ respectively, and let U and V be the Jacobians

of x and φ respectively. Since x and x ◦ φ are isothermal, (6.2) implies that

G = λ2I2, G̃ = λ̃2I2.
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Furthermore, by the chain rule,

(6.22) I2 =
1

λ̃2
G̃ =

1

λ̃2
(UV )

⊤
UV =

1

λ̃2
V ⊤GV =

λ2

λ̃2
V ⊤V.

Let

a = D1φ1, b = D1φ2, c = D2φ1, d = D2φ2

and observe that

(6.23) V ⊤V =



a2 + b2 ac+ bd

ac+ bd c2 + d2


 .

Combining (6.22) and (6.23) gives

(6.24) a2 + b2 = c2 + d2, ac+ bd = 0.

Since φ is a diffeomorphism, detV 6= 0 so that one of a and b is nonzero. Assuming

that a 6= 0, we may write c = −bd/a so that

(6.25) a4 +
(
b2 − d2

)
a2 − b2d2 = 0.

Viewing (6.25) as a quadratic polynomial in a2, we may apply the quadratic formula

to obtain a2 = d2.

If a = d, then (6.24) implies that b = −c so that

D1φ1 = D2φ2, D2φ2 = −D2φ1

and Lemma 6.4 implies that φ : Ω̃ ⊂ C → Ω ⊂ C is holomorphic and hence

conformal by Lemma 6.8. If a = −d, then it can readily be checked that φ : Ω̃ ⊂

C → Ω ⊂ C is anti-conformal. Similarly, φ : Ω̃ ⊂ C → Ω ⊂ C is conformal or

anti-conformal if b 6= 0.
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Conversely, suppose that φ is conformal or anti-conformal. Then Lemma 6.8

implies that either

D1φ1 = D2φ2, D2φ1 = −D1φ2

or

D1φ1 = −D2φ2, D2φ1 = D1φ2.

In either case, we conclude that

(6.26) V ⊤V =
λ̃2

λ2
I2

where λ̃ is a real function on Ω̂, and combining (6.26) and (6.22) gives that x ◦φ is

isothermal. �

Finally, we state one of the most surprising and useful results of complex analy-

sis, Picard’s theorem, which we present without proof, but the details can be found

in [6].

Theorem 6.1 (Picard’s Theorem). Every nonconstant entire function f : C →

C omits at most one point.

We note that this is a very useful result. Indeed, one may use Picard’s theorem

to give a simple proof of the fundamental theorem of algebra (see [6]).





CHAPTER 7

Bernstein’s Theorem

In this section, we will prove our main result, Bernstein’s theorem. We begin

with a few elementary lemmas.

Lemma 7.1. Given a C2 map E : Br(0) ⊂ R
2 → R with positive definite

Hessian (hij), let φ : Br(0) ⊂ R
2 → R

2 be the map

φ(x, y) =
(
D1E(x, y),D2E(x, y)

)

and let a and b be distinct points of Br(0). Then

(7.1)
(
φ(b) − φ(a)

)
· (a− b) > 0.

Proof. Let g : [0, 1] → R be the map g
(
t
)

= E(tb+ (1 − t) a). Then g is

well-defined since Br(0) is convex and

g′(t) =
2∑

i=1

DiE
(
tb+ (1 − t) a

)
(bi − ai) .

It follows that

g′′(t) =

2∑

i,j=1

[
DijE

(
tb− (1 − t) a

)]
(bi − ai) (bj − aj) > 0

since (hij) is positive-definite. Hence g′(1) > g′(0) so that

(
φ(b) − φ(a)

)
· (b− a) = φ(b) · (b− a) − φ(a) · (b− a)

=

2∑

i=1

DiE(b) (bi − ai) −
2∑

i=1

DiE(a) (bi − ai)

67
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= g′(1) − g′(0)

> 0

as required. �

Lemma 7.2. Given the hypotheses in Lemma 7.1, let ξ : Br(0) ⊂ R
2 → R

2 be

the map

(7.2) ξ(x, y) =
(
x+ φ(x, y), y + φ(x, y)

)
.

Then

(7.3) |ξ(b) − ξ(a)| > |b− a| .

Proof. Observe that

(
ξ(b) − ξ(a)

)
· (b− a) =

(
b− a+ φ(b) − φ(a)

)
· (b− a)

= |b− a|2 +
(
φ(b) − φ(a)

)
· (b− a) .

(7.4)

It follows from (7.1) and (7.4) that

(7.5)
(
ξ(b) − ξ(a)

)
· (b− a) > |b− a|2 .

Now, applying the Cauchy-Schwarz inequality to (7.5) gives (7.3). �

Lemma 7.3. Given the hypotheses of Lemma 7.2, ξ is a diffeomorphism onto

a domain ∆ ⊂ R
2 such that Br

(
ξ(0)

)
⊂ ∆.
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Proof. Since E is C2, ξ is C1 and we may observe that

detDξ = det




1 + h11 h12

h12 1 + h22




= 1 + h11 + h22 + h11h22 − h2
12

= 1 + trhij + dethij .

(7.6)

Since (hij) is positive-definite, it has positive eigenvalues so that

(7.7) trhij + dethij > 0.

Thus (7.6) and (7.7) imply that

(7.8) detDξ > 1

everywhere. By the inverse function theorem, ξ is a local diffeomorphism. Fur-

thermore, ξ is injective by (7.3), so it is a global diffeomorphism onto a domain

∆ ⊂ R
2.

It remains to show that Br
(
ξ(0)

)
⊂ ∆. This is trivial if ∆ = R

2, so assume

that ∆ 6= R
2. Then there exists a point x ∈ ∂∆ that minimizes the distance to

ξ(0). It follows that there exists a sequence {xn} in ∆ such that xn → x. Letting

wn = ξ−1(xn), we see that {wn} does not converge in Br(0). Therefore |wn| → r

and (7.3) implies that

(7.9) |xn − ξ(0)| > |wn| .

Letting n→ ∞ in (7.9) gives |x− ξ(0)| ≥ r. Hence Br
(
ξ(0)

)
⊂ ∆ as required. �
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Lemma 7.4. Given an explicit parameterization x : Br(0) ⊂ R
2 → R

n of a

minimal surface S, let ξ be the map defined in (6.15). Then ξ is a diffeomorphism

onto a domain ∆ such that Br
(
ξ(0)

)
⊂ ∆.

Proof. Let F1, F2 : Br(0) ⊂ R
2 be as in (6.13) and (6.14). By (6.13) and

(6.14), there exists a C2 map E : Br(0) ⊂ R
2 → such that

D1E = F1, D2E = F2.

It follows that E is C2 and if (hij) is the Hessian of E, then

h11 =
1 + |p|2
W

> 0, dethij =
1

W 2

[
1 + |p|2 + |q|2 + |p|2 |q|2 − (p · q)2

]
= 1

by (5.15), (6.13), and (6.14). Thus (hij) is positive-definite and we may apply

Lemma 7.3 to ξ to obtain the result. �

Lemma 7.5. Let S ⊂ R
3 be a surface defined explicitly by x = (I, f). Then S

lies on a plane if and only if there exists a nonsingular transformation A : Ω̃ → Ω

such that x ◦A is isothermal.

Proof. Suppose that S lies on a plane. Then there exist constants A, B, and

C such that f(x, y) = Ax+By + C. Now, let L be the map

L(x, y) = (λAx+By, λBx−Ay)

where

λ =
1

1 +A2 +B2
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and let φ1, φ2, and φ3 be as defined in (6.19) with respect to x ◦ L. Then

φ1 = λA− iB

φ2 = λB + iA

φ3 = λ
(
A2 +B2

)

so that

φ2
1 + φ2

2 + φ2
3 = λ2

(
A2 +B2

)
−
(
A2 +B2

)
+ λ2

(
A2 +B2

)2

=
(
A2 +B2

) [
λ2 − 1 + λ2

(
A2 +B2

)]

=
(
A2 +B2

) [
λ2
(
1 +A2 +B2

)
− 1
]

=
(
A2 +B2

)
(1 − 1)

= 0.

Hence (6.20) implies that x ◦ L is isothermal.

Conversely, suppose that there exists a nonsingular linear transformation L :

Ω̃ → Ω such that x ◦ L is isothermal and let φ1, φ2, and φ3 be as defined in (6.19)

with respect to x◦L. Then φ1 and φ2 are constant since x1◦L and x2◦L are linear.

It follows from (6.20) that φ3 is also constant. Thus f ◦L has constant gradient so

that f also has constant gradient. Hence f is linear so that S lies on a plane. �

We are now ready to prove Theorem 7.1, which is stated as follows.

Theorem 7.1 (Osserman). Let x : R
2 → R

n be an explicit parameterization

of a minimal surface S defined in all R
2. Then there exists a nonsingular linear

transformation A : R
2 → R

2 such that the parameterization x ◦A is isothermal.
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Proof. Let ξ be the map defined in the proof of Lemma 6.3, which is now

defined in all R
2. Then Lemma 7.4 implies that ξ is a diffeomorphism onto R

2.

From the proof of Lemma 6.3, x ◦ ξ is isothermal.

By Lemma 6.7, the functions

φk = D1 (xk ◦ ξ) − iD2 (xk ◦ ξ) (k = 1, . . . , n)

are holomorphic. Observing that

I
{
φ1φ2

}
= D2(x1 ◦ ξ)D1(x2 ◦ ξ) −D1(x1 ◦ ξ)D2(x2 ◦ ξ)

= − (D1ξ1D2ξ2 −D1ξ2D2ξ1)

= −detDξ

< 0,

we deduce that φ1 6= 0 and φ2 6= 0 everywhere. Furthermore, we may observe that

I

{
φ2

φ1

}
=

1

|φ1|2
I
{
φ1φ2

}
< 0.

Thus φ2/φ1 is an entire function with strictly imaginary part. By Picard’s theorem,

there exists a ∈ R and b > 0 such that

(7.10) φ2 = (a− ib)φ1.

Taking the real and imaginary parts of (7.10) gives

D1 (x2 ◦ ξ) = aD1 (x1 ◦ ξ) + bD2 (x1 ◦ ξ)(7.11)

−D2 (x2 ◦ ξ) = aD2 (x1 ◦ ξ) + bD1 (x1 ◦ ξ) .(7.12)
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Now, let A : R
2 → R

2 be the linear map

A(x, y) = (x, ax+ by)

A−1(x, y) = (u(x, y), v(x, y)) =

(
x,
y − ax

b

)
.

Then (7.11) gives

D1 (u ◦ ξ) = D2 (v ◦ ξ) , D2 (u ◦ ξ) = −D1 (v ◦ ξ) .

That is, A−1 ◦ ξ satisfy the Cauchy Riemann equations. Hence A−1 ◦ ξ : C → C is

holomorphic. It follows that
(
A−1 ◦ ξ

)−1
is conformal. Since

x ◦A = (x ◦ ξ) ◦
(
A−1 ◦ ξ

)−1
,

Lemma 6.9 implies that x ◦A is isothermal as required. �

For n = 3, Lemma 7.5 and Theorem 7.1 imply Bernstein’s theorem.

Corollary 7.1 (Bernstein’s Theorem). In the case n = 3, the only solution

to the minimal surface equation f defined in all of R
2 is the trivial solution, f a

linear function.
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