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ABSTRACT 

The N 1.08-Ga Pikes Peak composite batholith of central Colorado is a type example of an A- 
type granitic system. From the 1970s through the 199Os, details of the field relations, mineral- 
ogy, major and trace element compositions, and isotopic geochemistry of Pikes Peak rocks 
were documented, and they reveal the existence of two chemical groups, a potassic and a sodic 
series. The potassic series (~64-78 wt % SiO,) includes the Pikes Peak Granite, which is mostly 
coarse-grained biotite f hornblende syenogranite and minor monzogranite that dominates 
the batholith. The potassic series also includes fine- to medium-grained biotite granite found in 
numerous, small, late-stage plutons throughout the batholith. The sodic series is found in seven 
plutons comprised of a wide range of rock types ( N 44-78 wt % SiO,), including gabbro, diabase, 
syenite/quartz syenite, and fayalite and sodic amphibole granite. 

Differences in petrologic and geochemical characteristics between the sodic and potassic 
series indicate different petrogenetic histories. Major and trace element and strontium and 
oxygen isotopic data were used by some workers to hypothesize that mantle-derived alkali ba- 
salt underwent crystal fractionation and reaction with lower crustal rocks to generate syenitic 
magmas of the sodic series, which subsequently underwent further fractionation to produce 
sodic granites. Recent studies involving estimates of oxygen fugacities, along with additional 
trace element and neodymium isotopic data, also support a basalt fractionation model for the 
sodic series, but suggest only minor crustal involvement. Gabbros and diabase dikes associated 
with the sodic series appear to have been derived from mantle sources that previously had been 
affected by a subduction event, based on neodymium isotopic and trace element data. 

Some workers propose that the potassic series also formed by fractionation of syenitic and/ 
or basaltic magmas coupled with reaction with intermediate rather than lower crust. Other 
workers propose a model in which genesis of the potassic series was dominated by partial melt- 
ing involving tonalitic sources, with fractionation and-perhaps magma mixing playing subor- 
dinate roles in generating compositional diversity among the potassic granitoids. The Pikes 
Peak batholith thus formed by emplacement of at least two petrogenetically different granite 
types, which were emplaced close together in space and time and which exhibit geochemical 
characteristics typical of A-type granites. 
KEY WORDS: Colorado, geochemistry, petrology, granite, Proterozoic. . 
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INTRODUCTION 

The “alphabet” division of granitoids into I-, S-, 
A-, and M-types (Chappell and White, 1974; Loiselle 
and Wones, 1979; Pitcher, 1983) has been prevalent 
in the petrologic literature for more than two de- 
cades. The abstract in which Loiselle and Wones 
(1979) proposed the A-type category has been cited 
over 135 times, according to the Science Citation 
Index. They included several granitoid suites as ex- 
amples of A-type granites, including the White 
Mountain magma series of New Hampshire, Nige- 
rian Younger Granites, and Gardar Province, 
Greenland. However, it was primarily the charac- 
teristics of the Pikes Peak batholith that motivated 
Loiselle and Wones to create this nomenclature (F. 
Barker, 1999, personal communication). A-type 
granitoid suites are characterized by high FeO/(FeO 
+ MgO) and qO/Na,O, and high &O contents, and 
they usually contain anhydrous iron- and alkali-rich 
phases such as fayalite and hedenbergite, as well as 
annite and sodium-rich amphiboles, reflecting crys- 
tallization under low water and oxygen fugacities 
(Barker et al., 1975,1976; Loiselle and Wones, 1979; 
Anderson, 1983; Frost and Frost, 1997). Abundances 
of incompatible trace elements in A-type granites 
typically are high for rare earth elements (REE; 
except Eu), Zr, Nb, Y, Hf, Th, and Ga, but low for Sr, 
Eu, Sc, Ni, Cr, and Co (Barker et al., 1976; Whalen et 
al., 1987). 

The A-type designation has been broadly ap- 
plied to granites that are anorogenic, alkaline, and 
relatively anhydrous in nature, but which often ex- 
hibit subtle to significant differences in mineral- 
ogy, petrochemistry, and/or tectonic setting. Thus, 
of the numerous petrogenetic models that have been 
presented for A-type granites, no single model can 
be universally applied. Petrogenetic models for A- 
type granites generally fall into two categories: those 
invoking extreme fractionation of mantle-derived 
magmas, with or without crustal assimilation (e.g., 
Barker et al., 1975; l b n e r  et al., 1992), and those 
involving partial melting of crustal sources such as 
tonalite/granodiorite (e.g., Anderson and Morrison, 
1992), residual lower crust (e.g., Collins et al., 1982), 
or underplated tholeiitic basalts (e.g., Frost and 
Frost, 1997). 

The Pikes Peak batholith and its late-stage plu- 
tons are comprised of a tremendous volume of gra- 
nitic rocks. Variations in  mineralogy, rock 
associations, major and trace element abundances, 
and isotopic characteristics within the batholith 
imply different origins (Barker et al., 1975), prob- 
ably including both crustal anatexis and fraction- 

ation of mantle-derived magmas (Barker et al., 1976; 
Smith et al., 1999). In addition, magma mixing/ 
mingling and fractionation of crustal melts are 
thought to have played roles in generating some of 
the compositional diversity among Pikes Peak rocks 
(Barker et al., 1976; Chastain and Noblett, 1994; 
Smith et al., 1999). Thus, we still consider the Pikes 
Peak batholith to serve as a useful “type” example 
of A-type granitic magmatism because it may illus- 
trate the diversity in source and process that can 
generate such magmas. 

In this paper, we summarize the geologic set- 
ting of the Pikes Peak batholith and review the stud- 
ies conducted on the batholith to date, focusing on 
those that have relevance to petrogenetic models 
for the magmas emplaced in the batholith. We re- 
view previously obtained isotopic dates for the 
batholith and present a newly acquired date for a 
sample from the West Creek intrusion. We then 
highlight the petrologic and geochemical charac- 
teristics of Pikes Peak rocks, and discuss petroge- 
netic models that explain those characteristics. 
Finally, we compare the petrology, geochemistry, 
and tectonic setting of the Pikes Peak batholith with 
two other N 1.1-Ga granitic systems in North 
America, the Red Bluff suite (Franklin Mountains, 
west Texas) and granites of the Llano uplift’(cen- 
tral Texas). 

GEOLOGIC SETTING 

The Front Range and Wet Mountains provide 
the largest continuous exposure of Lower to Middle 
Proterozoic metamorphic and plutonic rocks in 
Colorado. They are part of the Yavapai-Mazatzal 
province (Hoffman, 1988; Fig. l), a >lo00 km-wide 
belt that was added to the southern margin of the 
Archaean Wyoming craton between 1790 and 1660 
Ma (Reed et al., 1987). The protoliths of the meta- 
morphic rocks have been interpreted as relics of 
arc magmatism and related sedimentary basins 
developed along the southern edge of the craton 
(Reed et al., 1987). These materials were consoli- 
dated at N 1.8-1.7 Ga during deformation, metamor- 
phism (mostly under amphibolite facies 
conditions), and plutonism referred to as the 
Yavapai orogeny (Reed et al., 1987; Karlstrom and 
Bowring, 1987; additional references in Hoffman, 
1988). The metamorphic rocks were intruded by 
granitoid magmas during three major Precambrian 
magmatic events: the Boulder Creek at ~ 1 . 7  Ga, the 
Silver Plume at N 1.4 Ga, and the Pikes Peak at N 1.1 
Ga (Wobus and Hutchinson, 1988). The Boulder 
Creek rocks are well-foliated and locally folded, 
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bearing the imprint of the regional metamorphic 
event that deformed their wall rocks; in contrast, 
the Silver Plume and Pikes Peak rocks lack folia- 
tion (Weto, 1980b; Wobus and Hutchinson, 1988). 
Boulder Creek rocks are composed of calc-alkaline 
tonalite and granodiorite with lesser granite (e.g., 
Gable, 1980), whereas the Silver Plume rocks are 
peraluminous, two-mica granitoids (e.g., Anderson, 
1983). 

The exposed area of the Pikes Peak batholith is 
about 3100 km2 (Weto, 1980a; Fig. 2). On its north, 
south, and west margins, it intrudes older granites 
and metamorphic rocks and is faulted on the east- 
ern margin by the Ute Pass and Rampart fault zones. 
On the basis of a pronounced negative magnetic 
expression (Zietz and Kirby, 1972) and a continu- 
ous magnetic low, Weto (1980b) inferred that per- 
haps as much as half of the batholith is unexposed 
and extends eastward in the subsurface. 

The batholith is composite in nature (see, e.g., 
Hutchinson, 1976; Scott et al., 1978; Bryant et al., 
1981; and Wobus and Hutchinson, 1988), composed 

of three large intrusive centers ~20-25 km in di- 
ameter (Hutchinson, 1960a, 1960b, and 1976), as 
well as numerous late-stage stocks and plutons rang- 
ing from < 2- N 8 km in diameter (Wobus, 1976a). 
Granite is dominant, but the spectrum of rock types 
found in the batholith is large (~45-78 wt 96 SiO,) 
and can be divided into two chemical series. Barker 
et al. (1975) noted the existence of sodic and potas- 
sic “trends” for rocks of the Pikes Peak batholith. 
Wobus (1976a) used this terminology and found that 
the potassic plutons have Na,O/YO ratios of < 1.0, 
whereas the sodic plutons generally have higher 
ratios. Here we use the terms potassic series and 
sodic series to distinguish among the rocks of the 
Pikes Peak batholith. The potussic series includes 
generally coarse grained, biotite f hornblende pink 
syenogranites and minor gray monzogranites, 
herein referred to as the Pikes Peak Granite (PPG). 
The PPG was emplaced in at least three major in- 
trusive centers, including the Lost Park, Buffalo 
Park, and Pikes Peak centers (cf. Fig. 2; Hutchinson, 
1976). The potassic series also includes smaller, late- 

Figure 1. Simplified map of Precambrian provinces in central North America showing the Archean Wyoming and 
Superior provinces, 1.8-2.5-Ga Penokean province and mans-Hudson orogen, and the younger Yavapai-Mazatzal 
(1.55-1.80 Ga), Granite-Rhyolite (1.34-1.50 Ga), and Grenville (1.1-1.35 Ga) provinces to the south (after Bickford, 
1988). Circa 1.1-Ga granitic systems include the Pikes Peak batholith (PPB) in central Colorado, the Red Bluff suite in 
the Franklin Mountains (FM) of west Texas, and granites of the Llano uplift of central Texas. Also shown are the Mid- 
Continent Rift (MCR), the Pecos mafic intrusive complex (PMC), and dikes and sills of the Mojave Desert region 
(MD). SOA is the Cambrian southern Oklahoma aulacogen. 
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figure 2. Geologic map of the Pikes Peak batholith (after Bryant et al., 1981, and Scott et al., 1978). The main phase 
of the batholith is generally composed of coarse-grained pink granite (associated with minor gray monzogranite) 
referred to here as Pikes Peak Granite (PPG). The PPG comprises the Buffalo Park, Lost Park, and Pikes Peak intru- 
sive centers. Late-stage plutons include fine-grained granites of the potassic series in many unnamed intrusions 
distributed throughout the batholith (e.g., at the summit of Pikes Peak). Sodic series plutons include Sugarloaf (SU), 
Thrryall (TA), West Creek (WC), Lake George (LG), Spring Creek (SC; sometimes called the Cripple Creek stock, e.g., 
Sage, 1966), and the Mount Rosa intrusive complex (MR). 
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stage plutons of fine- to medium-grained, com- 
monly porphyritic, potassic granite, and minor 
quartz monzonite such as the Windy Point Granite 
of Pikes Peak, which are distributed throughout the 
batholith (Wobus, 1976a; cf. Fig. 2). Rocks of the 
sodic series comprise less than 2 percent of the vol- 
ume of the batholith and are found in seven small, 
late-stage intrusive centers in and immediately ad- 
jacent to the batholith (Wobus, 1976a; Fig. 2). They 
include a wide range of compositions, ranging from 
gabbro, to syenite and quartz syenite, to fayalite- 
and sodic amphibole-bearing granite (Barker et al., 
1975, 1976; Wobus, 1976a; Wobus and Anderson, 
1978). 

PREVIOUS STUDIES 
Geology and Petrology 

In an important contribution published in 1975, 
Barker and his colleagues provided a concise de- 
scription of work conducted on the Pikes Peak 
batholith prior to that time. They cited turn-of-the- 
century petrographic and field studies of the 
batholith by Mathews (1895,1900), Cross (1894), and 
Finlay (1916). Several workers added significant 
studies on the batholith in the 1960s and 1970s. 
Hutchinson (1960b, 1976) mapped structures and 
rock units within the batholith in detail. His stud- 
ies documented the Buffalo Park, Lost Park (re- 
named the Wrryall Mountains batholith by Hawley 
and Wobus, 1977), and Pikes Peak intrusive centers 
(cf. Fig. 2). Each of these centers is ~ 2 0 - 2 5  km in 
diameter, and they occur at different but overlap- 
ping elevations. Hutchinson mapped flow structures 
and primary fracture systems that defined inward- 
dipping, funnel shaped patterns within each cen- 
ter, indicating that magma was fed into the centers 
at an angle of 65' -80" along S 40" -50' E direction. 
Other studies were conducted by Hawley and his 
colleagues (Hawley et al., 1966; Hawley, 1969; 
Hawley and Wobus, 1977), who worked in the 
Wrryall Mountains and Redskin stock, and by Gross 
and Heinrich (1965, 1966), who focused on the 
Mount Rosa intrusive center. Sage (1966) and 
Stewart (1964) completed master's theses on the 
Cripple Creek and Lake George intrusive centers, 
respectively. 

In the mid-l970s, the batholith was remapped 
by the U.S. Geological Survey at a scale of 1:250,000 
(Scott et al., 1978; Bryant et al., 1981). These studies 
provided details of the geology and petrology of the 
sodic and late potassic plutons. Six of the seven sodic 
plutons were noted to be aligned along two linears 

trending N50' W (Wobus, 1976a), and four of the 
plutons were found to have ring dike-like patterns 
(Wobus, 1976a, 1976b; Wobus and Anderson, 1978). 
Potassic granites of the late-stage intrusions were 
recognized to be similar to the PPG that dominates 
the batholith and were interpreted as rapidly cooled 
textural variants (Wobus, 1976a, 1976b). 

Field trip road logs for the Pikes Peak area have 
been published by several workers, including 
Hutchinson (1960a), Hutchinson and Hedge (1967), 
Epis et al. (1973), Bryant et al. (1976), and Wobus 
and Hutchinson (1988). These documents include 
maps and reviews of the geology of the batholith. 
The log of Bryant et al. (1976) includes discussions 
of geochemical studies and petrogenetic interpre- 
tations. 

Mineralogy and Intensive Parameters 
Much research has focused on the mineralogy 

of the Pikes Peak batholith, especially that of its 
many pegmatites. Even the earliest studies (e.g., 
Cross and Hillebrand, 1882) noted the interesting 
minerals found in the region, which is a very popu- 
lar 'rockhounding' locality (Voynick, 1994). The 
batholith has produced some of the finest known 
examples of amazonite and smoky quartz, which 
occur with nearly 60 other mineral species in 
pegmatites (Muntyan and Muntyan, 1985). Numer- 
ous abstracts and papers on Pikes Peak pegmatites 
and associated minerals (including field guides and 
road logs) were published in the Colorado Pegma- 
tite Symposium volume (Modreski et al., 1986). The 
best-studied pegmatites occur in the South Platte 
district within the Buffalo Park intrusive center (cf. 
Fig. 2). Hanley et al. (1950), Heinrich (1958), 
Peterson (1964), and Haynes (1965) conducted early 
studies of the South Platte district. More recently, 
Simmons and his colleagues have produced numer- 
ous contributions on the detailed mineralogy and 
geochemistry of this district (Simmons, 1977; 
Simmons and Heinrich, 1975; 1980; Brewster, 1986; 
Lee, 1986; Wayne, 1986; Simmons et al., l986,1987a, 
198%; Simmons and Hanson, 1991). Although 
many of the mineralogical studies focus on the de- 
tails of rare minerals occurring in the batholith (e.g., 
Pauly, 1954; Adams and Young, 1961; Foord et al., 
1984; contributions in Modreski et al., 1986), the 
work by Simmons et al. (198%) has significance 
for models of magma evolution (see discussion be- 

The extremely iron-rich nature of the ferromag- 
nesian silicates in Pikes Peak rocks has been docu- 
mented with wet chemical and microprobe analyses 

low). 
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(Barker et al., 1975, Giambalvo, 
1993). Fayalite is extremely poor 
in magnesium, with less than 1 
mole % forsterite. Molar Fe/ 
(Fe+Mg) in biotite and 
hedenbergite is > 0.92 and ~0.97, 
respectively (Barker et al., 1975). 
A variety of amphiboles is present 
in Pikes Peak rocks, including 
edenitic hornblende, edenite, and 
actinolitic hornblende in syeni- 
tes and fayalite granites from 
West Creek, Lake George, and 
Mount Rosa; richterite and 
winchite in  syenites from 
Sugarloaf; and arfvedsonite (and 
minor riebeckite) in granites 
from Mount Rosa (Giambalvo, 
1993). All of the amphiboles are 
very iron rich, with molar Fe/ 
(Fe + Mg) generally greater than 
0.95 (Giambalvo, 1993). 

As is generally the case for A- 
type granites, the anhydrous and/ 
or iron-rich nature of ferromag- 
nesian silicates in the Pikes Peak 
granitoids reflects conditions of 
relatively low water and oxygen 
fugacities (Barker et al., 1975; 
Loiselle and Wones, 1979). The 
coexistence of hedenbergitic py- 
roxene + ilmenite with fayalite 
in some of the sodic granites im- 
plies crystallization under rela- 
tively low oxygen fugacities 
(Wones, 1989). Using quartz + 
ulvospinel + ilmenite + fayalite 
equilibrium (“QUIIF”), Frost et al. 
(1 988) calculated oxygen hgaci- 
ties at or below (by N 1.5 log units) 
the quartz-fayalite-magnetite 
buffer for sodic syenites and gran- 
ites. Frost et al. (1988) estimated 
temperatures in the range of 
970’ -65OOC for sodic granitic 
magmas, although they noted 
that the low end of the range may 
reflect subsolidus re-equilibra- 
tion. Saltoun (1993) and Beane 
(1993) estimated temperatures 
based on zircon and apatite satu- 
ration (Watson and Harrison, 
1983; Harrison and Watson, 
1984). Their temperatures ranged 
from 966’ -865’C and from 961” - 

724’C for sodic granites and sy- 
enites, respectively. Thus, it ap- 
pears that Pikes Peak sodic 
magmas had melt temperatures 
that probably exceeded 950’ C. 
Shallow emplacement of these 
magmas ( < 5  km; Barker et al., 
1975) is consistent with estimates 
of high temperature and low wa- 
ter contents. 

Based on phase chemistry, 
few estimates of intensive param- 
eters have been made for Pikes 
Peak potassic magmas. However, 
Barker et al. (1975) showed that 
the potassic granites plot toward 
the orthoclase apex in the norma- 
tive quartz-albite-orthoclase ter- 
nary, rather than along 
minimum melt compositions of 
water-saturated granites. They in- 
terpreted this as indicating crys- 
tallization under conditions of 
low water activity (P,,, < Pto,,) 
but at relatively higher f , , ,  than 
for the sodic magmas. The mag- 
mas probably did not reach wa- 
ter saturation until late in the 
crystallization history, but the 
presence of accessory fluorite 
(Barker et al., 1975) suggests that 
fluorine was an important mag. 
matic volatile. 

Geochemistry 

In the context of new map- 
ping conducted in the 1970s, 
Barker et al. (1975, 1976), Wobus 
(1976a), and Wobus and Ander- 
son (1978) analyzed a wide spec- 
trum of rock types, from gabbro 
to alkali granite, for their major 
element compositions. These 
studies discovered the different 
chemical trends for the potassic 
and sodic series, which were in- 
terpreted as the result of separate 
differentiation trends (see follow- 
ing discussion on petrogenetic 
models). In another contribution, 
Barker et al. (1976) presented 
strontium, oxygen, and deute- 
rium-hydrogen isotopic analyses 
and REE abundances for Pikes 
Peak rocks, which they inter- 
preted as generally but not wholly 
supportive of the petrogenetic 
model set forth in Barker et al. 
(1975). 

DePaolo (1981) published a 
single neodymium isotopic 
analysis of Pikes Peak granite. Its 
composition lies along the crustal 
evolution line for 1.8-Ga Colorado 
crust, and DePaolo interpreted 
the granite as the differentiation 

0.185 I I I I I I 1 

B65D: West Creek 
- 

1080 / 
206Pb 
238u 
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A 8 5 . 6  f 2.5 and 109 f 116 Ma 
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Figure 3. Concordia plot of U-Pb zircon data from West Creek fayalite-quartz 
syenite (B65D). 
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product of mantle-derived basaltic magma that 
evolved by crystallization and crustal assimilation 
processes. 

Ludington (1981) and Simmons et al. (198713) 
provided major and trace element analyses of some 
of the potassic intrusive rocks. Ludington studied 
the Redskin granite stock, the largest of the late 
potassic plutons, and PPG from the Thrryall Moun- 
tains (Lost Park intrusive center). Simmons et al. 
(1987b) analyzed quartz monzonite 
(monzogranite), granites, and pegmatite wall rocks 
of the South Platte pegmatite district in the Buffalo 
Park intrusive center. Both of these studies led the 
authors to conclude that processes besides fractional 
crystallization and/or partial melting affected some 
Pikes Peak granitic magmas. 

In 1992, the Keck Geology Consortium spon- 
sored a faculty-student research project that focused 
on the late-stage alkalic intrusive centers of the 
batholith. New microprobe analyses of amphiboles, 
whole-rock major and trace element analyses, and 
neodymium isotopic analyses of Pikes Peak rocks 
resulted from these studies. Preliminary results were 
published in the Keck Symposium abstracts volume 
(Woodard, 1993), and in abstracts published by 
Beane and Wobus (1993), Douglass and Smith 

(1993), Sturm et al. (1993), Goldman et al. (1994), 
and Stewart (1994). A recent article by Smith et al. 
(1999) presents the major and trace element and 
Nd isotopic analyses of Pikes Peak rocks generated 
from these studies. Smith et al. support earlier pro- 
posals that fractionation of mantle-derived mafic 
magmas was the major petrogenetic process in- 
volved in the origin of the sodic series, whereas the 
origin of the potassic series was dominated by 
crustal anatexis. 

GEOCHRONOLOGY 

Early age determinations were presented by 
many workers in the 1950s to early 1970s (e.g., 
Aldrich et al., 1957; Tilton et al., 1957; Hutchinson, 
1959a, 1959b; Giffin and Kulp, 1960; Hawley et al., 
1966; Hedge, 1970). Gross and Heinrich (1965), Pe- 
terman and Hedge (1968), and Hutchinson (1976) 
provided compilations of the available ages, which 
ranged from 980-1080 Ma, or 930-1060 Ma when 
current values for the decay constants are used. 

More recently, Marshall and DePaolo (1982) 
determined an age of 1041 f 32 Ma for Pikes Peak 
granite using the K/Ca geochronometer. Unruh (un- 
published data) has obtained U-Pb zircon ages of 

Figure 4. A, Log YO/MgO; B, log (Na,O + &O)/CaO; C, log FeOT/MgO; and 0, Na,O (wt %) versus weight % SiO, for 
Pikes Peak rocks. FeOT = (0.9 x Fe,O,) + FeO, and major element data were normalized to 100% on an anhydrous 
basis prior to plotting. Data sources include Barker et al. (1975), Wobus (1976a), Wobus and Anderson (1978), Simmons 
et al. (1987b), and Smith et al. (1999). For clarity, a shaded field includes the mostly pink, coarse-grained syenogranites 
that dominate the PPG. See legend for symbols. Data points for average S-, I-, and A-type granites are from Whalen et 
al. (1987). 
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PIKES PEAK BATHOLITH: A-TYPE GRANITIC MAGMATISM 

~1085-1090 Ma for PPG, ~1072 Ma for the Brryall 
Mountains batholith (Lost Park intrusive center), 
~1070-1090 Ma for late potassic series plutons, and 
~1077-1087 Ma for sodic plutons. There is no obvi- 
ous relationship between spatial occurrence and 
age, as both the youngest ages (Redskin stock, 
Thrryall Mountains batholith) and oldest ages (po- 
tassic granites in and around the Lake George com- 
plex) thus far obtained by Unruh have been found 
along the western margin of the batholith. 

Scharer and Allegre (1982) obtained an age of 
1093 f 20 Ma for a syenite at West Creek in the east- 
ern part of the batholith (sample B65D, fayalite- 
quartz syenite of Barker et al., 1975). We present 
here a date of 1085.6 * 2.5 Ma for this sample (B65D) 
recently analyzed at the University of Wyoming. 
Thble 1 and Figure 3 present the U-Pb data, analyti- 
cal methods, and concordia plot for this new age, 
which exhibits smaller error than the previously 
determined date. 

GEOCHEMICAL CHARACTERISTICS 
OF THE PIKES PEAK BATHOLITH 

Intmduction 
In this section, we highlight the major charac- 

teristics of whole-rock chemistry of samples from 
the Pikes Peak batholith, including major and trace 

element and isotopic characteristics. Data sources 
include Barker et al. (1975, 1976), Wobus (1976a), 
Wobus and Anderson (1978), Simmons et al. 
(1987b), and Smith et al. (1999) unless otherwise 
noted. The data are presented in selected geochemi- 
cal plots in Figures 4 through 10. 

~~j~~ Elements 
Most Pikes Peak mafic rocks (gabbro and dia- 

base) exhibit relatively low Mg-numbers (molar Mg/ 
(Mg + Fe) x loo), from 24 to 43, indicating a fairly 
evolved nature for these mafic rocks (however, one 
sample with Mg-number of 64 appears to be a cu- 
mulate rock). There are fairly large variations in 
alkalis and minor elements among the mafic rocks, 
which exhibit no obvious correlations with SiO, or 
MgO (e.g., Fig. 4). 

All granitoids of the Pikes Peak batholith ex- 
hibit the characteristics that distinguish A-type from 
S- and I-type granitoids (cf. Whalen et al., 1987). A- 
type granites have higher alkalis and iron, but lower 
calcium and magnesium, contents than S- and I- 
types. %O/MgO, (Na,O + %O)/CaO, and FeOT/MgO 
ratios (Figs. 4a-4c, Fig. 5) are high in Pikes Peak 
granitoids and, for many samples, significantly 
higher than “average” A-type granites. These ratios 
distinguish between the sodic and potassic series 
for rocks with < ~70-72 wt % SiO, (Fig. 4). Potassic 

Figme 5. Major and trace element characteristics that serve to distinguish A-type granitoids from I- and S-type 
granitoids (data from Whalen et al., 1987 and White and Chappell, 1983). Data for Pikes Peak samples from Smith et 
al. (1999) shown by open and shaded squares (average values) and pluses (total range in values). Note that log scales 
are used. 
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series granitoids have lower FeOT/MgO (or higher 
Mg-numbers), and higher CaO and lower Na,O abun- 
dances compared to the sodic series. Granite with 
> ~ 7 0  wt % SiO, can be distinguished as being ei- 
ther sodic or potassic based on ferromagnesian sili- 
cate mineralogy (i.e., the presence or absence of 
fayalite and/or sodic amphiboles) and whether dia- 
base dikes, gabbro, and/or syenite are found in as- 
sociation with the granite (cf. Thble 2). 

mace Elements 
Pikes Peak gabbros and mafic (diabase) dikes 

exhibit large ranges in many incompatible trace 
elements (e.g., Rb, Th, REE, Hf, Y). Abundances of 
many trace elements in Pikes Peak mafic rocks are 
similar to those in ocean island basalts (OIB), but 
OIB do not exhibit the Nb-Th depletions that char- 
acterize Pikes Peak mafic rocks (Fig. 6). Subduction- 
related basalts exhibit Nb-Th depletions similar to 

Pikes Peak mafic rocks, but have lower abundances 
of most incompatible elements and higher Sr con- 
tents. 

All Pikes Peak granitoids exhibit trace element 
characteristics typical of A-type granites (Fig. 5), 
including high abundances of incompatible ele- 
ments (e.g., light REE, Nb, Y, Ga) and depletions in 
Sr, Eu, Sc, Ni, and Co (cf. Whalen et al., 1987). Their 
compositions plot in fields for A-type and “within- 
plate” granites on various discrimination diagrams 
commonly employed in the granite literature (e.g., 
Whalen et al., 1987; Pearce et al., 1984). %ends in 
some trace element abundances and ratios (e.g., Rb/ 
Sr, Y/Sc, and Ba; Fig. 7) with silica allow distinc- 
tion between the sodic and potassic granitoids with 
up to ~ 7 0 - 7 2  wt % silica. At higher silica contents, 
the distinctions in trace (and major) element char- 
acteristics become blurred. Compared to coeval 
mafic rocks, the sodic syenites and granites exhibit 

Xhble 2. Petrologic and geochemical features of rocks in sodic and potassic late-stage plutons. 

sodic Potassic 

Rock types 

Fayalite in granitoids? 

Sodic amphiboles in granitoids? 
Range in silica 

87Sr/86Sr at 1.03 Gat 
Mafic 
Intermediate/felsic 

Mafic 
Intermediate/felsic 

Mafic 
Intermediate/felsic 

E~~ (1.08 Ga) 

6180 (whole rock) 

Other features 

gabbro; diabase; anorthosite 
(rare); syenite; 

quartz syenite; granite 
Yes 
Yes 

N44 to 78 wt % 

0.70440 
0.7052 to 0.7068 

+ 3.5 to -3.0 
+ 2.2 to -0.7 

+6.5 to +8.1 
+ 7.2 to +8.9 

Six of the sodic intrusive centers 
appear to be aligned in a 

NW-SE direction. 

syenogranite; 
monozogranite (minor) 

No 
No 

~ 6 4  to 78 

n.d. 
0.7967 to 0.7117 

n.d. 
-0.2 to -2.7 

n.d. 
+8.2 to +9.5 

No preferred orientation 
of the late-stage potassic plutons 

is evident. 

t Barker et al. (1976) used an age of 1.03 Ga to calculate the 87Sr/86Sr initial ratios presented here. Barker 
et al. (1976) did not publishS7RbP6Sr data, thus initial ratios at 1.08 Ga could not be recalculated. See text 
for further discussion. 
Notes: The PPG (not included here) exhibits geochemical features that overlap with those of the 
potassic series. 
n.d. = nodata. 
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enrichments in most incompatible elements (e.g., 
Rb, Th, U, REE), and depletions in elements that 
are preferentially incorporated in feldspars (Ba, Sr, 
Eu) and ferromagnesian silicates (e.g., Sc, Co; Figs. 
8 and 9). However, abundances of high field strength 
elements (HFSE) and light REE exhibit consider- 
able scatter among the sodic syenites and granites, 
and they are often lower compared to abundances 
in the mafic rocks (Fig. 9). 

Isotopes 
Although there is overlap, slight differences in 

Sr, Nd, and 0 isotopic ratios exist between granitoids 

of the sodic and potassic series, and indicate a 
greater crustal component in the potassic granitoids 
compared to the sodic granitoids (Thble 2). Unfor- 
tunately, the high Rb/Sr ratios that characterize 
Pikes Peak granitoids make correction for in situ 
radiogenic Sr production and calculation of Sr ini- 
tial ratios from whole-rock analyses imprecise. In 
addition, the very low Sr contents in the granitoids 
makes them highly sensitive to crustal contamina- 
tion. Even small amounts of Sr from crustal partial 
melts or from hydrothermal fluids could signifi- 
cantly change their 87Sr/86Sr ratio (Van Breeman et 
al., 1975). Barker et al. (1976) provided initial 

Figure 6. Primitive mantle-normalized trace element diagrams for mafic (diabase) dikes and gabbros of the Pikes 
Peak batholith; normalizing values from Thylor and McLennan (1985). Symbols for the mafic dikes are crosses, and 
symbols for the gabbros are shaded squares and rectangles. The symbols vary in size in order to help distinguish 
among the individual samples. The shaded field represents typical ocean island basalts (OIB; Weaver, 1991) and the 
ruled field represents typical subduction-related basalts (from Wilson, 1989). 
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87Sr/86Sr values for a variety of 
rock types within the batholith 
for an age of 1.03 Ga, the accepted 
age of the batholith in the 1970s. 
These initial values range from 
~0.704-0.707 for gabbro and sy- 
enite to 0.707-0.712 for potassic 
granite (Thble 2). Additional Rb- 
Sr data have been obtained by 
Unruh (unpublished data) that 
exhibit similar ranges in initial 
87Sr/86Sr to those obtained by 
Barker et al. when calculated for 
an age of 1.03 Ga. When an age of 
~ 1 . 0 8  Ga is used, the calculated 
initial ratios of the gabbros and 
syenites become slightly lower 
(0.703-0.705), but those of the 
whole-rock splits from potassic 
granites become much lower, 
some unrealistically low ( c 0.70; 
Unruh, unpublished data). Analy- 
ses of plagioclase and other low- 
Rb/Sr minerals from these rocks 
suggest that initial 87Sr/86Sr values 
of ~0.705-0.709 might be more 
appropriate for the “true” initial 
Sr ratios at the time of emplace- 
ment. However, the Rb-Sr min- 
eral-isochron apparent ages 
obtained by Unruh are signifi- 
cantly younger (1.02-1.05 Ga; 
similar to the whole-rock isoch- 
ron age determined by Hedge, 
1970) than the 1.08-1.09-Ga em- 
placement ages determined by 
the U-Pb data. Consequently, the 
Rb-Sr systems of many of these 
rocks were evidently open for a 
considerable amount of time af- 
ter the apparent time of emplace- 
ment. Therefore, the calculation 
of “true” initial 87Sr/86Sr for many 
of these samples at the time of 
emplacement of the plutons is 
extremely difficult. 

Figure 10 illustrates E,, versus 
age for Pikes Peak rocks (Smith 
et al., 1999), as well as E,, for wall 
rocks to the batholith (DePaolo, 
1981). The gabbros exhibit the 
largest range in ‘Nd at l .08 Gat 
from + 3.5 to -3.0. Sodic syenites 
and granites have values of E,, at 

figure 7. A, Log Rb/Sr; B, log Y/Sc; and C, Ba (ppm) versus weight % silica 
in Pikes Peak rocks. Shaded diamonds represent pink syenogranites of the 
PPG; other symbols as in Fig. 4. Data sources include Simmons et al. (1987b) 
and Smith et al. (1999). Data points for average S-, I-, and A-type granites 
shown in panels A and B are from Whalen et al. (1987). 
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Figure 8. Representative compositions of Pikes Peak sodic rocks (panels A and B) and potassic rocks (panels C and 
0) normalized to selected Pikes Peak mafic rocks (gabbro sample CCN-19BCD and mafic dike sample MBCS-SG). 
The field for potassic granites of the late-stage intrusions (cf. panel C) is also shown in panels B and D. Note the 
depletions in Ba, Sr, P, Eu, and Ti, but enrichments in incompatible elements for all the granitoids, and the larger 
depletions in Th, U, Hf, and Zr in the sodic amphibole granites (panel B). 

1.08 Ga that plot between depleted 
mantle and Colorado crust. Val- 
ues of  for the potassic series 
granites generally plot within or 
above the range for Colorado crust 
at 1.08 Ga. 

The 180/’60 ratios were deter- 
mined in whole-rock samples of 
the batholith (Barker et al., 1976). 
The use of whole rock 6I8O data 
in  the evaluation of magma 
sources can be problematic if the 
rocks were susceptible to isotopic 
exchange due to alteration by flu- 

ids. Interaction with fluids at vari- 
ous temperatures can either lower 
(high temperature) or raise (low 
temperature) initial 6 W  values 
(Javoy and Weis, 1987). Javoy and 
Weis (1987) found a way to get to 
the original composition by ana- 
lyzing quartz, for which the kinet- 
ics of 0-isotope exchange are very 
sluggish below 450OC. Values of 
6I8O for Pikes Peak whole rock 
samples exhibit internal consis- 
tency and suggest a crustal con- 
tribution in the granitoids 

(Barker et al., 1976). However, iso- 
topic analyses of quartz in these 
rocks should be conducted in or- 
der to evaluate the effects of iso- 
topic exchange. 

PETROGENETIC 
MODELS 
lntrodaction 

Barker et al. (1975,1976) and 
Wobus (1976a, 197613) suggested 
that the different chemical trends 
for the potassic and sodic series 
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Figure 9. Log Cr, Sc, Sr, Ce, Zr, and Y (ppm) versus weight 96 MgO in Pikes Peak rocks. Symbols as in Figs. 4 and 7 and 
data sources as in Fig. 7. Also shown are pegmatite wall zone rocks (filled inverted triangles), from which Sc, Ce, Zr, 
and Y are thought to have been preferentially removed by residual pegmatitic fluids (Simmons et al., 198%). 

were the result of separate differentiation trends. 
Later studies by Smith et al. (1999) also resulted in 
contrasting petrogenetic models (fractionation ver- 
sus crustal anatexis) for the two series. 

Origin of Sodic Series 
Smith et al. (1999) characterized the nature of 

the mantle sources that supplied mafic magmas 
emplaced in the late-stage sodic intrusions. Gabbros 

and mafic dikes have E~~ lower than depleted mantle 
at 1.08 Ga (Fig. lo), and their primitive mantle-nor- 
malized trace element patterns (Fig. 6) exhibit over- 
all enrichments in most elements but significant 
depletions in Nb, TI, and Sr. Smith et al. interpreted 
these characteristics as the result of derivation from 
mantle sources that were previously affected by sub- 
duction-related processes. Supra-subduction zone 
(SSZ) mantle sources could have developed during 

302 Rockg Mountain Geolom, v. 34, no. 2, p .  289-312, 12 figs., 2 tables, November, 1999 



PIKES PEAK BATHOLITH: A-TYPE GRANITIC MAGMATISM 

Figure 10. eNd versus age relationships for A, sodic series; and B, potassic series rocks of the Pikes Peak batholith. 
The large arrow and black line show ENdevolution for typical 1.8-Ga Colorado crust and depleted mantle, respectively 
(from DePaolo, 1981). Fields for wall rocks are from DePaolo (1981). The small arrow gives the &,,evolution for 
typical 1.8-Ga metatholeiitic basalt (from DePaolo, 1981). Data points are separated for clarity and no age differ- 
ences are implied. Symbols as in Figs. 4 and 7. 

the ~1.8-1 .7  Yavapai orogeny, during which the 
calc-alkaline Boulder Creek intrusions were 
emplaced. However, it is difficult to rule out con- 
tamination of mantle-derived magmas during as- 
cent through crust (Smith et al., 1999). 

Barker et al. (1975) proposed that alkalic basal- 
tic magma trapped in the lower crust underwent 
simultaneous differentiation and “reaction melting” 
of potassium-depleted rocks of the lower crust (i.e., 
assimilation coupled with fractional crystallization, 
“AFC”; Barker, 1991) to generate syenites of the sodic 
series; some of these magmas underwent further 
fractionation to produce the sodic granites. Smith 
et al. (1999) also called upon basalt fractionation 
as a dominant process in the formation of sodic 
syenites and granites, but concluded that crustal 
assimilation played a limited role, as Barker et al. 
(1976) concluded for the case of the Spring Creek 
pluton. Poor correlation exists between E~~ and 1/ 
Nd in Pikes Peak rocks, and AFC models show that 
assimilation involving Boulder Creek- or Silver 
Plume-type intrusives cannot generate the high Nd 
concentrations observed in most sodic granitoids, 
even at extreme degrees of evolution, unless the rate 
of assimilation relative to crystallization is held to 
a low value. 

Frost and Frost (1997) pointed out that the re- 
duced nature of the sodic syenites and granites 

(Frost et al., 1988) severely limits the potential 
sources, and suggested that underplated tholeiitic 
basalts, characterized by low fez, were good candi- 
dates. Barker et alls 1975 model also involved %O- 
depleted lower crustal rocks as assimilants. However, 
metatholeiites exposed in wall rocks of the batholith 
have low Nd concentrations ( ~10-12  ppm; DePaolo, 
198l), and lower continental crust is generally 
thought to have low Nd contents ( ~ 1 3 - 1 9  ppm; my- 
lor and McClennan, 1985; Weaver and Thrney, 1984). 
Minor amounts of assimilation of these materials 
is possible, but the high Nd contents observed in 
Pikes Peak granitoids seemingly require either pro- 
tracted fractionation or small degrees of melting of 
the source. 

Frost and Frost (1997) proposed that reduced 
anorogenic granites (including Pikes Peak granites) 
form either by extreme differentiation of basaltic 
melts or by partial melting of underplated basalts 
and their differentiates. However, melting experi- 
ments involving basaltic source compositions show 
that the melts produced do not have the high alkali 
and low CaO contents that characterize the sodic 
granitoids (Fig. 11). Frost and Frost (1997) did not 
consider basalt fractionation the dominant petro- 
genetic mechanism for anorogenic granites in gen- 
eral because of the large amount of cumulate 
material that must be removed, and because many 
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anorogenic suites do not exhibit the continuum 
from voluminous gabbro to minor granite expected 
for a differentiation sequence. But in the case of 
the Pikes Peak sodic series, these problems do not 
pose obstacles to acceptance of fractionation mod- 
els. A positive ( + 35 milligal) gravity anomaly has 
been documented for the Pikes Peak batholith 
(Qureshy, 1958; cf. Hutchinson, 1960b), indicating 
that mafic rocks exist at depth, which could include 
cumulates formed during differentiation of the 
sodic series. Barker et al. (1976) cited the aeromag- 
netic results and interpretations of Zietz and Kirby 
(1972), which suggest that mafic and ultramafic 
cumulates still underlie the batholith. The sodic 
series comprises a small proportion ( < 2%) of the 
exposed rocks, thus huge quantities of cumulates 
are not required. Furthermore, the compositional 
range for the sodic series is not bimodal; interme- 
diate compositions are present as well (Fig. 4; Table 
2). 

Smith et al. (1999) pointed out some features of 
Pikes Peak sodic syenites and granites and associ- 
ated mafic rocks that cause difficulties with attempts 
to quantify the fractionation process. In particular, 
some syenites of Sugarloaf (see Beane and Wobus, 
this issue) and sodic amphibole granites of Mount 
Rosa exhibit ranges in HFSE and light REE (Figs. 8 
and 9) that are not easily explained by fractionation 
involving major phases. Accessory mineral fraction- 
ation and/or the removal of late-stage fluids (e.g., 
fluorine-rich volatile phases, residual pegmatitic 
fluids) influenced the distribution of HFSE and light 
REE in those rocks. Simmons et al. (1987b) pre- 
sented strong evidence that Th, REE, Zr, and Y were 
depleted in some Pikes Peak potassic granitoids by 
removal of residual pegmatitic fluids (cf. Fig. 9; see 
below). It is possible that similar processes affected 
some sodic magmas, with significant sodic pegma- 
tite occurrences in the Mount Rosa and Sugarloaf 
intrusive centers. 

In addition, the nature of parental mafic mag- 
mas remains uncertain because the mafic rocks 
sampled clearly have undergone significant frac- 
tionation themselves, and may not represent pri- 
mary magmas that were parental to sodic syenites 
and granites (Smith et al., 1999). If SSZ (or OIB- 
like; cf. Fig. 6) mantle sources supplied mafic mag- 
mas that were parental to sodic syenites and granites 
by fractionation, it is difficult to quantify crust ver- 
sus mantle contributions in the sodic granitoids. 
Sodic granitoids with low E ~ ~ ( T )  could be mistaken 
for crust + depleted mantle mixtures, whereas they 
may contain little (or no) crust if parental mafic 
magmas had E , ~  lower than depleted mantle at 1.08 
Ga (cf. Fig. 10). 

Origin of Potassic Series 

Barker et al. (1975, 1976) hypothesized that sy- 
enitic and/or mantle-derived basaltic magmas crys- 
tallized and reacted with mid-crustal rocks to 
produce the potassic PPG, but acknowledged the dif- 
ficulty in distinguishing between this process and 
partial melting of crust. They concluded that gen- 
erally low Sr abundances and pronounced negative 
Eu anomalies in the granitoids, and progressive 
increases in REE abundances, initial 87Sr/86Sr, and 
P O  with increasing differentiation were support- 
ive of an AFC model. 

In a review of the origin of anorogenic granites 
occurring worldwide, Rogers and Satterfield (1 994) 
included the PPG as a representative example. They 
called upon an important role for CO, during ei- 
ther melting and/or crystallization, which influ- 
ences biotite equilibria and results in negative 
&O-SiO, relationships in anorogenic granites. 

Other workers have discussed processes that 
may have played significant roles in the distribu- 
tion of trace elements in some Pikes Peak potassic 
granitoids. Ludington (1981) concluded that trace 
element abundances in the Redskin granite arose 
through liquid-state fractionation (cf. Hildreth, 
1979), rather than by crystal fractionation or par- 
tial melting processes. Simmons et al. (1987b) dem- 
onstrated the importance of partitioning of certain 
trace elements, especially REE and HFSE, into re- 
sidual pegmatitic fluids, thus “stripping” these ele- 
ments from the host magma (PPG). 

Smith et al. (1999) hypothesized that the origin 
of the potassic series granites, in both the late-stage 
intrusions and the PPG of the main batholith, was 
dominated by partial melting of crustal sources. 
Based on comparisons with experimentally pro- 
duced melts from a variety of crustal lithologies, 
tonalitic sources were found to be the most consis- 
tent with observed compositions of the potassic 
granites (Fig. 11). Mafic sources do not yield melts 
with the observed alkali and/or CaO contents of the 
potassic (nor the sodic) granitoids. Nd isotopic data 
are also generally consistent with crustal anatectic 
models for the potassic granites (Fig. 10). Some 
potassic granitoids, specifically the minor gray 
monzogranites of the PPG, are not readily inter- 
preted as melts of tonalitic source rocks (Fig. 11) 
and seemingly require a mafic or juvenile (mantle 
derived?) component. The origin of the gray 
monzogranites remains unclear, but mixing be- 
tween granitic melts derived from tonalitic sources 
and intermediate melts derived from ferrodiorite 
sources (Fig. 11; cf. Smith et al., 1999) is an appeal- 
ing proposal. However, compositional data on par- 
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tial melts from ferrodiorites are 
rare, and further studies are war- 
ranted in order to test this hypoth- 
esis. 

mace element characteristics 
of some potassic granites are con- 
sistent with moderate degrees of 
fractionation dominated by feld- 
spar. Some samples have Rb/Sr 
values greater than 5 (Fig. 7a), 
which Halliday et  al. (1991) 
showed probably are the result of 
crystal fractionation rather than 
partial melting processes. Those 
samples have low Ba and Sr con- 
tents, which can be modeled as 
the result of ~ 2 0 - 3 0  percent crys- 
tallization and removal of a feld- 
spar-dominated assemblage from 
partial melts of tonalitic source 
rocks (Smith et al., 1997; Smith 
et al., 1999). However, Smith et al. 
(1 999) considered fractionation 
as a secondary, rather than the 
dominant, petrogenetic process 
in the origin of the potassic gran- 
ites. But they acknowledged that 
it is difficult to rule out Barker et 
al.'s 1975 AFC model involving 
mafic parental magmas for the 

Figure 11. Weight %A, %O; B, Na,O; 
and C, CaO versus weight % SiO, in 
Pikes Peak potassic granitoids and 
mafic rocks (symbols as in Figs. 4 and 
7, and data sources as in Fig. 4). The 
dashed lines encircle compositions of 
Pikes Peak sodic granitoids. Shaded 
fields include compositions of melts 
generated from mafic source rocks; 
data from Holloway and Burnham 
(1972), Helz (1976), Spulber and Ru- 
therford (1983), Rushmer (1991) and 
Beard and Lofgren (1991). Ruled and 
speckled fields (see panel A) repre- 
sent melts produced in experiments 
involving fluid-absent melting of 
tonalitic gneiss (ruled fields; Skjerlie 
and Johnston, 1993) and melts gen- 
erated by partial melting of grano- 
diorite and tonalite at 4 and 8 kbar 
(speckled fields; Patifio Douce, 1997). 
Also shown is a melt composition 
(cross in circle) generated from a 
ferrodiorite source (Scoates et al., 
1996). 

Roc7cy Mountain Geology, v. 34, no. 2, p .  289-312, 12 f g s . ,  2 tables, November, 1999 305 



D. R. SMITH ET AL. 

origin of the potassic granites, especially if exposed 
mafic rocks do not accurately represent the paren- 
tal compositions. Smith’s group favored a crustal 
anatexis model because AFC models would require 
huge amounts of mafic cumulates for the enormous 
amount of potassic granite emplaced in the 
batholith. Gravity and aeromagnetic data for the 
Pikes Peak batholith suggest the existence of sig- 
nificant amounts of mafic rock at depth. Not all of 
it may be cumulate material, but rather solidified 
mafic magmas that provided the heat input neces- 
sary for crustal melting. The potassic series is fairly 
restricted in composition. Gabbros, mafic dikes, 
and/or mafic enclaves are not found in association 
with the potassic granites, unlike the sodic series 
that exhibits a near continuum in composition from 
gabbro to granite. Crustal melting seems a more 
plausible way than fractionation to explain the rela- 
tively homogeneous compositions of the potassic 
granites, in contrast to the large compositional 
range exhibited by the sodic series. 

COMPARISON WITH TWO CFCHER 
N 1.1-Ga NORTH AMERICAN 
GRANITIC COMPLEXES 

Figure 1 illustrates the major tectonic and plu- 
tonic provinces that characterized the North Ameri- 
can craton at N 1.1 Ga. In addition to the Pikes Peak 
batholith, 1.12-1.07-Ga granites of the Llano uplift 
in central lkxas and the 1.12-Ga Red Bluff intrusive 
suite of west lkxas share characteristics typical of 
“anorogenic” granites (i.e., K- and Fe-rich bulk com- 
positions, Fe-rich silicates, emplacement under low 
oxygen and water fugacities; Smith et al., 1997). 
Granitic magmas of the Llano uplift were emplaced 
into multiply deformed and metamorphosed crust, 
during or after waning stages of Grenville orogen- 
esis (Reed and Helper, 1994). The Red Bluff granitic 
suite, in contrast, was emplaced into a shelf se- 
quence north of the front of Grenville deformation, 
within a broad zone characterized by mild exten- 
sion (cf. Smith et al., 1997 and references therein). 
As discussedby Smith et al. (1997), those two suites 
exhibit petrologic and geochemical distinctions that 
suggest different petrogenetic histories. The Red 
Bluff suite includes syenitic rocks and ferrobasaltic 
dikes, whereas syenitic and mafic rocks are not as- 
sociated with the Llano granites. The Llano gran- 
ites contain amphiboles and biotites that are more 
magnesian than those of the Red Bluff granitoids. 
Arfvedsonite occurs in Red Bluff granitoids, but al- 
kali-rich amphiboles are lacking in the Llano gran- 
ites. The Red Bluff granitoids have lower 

Mg-numbers, higher Na,O, and higher REE and 
HFSE concentrations than the Llano granites. 

Figure 12 illustrates a few key diagrams that 
distinguish between the Pikes Peak sodic and po- 
tassic series, and which also serve to distinguish 
between the Red Bluff and Llano suites. The Red 
Bluff suite is similar to the sodic series of the Pikes 
Peak batholith (cf. Thble 2), and it was also inter- 
preted as having a direct derivation from mantle 
sources by extensive fractionation of basaltic mag- 
mas with minor crustal assimilation (Shannon et 
al., 1997). In contrast, the Llano granites share char- 
acteristics with the Pikes Peak potassic series (Fig. 
12; Thble 2), and they were also interpreted to rep- 
resent anatectic melts derived from crustal sources 
(Smith et al., 1997). 

Ranges in E ~ ~ ( T )  for the Red Bluff suite ( + 3.8 to 
+ 2.5; Norman et al., 1987; Patchett and Ruiz, 1989) 
overlap with that for the Llano granites (+4.3 to 
+2.6; Patchett and Ruiz, 1989; Smith et al., 1997). 
In contrast, the range in E ~ ~ ( T )  for the Llano gran- 
ites is distinct from the range exhibited by the Pikes 
Peak potassic granites (-0.2 to -2.7). Although both 
suites are interpreted to represent tonalitic crustal 
melts, the sources apparently had different isoto- 
pic characteristics. The Llano granites were inter- 
preted by Smith et al. (1997) as partial melts from 
slightly older crustal sources in which isotopic sig- 
natures did not have sufficient time to evolve to 
values distinct from depleted mantle. They were 
emplaced at the last stages of orogenesis, and per- 
haps tonalitic crust that developed during a previ- 
ous subduction event (e.g., Mosher, 1998) served as 
sources for those magmas. In contrast, Pikes Peak 
potassic magmas were emplaced hundreds of mil- 
lions of years following the N 1.8-1.7-Ga Yavapai 
orogeny. Tonalitic crust developed during the 
Yavapai event had considerable time to evolve to 
&,,(T) isotopic compositions lower than the Llano 
crustal sources. 

Similarly, the Red Bluff granitoids (&,,(T) = 
+ 3.8 to + 2.5) and the Pikes Peak sodic granitoids 
( E ~ ~ ( T )  = + 2.2 to -0.7) are thought to have a com- 
mon origin by fractionation from mantle-derived 
magmas, but their E,~(T) ranges indicate isotopi- 
cally distinct mantle sources. Mantle sources for 
Pikes Peak mafic magmas appear to have been af- 
fected by subduction-related processes, as were 
mantle sources for Red Bluff mafic magmas (Barnes 
et al., this issue). However, the Pikes Peak mantle 
sources exhibited a wider E ~ ~ ( T )  range that includes 
lower values ( + 3.5 to -3.0) compared to Red Bluff 
mantle sources ( + 3.5 to + 2.7; Patchett and Ruiz, 
1989). 
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Figure 12. A, Weight % Na,O; B, Mg-number; C, log Sr (ppm); and D, log Rb/Sr versus weight % silica for Pikes Peak 
rocks (represented by fields), mafic dikes (filled squares) and granitoids (open squares) of the Red Bluff suite, and 
granites from the Enchanted Rock batholith (open triangles) and Marble Falls intrusive center (open circles) of the 
Llano uplift. Data for the Red Bluff suite are from Shannon et al. (1997) and Barnes et al. (this volume). Data for the 
Enchanted Rock batholith are from Smith et al. (1997). Data for the Marble Falls intrusive center are from Gallegos 
and Smith (1996) and R Smith (unpublished data). 

TECTONIC SETTING 

The tectonic setting of the Pikes Peak batholith 
is not well understood. TWO possibilities are rifting 
(or extension) and a “hot spot” (or mantle plume). 
Barker et al. (1975) stated that a setting of incipi- 
ent rifting is a likely possibility for the Pikes Peak 
batholith, and it is commonly thought that most A- 
type granites are emplaced in crust undergoing 
extension (e.g., lbrner et al., 1992). Adams and 
Keller (1994) suggested that areas of N 1.2-1.0-Ga 
igneous activity in Texas and New Mexico (e.g, the 
Pecos mafic intrusive complex; Keller et al., 1989; 

the Red Bluff granitic suite and associated 
ferrobasaltic dikes, Shannon et al., 1997; cf. Fig. 1) 
were related to the N1.1-Ga Midcontinent Rift 
(MCR). They pointed out that the scale and com- 
plexity of features associated with the Mesozoic- 
Cenozoic African rift are comparable to that 
exhibited by areas of ~ 1 . 1  igneous activity thought 
to be related to the MCR Adams and Keller included 
the Pikes Peak batholith on their maps, but did not 
directly state that it was related to MCR extension. 
However, the Pikes Peak batholith occurs at a dis- 
tance from the MCR that is comparable to distances 
between off-axis features and the main axis of the 
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African rift (cf. Fig. 8 in Adams and Keller, 1994). 
Mafic dikes in the southwestern U.S., ~ 1 . 1  Ga in age, 
(cf. Fig. 1) have been interpreted to indicate that 
the area experienced extension during this time 
(Hammond, 1986). Those dikes are approximately 
as far from areas affected by extension in west Texas 
as the Pikes Peak batholith is from the MCR’s ex- 
tension into Kansas. Perhaps the N1.1-Ga North 
American tectonic “picture” was similar to that for 
the western U.S. during Cenozoic time. It could have 
included broad as well as linear regions affected by 
extension, which were distributed over a large part 
of the continent. 

Other A-type granitic suites have been suggested 
as being the result of mantle plume activity. For 
example, the Mesozoic plutons of the White Moun- 
tain magma series in New England have been re- 
lated to a “hot spot” or mantle plume (Morgan, 1981; 
Crough, 1981). However, McHone and Butler (1984) 
noted that there is no significant progression of ages 
among the White Mountain plutons, and they sug- 
gested that this north-south elongate province may 
have formed along an ancient transform or rift fault 
in the New England basement crust. Bedard (1985) 
hypothesized a setting of rifting, decompression 
melting, and a southeast-propagating tensional 
event for the White Mountain magma series. It is 
likewise difficult to resolve the plume versus rift 
origin for the Pikes Peak batholith until more de- 
tails are known about its total size and distribution 
(cf. ’Ifyeto, 1980b) and the timing of magma em- 
placement. 

CONCLUSIONS 
Many studies of the mineralogy, petrology, 

geochemistry, and geochronology of Pikes Peak 
intrusive rocks have resulted in models for the ori- 
gin and evolution of magmas emplaced in the 
batholith. Most workers interpret the sodic syeni- 
tes and granites as fractionation products of basal- 
tic magmas, and recent studies present evidence for 
minimal crustal involvement in those magmas. 
Potassic granites, which comprise more than 98 
percent of present exposures of the batholith, were 
first interpreted (Barker et al., 1975, 1976) as the 
result of basalt fractionation coupled with assimi- 
lation of crust, but we interpret them to represent 
crustal melts. Details of the emplacement history 
of sodic and potassic magmas within the late-stage 
centers are not well constrained, but existing geo- 
chronologic data and field relations suggest that the 
sodic magmas were among the last to be emplaced 
in the batholith. 

The following working model for the Pikes Peak 
batholith is offered. At ~ 1 . 1  Ga, extension caused 
thinning of the lithosphere and triggered magma 
production in the mantle. Mantle-derived basaltic 
magmas were trapped and cooled in the lower crust, 
providing heat that caused anatexis of tonalitic 
crust. The solidified mafic magmas contributed to 
the gravity and aeromagnetic anomalies presently 
associated with the batholith. Crustal partial melts 
underwent low to moderate degrees of fractionation 
dominated by feldspar, and huge volumes of potas- 
sic granite (the Pikes Peak Granite) were emplaced 
at epizonal levels. Three large intrusive centers de- 
veloped, fed by magmatic plumbing systems that 
transported magma along NNW-SE directions. Ma- 
fic magmas, which were derived from supra-subduc- 
tion zone mantle sources presumably affected by 
the N 1.8-1.7-Ga Yapavai event, experienced variable 
degrees of crystal fractionation. Results of this pro- 
cess included iron-rich alkaline mafic magmas, and 
more extreme fractionation produced sodic syeni- 
tes and granites. The sodic intrusive centers are 
preferentially aligned in a NW-SE direction, per- 
haps related to fractures or weaknesses caused by 
crustal extension. 
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