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Abstract

This paper serves as a concise and self-contained reference to measure-theoretical

probability. We study the theory of expected values as integrals with respect to

probability measures on abstract spaces and the theory of conditional expectations

as Radon-Nikodym derivatives. Finally, the concept of martingale and its basic

properties are introduced.
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Introduction

I decided to study measure-theoretical probability so that I can gain a deeper under-

standing of probability and stochastic processes beyond the introductory level. In

particular, I studied the definition and some basic properties of martingale, which

requires the understanding of expectations as integrals with respect to probability

measures and the conditional expectations as Radon-Nikodym derivatives.

The main book I used along my studies is A Probability Path by Sidney I.

Resnick. My study followed the sequence of the chapters in this book and stopped

after the chapter of martingales. I also used the books Probability and Measure

by Patrick Billingsley and Probability and Random Processes by Geoffery R. Grim-

mett and David R. Stirzaker as references. Most of the results I studied come

from A Probability Path since it contains a comprehensive list of definitions, the-

orems, propositions, and their proofs. Probability and Random Processes takes a

more intuitive approach and helped me understand the application of martingale

in branching processes. Probability and Measure studies the expectation in a more

general context not limited to probability spaces and I relied on it most in my study

of the expectations.

My study starts with the set theory and probability spaces and it moves into
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the definition of random variables as maps. Then it deals with properties of random

variables such as independence and expectation and it finally concludes with the

theory of martingales.
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Chapter 1

Sets and Events

1.1 Basic Set Theory

We first need to introduce the basic notations necessary throughout the study. The

notations used for sets are listed below:

Ω: An abstract set representing the sample space of some experiment. The

points of Ω correspond to the outcomes of an experiment.

P(Ω): The power set of Ω, that is, the set of all subsets of Ω.

Subsets A, B, ... of Ω which will usually be written with Roman letter at the

beginning of the alphabet. Most subsets will be thought of as events.

Collections of subsets A,B, ... which are usually denoted by calligraphic

letters.

An individual element of Ω: ω ∈ Ω.

The set operations we need to know for our study are the following:

1. Complementation: The complement of a subset A ∈ Ω is

11



Ac := {ω : ω 6∈ A}.

2. Intersection over arbitrary index sets: Suppose T is some index set and for

each t ∈ T we are given At ⊂ Ω. We define

⋂

t⊂T

At := {ω : ω ∈ At, ∀t ∈ T }.

3. Union over arbitrary index sets: As above, let T be an index set and

suppose At ⊂ Ω. Define the union as

⋃

t∈T

At := {ω : ω ∈ At, for some t ∈ T }.

4. Set difference: Given two sets A, B, the part that is in A but not in B is

A\B := ABc.

5. Symmetric difference: If A,B are two subsets, the set of the points that are

in one but not in both is called the symmetric difference

A△B = (A\B)
⋃

(B\A).

1.2 Indicator Functions

If A ⊂ Ω, we define the indicator function of A as

IA(ω) =















1, if ω ∈ A,

0, if ω ∈ Ac.

We will later see that taking the expectation of an indicator function is theo-

retically equivalent to computing the probability of an event.

From the definition of an indicator function, we get

12



IA ≤ IB ⇐⇒ A ⊂ B,

and

IAc = 1− IA.

If f and g are two functions with domain Ω and range R, we have

f ≤ g ⇐⇒ f(ω) ≤ g(ω) for all ω ∈ Ω

and

f = g if f ≤ f and g ≤ f .

1.3 Limits of Sets

To study the convergence concepts for random variables, we need to manipulate

sequences of events, which requires the definitions of limits of sets. Let An ⊂ Ω.

We define

inf
k≥n

Ak :=

∞
⋂

k=n

Ak, sup
k≥n

Ak :=

∞
⋃

k=n

Ak

lim inf
n→∞

An = lim
n→∞

(

inf
k≥n

Ak

)

=

∞
⋃

n=1

∞
⋂

k=n

Ak,

lim sup
n→∞

An = lim
n→∞

(

sup
k≥n

Ak

)

=
∞
⋂

n=1

∞
⋃

k=n

Ak.

Let An be a sequence of subsets of Ω, the sample space of events. An alter-

native interpretation of lim sup is

lim sup
n→∞

An = {ω :

∞
∑

n=1

IAn
(ω) = ∞} = {ω : ω ∈ Ank

, k = 1, 2, ...}

for some subsequence nk depending on ω. Consequently,

lim sup
n→∞

An = [Ani.o.].

13



where i.o. means ”infinitely often”.

For lim inf, we have

lim inf
n→∞

An = {ω : ω ∈ An for all n except a finite number}

= {ω :
∑

n

IAc
n
(ω) < ∞}

= {ω : ω ∈ An, ∀n ≥ n0(ω)}.

The relationship between lim sup and lim inf is

lim inf
n→∞

An ⊂ lim sup
n→∞

An

since {ω : ω ∈ An, ∀n ≥ n0(ω)} ⊂ {ω : ω ∈ An infinitely often }.

Another connection between lim sup and lim inf is via de Morgan’s laws:

(lim inf
n→∞

An)
c = lim sup

n→∞
Ac

n,

which is obtained by applying de Morgan’s laws to the definitions of lim sup and

lim inf.

1.4 Monotone Sequences

A sequence of sets {An} is monotone non-decreasing if A1 ⊂ A2 ⊂ A3 ⊂ .... The

sequence {An} is monotone non-increasing if A1 ⊃ A2 ⊃ A3 ⊃ .... We use the

notation An ↑ for non-decreasing sets and An ↓ for non-increasing sets.

Recall that we wish to find the limits of sequences of sets. For a monotone

sequence, the limit always exits. The limits of monotone sequences are found as

follows.

Proposition 1.4.1. Suppose {An} is a monotone sequence of subsets.

1. If An ↑, then limn→∞An =
⋃∞

n=1
An.

14



2. If An ↓, then limn→∞An =
⋂∞

n=1
An.

Recall that for any sequence {Bn}, we have

inf
k≥n

Bk ↑, and sup
k≥n

Bk ↓.

It follows that

lim inf
n→∞

Bn = lim
n→∞

(

inf
k≥n

Bn

)

=

∞
⋃

n=1

inf
k≥n

Bk, and

lim sup
n→∞

Bn = lim
n→∞

(

sup
k≥n

Bn

)

=

∞
⋂

n=1

sup
k≥n

Bk.

1.5 Set Operations and Closure

In this section we consider some set operations and the notion of a class of sets to

be closed under certain set operations. Suppose C ⊂ P(Ω) is a collection of subsets

of Ω.

Some typical set operations include arbitrary union, countable union, finite

union, arbitrary intersection, countable intersection, finite intersection, complemen-

tation, and monotone limits. The definition of closure is as follows.

Definition 1.5.1 (Closure). Let C be a collection of subsets of Ω. C is closed under

one of the set operations listed above if the set obtained by performing the set

operation on sets in C yields a set in C.

Example Suppose Ω = R, and

C = finite intervals = {(a, b],−∞ < a ≤ b < ∞}.

C is not closed under finite unions since (1, 2] ∪ (3, 4] is not a finite interval. C is

closed under finite intersections since (a, b] ∪ (c, d] = (a ∨ c, d ∧ b].

15



Example Suppose Ω = R and C consists of the open subsets of R. Then C is not

closed under complementation since the complement of an open set if not open.

An event is a subset of the sample space. Generally, we cannot assign prob-

abilities to all subsets of the sample space Ω. We call the class of subsets of Ω

to which we know how to assign probabilities the event space. By manipulating

subsets in the event space (events) by set operations, we can get the probabilities of

more complex events. To do this, we first need to make sure that the event space is

closed under the set operations, in other words, that manipulating events under the

set operation does not carry events outside the event space. This is why we need

the idea of closure.

1.6 Fields and σ -fields

Definition 1.6.1. A field is a non-empty class of subsets of Ω closed under finite

union, finite intersection and complements. A synonym for field is algebra.

A minimal set of postulates for A to be a field is

• Ω ∈ A.

• A ∈ A implies Ac ∈ A.

• A,B ∈ A implies A ∪B ∈ A.

Definition 1.6.2. A σ−field B is a non-empty class of subsets of Ω closed under

countable union, countable intersection and complements. A synonym for σ−field

is σ−algebra.

A minimal set of postulates for B to be a σ−field is

16



• Ω ∈ B.

• B ∈ B implies Bc ∈ B.

• Bi ∈ B, i ≥ 1 implies
⋃∞

i=1
Bi ∈ B.

Example The countable/co-countable σ-field. Let Ω = R, and

B = {A ⊂ R : A is countable} ∪ {A ⊂ R : Ac is countable},

so B consists of the subsets of R that are either countable or have countable com-

plements. By checking the three postulates, we see that B is a σ-field.

Example Let F1,F2, ... be a class of subsets of Ω such that F1 ⊆ F2 ⊆ ... and let

F =
⋃∞

n=1
Fn. We can show that if the Fn are fields, then F is also a field, by

checking the three postulates of a field. However, if the Fn are σ-fields, F is not

necessarily a σ-field, since a countable union of elements in F is not necessarily an

element in F.

From the above example, we see that a countable union of fields is a field, but

a countable union of σ-fields is not necessarily a σ-field.

By checking the three postulates, it is not hard to show that the intersection

of σ-fields is a σ-field, which we state as a corollary below.

Corollary 1.6.1. The intersection of σ-fields is a σ-field.

1.7 The σ-field Generated by a Given Class C

We call a collection of subsets of Ω a class, denoted by C.

Definition 1.7.1. Let C be a collection of subsets of Ω. The σ-field generated by C,

denoted σ(C), is a σ-field satisfying

17



• σ(C) ⊃ C

• If B′ is some other σ-field containing C, then B′ ⊃ σ(C)

The σ-field generated by a certain class C is also called a minimal σ-field over

C.

Proposition 1.7.1. Given a class C of subsets of Ω, there is a unique minimal

σ-field containing C.

The proof for the above proposition is abstract and non-constructive. The

idea is to take the intersection of all σ-fields that contain C and claim that the

intersection σ-field is the minimal σ-field.

In probability, C will be a class of events to which we know how to assign

probabilities and manipulations of events in C will not carry events out of σ(C). By

measure theory, we will late see that we can assign probabilities to events in σ(C),

given that we know how to assign probabilities to events in C.

1.8 Borel Sets on the Real Line

Suppose Ω = R and let

C = {(a, b],−∞ ≤ a ≤ b < ∞}.

Define

B(R) := σ(C)

and call B(R) the Borel subsets of R. Basically, Borel sets on the real line are

σ-fields generated by half-open intervals. It can be proven that

18



B(R) = σ((a, b),−∞ ≤ a ≤ b ≤ ∞)

= σ([a, b),−∞ < a ≤ b ≤ ∞)

= σ([a, b],−∞ < a ≤ b < ∞)

= σ((−∞, x], x ∈ R)

= σ(open subsets of R)

Thus Borel sets are σ-fields of any open interval of the real line.
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Chapter 2

Probability Spaces

2.1 Basic Definitions and Properties

Now that we have the idea of σ-field, a collection of subsets in Ω with certain closure

properties, let us look at some collections of subsets in Ω with different properties.

A structure is a class of subsets in Ω that satisfies certain closure properties. The

two main structures we will study in this chapter are the π-system and the λ-system.

We start with the definition of a π-system.

Definition 2.1.1. (π-system) P is a π-system if it is closed under finite intersections:

A,B ∈ P implies A ∩B ∈ P.

The definition of a λ-system is as follows.

Definition 2.1.2. (λ-system) L is a λ-system if

• Ω ∈ L

• A ∈ L ⇒ Ac ∈ L

21



• n 6= m,An

⋂

Am = ∅, An ∈ L ⇒
⋃

n An ∈ L

We see that a λ-system and a σ-field share the same postulates except the last

one. A λ-system requires closure under countable disjoint unions while a σ-field

requires closure under arbitrary countable unions, which is stricter. Thus a σ-field

is always a λ-system, but not vice versa.

Definition 2.1.3. A class S of subsets of Ω is a semialgebra if the following postulates

hold:

• ∅,Ω ∈ S.

• S is a π-system; that is, it is closed under finite intersections.

• If A ∈ S, then there exist some finite n and disjoint sets C1, ..., Cn, with each

Ci ∈ S such that Ac =
∑n

i=1
Ci.

Example Let Ω = R, and suppose S consists of intervals including ∅, the empty

set:

S = {(a, b] : −∞ ≤ a ≤ b ≤ ∞}.

If I1, I2 ∈ S, then I1
⋂

I2 is an interval and in S and if I ∈ S, then Ic is a

union of disjoint intervals in S.

2.2 Dynkin’s Theorem

Now that we have the definitions of λ and π systems, we are ready to state Dynkin’s

theorem.
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Theorem 2.2.1. (a) If P is a π-system and L is a λ-system such that P ⊂ L, then

σ(P) ⊂ L.

(b) If P is a π-system

σ(P) = L(P)

that is, the minimal σ-field over P equals the minimal λ-system over P.

Part (b) can be implied from part (a). Suppose (a) is true, recall that P ⊂

L(P), by (a) we have σ(P) ⊂ L(P). Remember that a σ-field is always a λ-system.

So a σ-field over P must include the λ-system over the same P, or, σ(P) ⊃ L(P).

Therefore (b) follows from (a).

2.3 Probability Spaces

Now let us get back to our σ-fields and define the probability space.

Definition 2.3.1. A probability space is a triple (Ω,B, P ) where

• Ω is the sample space corresponding to outcomes of some experiment.

• B is the σ-field of subsets of Ω. These subsets are called events.

• P is a probability measure; that is, P is a function with domain B and range

[0, 1] such that

(i) P (A) ≥ 0 for all A ∈ B

(ii) P is σ-additive: If {An, n ≥ 1} are events in B that are disjoint, then

P (
∞
⋃

n=1

An) =
∞
∑

n=1

P (An).

(iii) P (Ω) = 1.
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Let us look at some consequences of the definition of a probability measure.

1. P (Ω) = 1 = P (A ∪ Ac) = P (A) + P (Ac) ⇒ P (Ac) = 1− P (A).

2. P (∅) = P (Ωc) = 1− P (Ω) = 1− 1 = 0.

3.

P (A ∪B) = P (A ∩Bc ∪B ∩ Ac ∪A ∩B)

= P (A ∩Bc + P (B ∩Ac + P (A ∩B)))

= P (A)− P (A ∩B) + P (B)− P (A ∩B) + P (A ∩B)

= P (A) + P (B)− P (A ∩B).

4. The inclusion-exclusion formula also follows from the definition of a prob-

ability space: If A1, ..., An are events, then

P (

n
⋃

j=1

Aj) =

n
∑

j=1

P (Aj)−
∑

1≤i<j≤n

P (Ai ∩Aj)

∑

1≤i<j<k≤n

P (Ai ∩ Aj ∩ Ak)− ...

(−1)n+1P (A1 ∩ ... ∩ An).

5. Since P (B) = P (A) + P (B\A) ≥ P (A), A ⊂ B ⇒ P (A) ≤ P (B).

6. Since

∞
⋃

n=1

An = A1 +Ac
1A2 +A3A

c
1A

c
2 + ...,

P (

∞
⋃

n=1

An) = P (A1 +Ac
1A2 +A3A

c
1A

c
2 + ...)

= P (A1) + P (Ac
1A2) + P (A3A

c
1A

c
2) + ...)

≤ P (A1) + P (A2) + P (A3) + ... by (5).

7. The measure P is continuous for monotone sequences in the sense that

(i) If An ↑ A, where An ∈ B, then P (An) ↑ P (A).

(ii)If An ↓ A, where An ∈ B, then P (An) ↓ P (A).

8. Fatou’s Lemma:
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P (lim inf
n→∞

An) ≤ lim inf
n→∞

P (An)

≤ lim sup
n→∞

P (An)

≤ P (lim sup
n→∞

An).

9. A stronger continuity result follows from Fatou’s Lemma:

If An → A, then P (An) → P (A).

2.4 Uniqueness of Probability Measures

In this section we will see that a probability measure is uniquely determined by its

cumulative distribution function. We first start with the following proposition.

Proposition 2.4.1. Let P1, P2 be two probability measures on (Ω,B). The class

L := {A ∈ B : P1(A) = P2(A)}

is a λ-system.

Proof. Since P1(Ω) = P2(Ω) = 1, Ω ∈ L.

Let A ∈ L, then P1(A) = P2(A), then P1(A
c) = 1 − P1(A) = 1 − P2(A) =

P2(A
c). Thus A ∈ L ⇒ Ac ∈ L.

Finally, let {Aj} be a mutually disjoint sequence of events in L, then P1(Aj) =

P2(Aj) for all j. Hence,

P1(
⋃

j

Aj) =
∑

j

P1(Aj) =
∑

j

P2(Aj) = P2(
⋃

j

Aj)

so that

⋃

j

Aj ∈ L.
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Corollary 2.4.2. If P1, P2 are two probability measures on (Ω,B) and if P is a

π-system such that

∀A ∈ P : P1(A) = P2(A),

then

∀B ∈ σ(P) : P1(B) = P2(B).

Proof. Recall that L := {A ∈ B : P1(A) = P2(A)} is a λ-system and note that

L ⊃ P clearly. By Dynkin’s theorem, we have L ⊃ σ(P). Thus ∀B ∈ σ(P) :

P1(B) = P2(B).

Corollary 2.4.3. Let Ω = R. Let P1, P2 be two probability measures on (R,B(R))

such that their cumulative distribution functions are equal:

∀x ∈ R : F1(x) = P1((−∞, x]) = F2(x) = P2((−∞, x]).

Then

P1 ≡ P2

on B(R).

Proof. Let

P = {(−∞, x] : x ∈ R}.

Then P is a π-system since

(−∞, x] ∩ (−∞, y] = (−∞, x
∧

y] ∈ P.

Remember that σ(P) = B(R) as we have seen in section Borel Sets. For all

x ∈ P, we have P1(x) = P2(x). Then by the previous corollary, we have P1 =

P2, ∀x ∈ σ(P) = B(R).
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Thus, if a probability measure extends from P, a π-system, to σ(P), then it is

unique. In fact, we can say that a probability measure extends uniquely from S, a

semialgebra, to σ(S), and we state this result as the following theorem.

Theorem 2.4.4. (Combo Extension Theorem) Suppose S is a semialgebra of subsets

of Ω and that P is a σ-additive set function mapping S into [0,1] such that P (Ω) = 1.

There is a unique probability measure on σ(S) that extends P .

2.5 Measure Constructions

2.5.1 Lebesgue Measure on (0, 1]

Suppose

Ω = (0, 1],

B = B((0, 1]),

S = {(a, b] : 0 ≤ a ≤ b ≤ 1}.

Define on S the function λ : S 7→ [0, 1] by

λ(∅) = 0, and λ(a, b] = b− a.

It is easy to show that λ is finite additive, but it is also σ-additive in fact. By the

Combo Extension Theorem, we conclude that there is a unique probability measure

on σ(S) = B((0, 1]) = B that extends P .

27



2.5.2 Construction of Probability Measure on R with Given

F (x)

Now that we have Lebesgue measure constructed, let us consider the construction

of probability measure on the real line given a certain distribution function F (x) =

PF ((−∞, x]). Let us start with the definition of the left continuous inverse of F as

F←(y) = inf{s : F (s) ≥ y}, 0 < y ≤ 1}.

If we define A(y) := {s : F (s) ≥ y}, we can show some properties of A(y). Few

important ones are as follows.

F (F←(y)) ≥ y, and F←(y) > t ⇐⇒ y > F (t), and equivalently F←(y) ≤

t ⇐⇒ y ≤ F (t). Now let us define for A ∈ R,

ξF (A) = {x ∈ (0, 1] : F←(x) ∈ A}.

Now we can define PF as

PF (A) = λ(ξF (A)),

where λ is Legesgue measure on (0,1]. To check that PF is a probability distribution,

PF (−∞, x] = λ(ξF (−∞, x]) = λ{y ∈ (0, 1] : F←(y) ≤ x}

= λ{y ∈ (0, 1] : y ≤ F (x)}

= λ((0, F (x)])

= F (x).
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Chapter 3

Random Variables and

Measurable Maps

We start this chapter with the definition of a random variable. A random vari-

able is a real valued function with domain Ω which has an extra property called

measurability.

The sample space Ω might potentially carry a lot of information because it

contains all of the outcomes of an experiment. Sometimes we only want to focus

on some aspects of the outcomes. A random variable helps us summarizing the

information contained in Ω.

Example Imagine a sequence of coin flips. Ω = {(ω1, ..., ωn) : ωi = 0 or 1, i =

1, ..., n}, where 0 means a head and 1 means a tail. The total number of tails

appeared during the experiment is

X((ω1, ..., ωn)) = ω1 + ...+ ωn,

29



a function with domain Ω.

3.1 Inverse Maps

Suppose Ω and Ω′ are two sets. (Frequently Ω′ = R). Suppose

X : Ω 7→ Ω′,

meaning X is a function with domain Ω and range Ω′. Then X determines a

function

X−1 : P(Ω′) 7→ P(Ω)

defined by

X−1(A′) = {ω ∈ Ω : X(ω) ∈ A′}

for A′ ⊂ Ω′. We will see that X−1 preserves complementation, union and intersec-

tion. For A′ ⊂ Ω′, A′t ⊂ Ω′, where T is an arbitrary index set, we have:

• X−1(∅) = ∅, X−1(Ω′) = Ω.

• X−1(A′c) = (X−1(A′))c.

• X−1(
⋃

t∈T

A′t) =
⋃

t∈T

X−1(A′t), and, X
−1(

⋂

t∈T

A′t) =
⋂

t∈T

X−1(A′t).

If C′ ⊂ P(Ω′) is a class of subsets of Ω′, we define

X−1(C′) := {X−1(C′) : C′ ∈ C′}.

We are now ready to state and prove the following proposition.

Proposition 3.1.1. If B′ is a σ-field of subsets of Ω′, then X−1(B′) is a σ-field of

subsets of Ω.
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Proof. We will verify the three postulates of a σ-field for X−1(B′).

(i) Since Ω′ ∈ B′, we have

X−1(Ω′) = Ω ∈ X−1(B′).

(ii) If A′ ∈ B′, then (A′)c ∈ B′, and so if X−1(A′) ∈ X−1(B′), we have

X−1((A′)c) = (X−1(A′))c ∈ X−1(B′)

by the fact that X−1 preserves complementation.

(iii) If X−1(B′n) ∈ X−1(B′), then

⋃

n

X−1(B′n) = X−1(
⋃

B′n) ∈ X−1(B′)

by the fact that X−1 preserves union.

In fact, a stronger result follows.

Proposition 3.1.2. If C′ is a class of subsets of Ω′ then

X−1(σ(C′)) = σ(X−1(C′)).

3.2 Measurable Maps

We call (Ω,B), which is a pair of set and the σ-field of subsets in it, a measurable

space in the sense that it is ready to have a measure assigned to it. If we have two

measurable spaces (Ω,B) and (Ω′,B′), then a map

X : Ω → Ω′

is called measurable if
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X−1(B′) ⊂ B.

We call X a random element of Ω′ and denote it as

X : (Ω,B) 7→ (Ω′,B′).

As a special case, when (Ω′,B′) = (R,B(R)), we call X a random variable.

3.3 Induced Probability Measures

Let (Ω,B, P ) be a probability space and suppose

X : (Ω,B) 7→ (Ω′,B′)

is measurable. For A′ ∈ Ω′, we define

[X ∈ A′] := X−1(A′) = {ω : X(ω) ∈ A′}, and

P ◦X−1(A′) = P (X−1(A′)).

Then P ◦X−1 is a probability on (Ω′,B′) called the induced probability. Let us now

verify that P ◦X−1 is a probability measure on B′.

Proof. 1. P ◦X−1(Ω′) = P (Ω) = 1

2. P ◦X−1(A′) ≥ 0, for all A′ ∈ B′.

3. If {A′n, n ≥ 1} are disjoint,

P ◦X−1(
⋃

n

A′n) = P (
⋃

n

X−1(A′n))

=
∑

n

P (X−1(A′n))

=
∑

n

P ◦X−1(A′n)

since {X−1(A′n)}n≥1 are disjoint in B.
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Thus we showed that P ◦ X−1 is a probability measure on (Ω′,B′). As a

special case, if X is a random variable, P ◦X−1 is the probability measure induced

on R by

P ◦X−1(−∞, x] = P [X ≤ x] = P (ω : X(ω) ≤ x).

Since P knows how to assign probabilities to elements in B, by the concept if

measurability, we know how to assign probabilities to B′.

Example Let us consider an example of tossing two independent dice. Let

Ω = {(i, j) : 1 ≤ i, j ≤ 6}.

Define

X : Ω 7→ {2, 3, 4, ..., 12} =: Ω′

by

X((i, j)) = i+ j.

Then

X−1({4}) = {X = 4} = {(1, 3), (3, 1), (2, 2)} ⊂ Ω.

We can now assign probabilities to elements in Ω′. For example,

P (X = 4) = P (ω : X(ω) = 4)

= P (ω ∈ {(1, 3), (3, 1), (2, 2)})

= 1

6
× 1

6
× 3

= 3

36
.

Recall that the definition of measurability requires X−1(B) ⊂ B′. In fact, we

can show that it suffices to check that X−1 is well behaved on a smaller class than

B′.

33



Proposition 3.3.1. (Test for measurability) Suppose

X : Ω 7→ Ω′

where (Ω,B) and (Ω′,B′) are two measurable spaces. Suppose C′ generates B′, that

is,

B′ = σ(C′).

Then X is measurable if and only if

X−1(C′) ⊂ B.

Proof. Suppose

X−1(C′) ⊂ B.

Notice that B is a σ-field, and it contains X−1(C′). Recall that σ(X−1(C′)) is the

smallest σ-field that contains X−1(C′). By minimality, we must have σ(X−1(C′)) ⊂

B.

Recall a previous result:

X−1(σ(C′)) = σ(X−1(C′)).

Thus,

σ(X−1(C′)) = X−1(σ(C′)) = X−1(B′) ⊂ B,

which is the definition of measurability.

Corollary 3.3.2. (Special case of random variable) The real valued function

X : Ω 7→ R

is a random variable if and only if
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X−1((−∞, λ]) = [X ≤ λ] ∈ B, ∀λ ∈ R.

Proof. Since σ((−∞, λ], λ ∈ R) = B(R), the corollary follows directly from the

proposition for the general case.

3.4 σ-Fields Generated by Maps

Let X : (Ω,B) 7→ (R,B(R)) be a random variable. The σ-field generated by X ,

denoted as σ(X), is defined as

σ(X) = X−1(B(R)).

Another equivalent definition of σ(X) is

σ(X) = {[X ∈ A], A ∈ B(R)}.

Generally, if X is map, namely,

X : (Ω,B) 7→ (Ω′,B′),

we define

σ(X) = X−1(B′).

Remember the definition of measurability, if σ(X) = X−1(B′) ⊂ F, where F

is a sub-σ-field of B, we say X is measurable with respect to F.

Let us first look at an extreme example of the concept of σ-field induced from

a random variable.

Example Let X(ω) ≡ 17 for all ω. Then

σ(X) = {[X ∈ B], B ∈ B(R)} = {∅,Ω}.
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Since X(ω) ≡ 17, there are only two cases of B. Either B contains 17 or it does

not.

Let us consider a more general example now.

Example Suppose X = IA for some A ∈ B. Note X has range {0,1}.

X−1({0}) = Ac, and X−1({1}) = A.

σ(X) = {[X ∈ B], B ∈ B(R)} = {∅,Ω, A,Ac}.

There are four cases of B to consider:

• 1 ∈ B, 0 6∈ B,

• 1 ∈ B, 0 ∈ B,

• 1 6∈ B, 0 6∈ B,

• and 1 6∈ B, 0 6∈ B.

Let us look at a more complex and useful example.

Example Suppose a random variable X has range {a1, ..., ak}, where the a’s are

distinct. Define

Ai := X−1({ai}) = [X = ai].

Then {Ai} partitions Ω. We can then represent X as

X =

k
∑

i=1

aiIAi
, and

σ(X) = σ(A1, ..., Ak).
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Chapter 4

Independence

In probability, independence is an important property that says the occurrence or

non-occurrence of an event has no effect on the occurrence or non-occurrence of an

independent event. This intuition works well in most cases but sometimes it fails

to agree with technical definitions of independence in some examples.

In this chapter we look at a series of definitions of independence with increasing

sophistication.

4.1 Two Events, Finitely Many Events, Classes,

and σ-Fields

For two events only, the definition of independence is stated as follows.

Definition 4.1.1. (Independence for two events) Suppose (Ω,B, P ) is a fixed prob-

ability space. Events A,B ∈ B are independent if

P (A ∩B) = P (A)P (B).
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For finitely many events, we have the following result.

Definition 4.1.2. (Independence for finitely many events) The events A1, ..., An(n ≥

2) are independent if

P (
⋂

i∈I

Ai) =
∏

i∈I

P (Ai), for all finite I ⊂ {1, ..., n}.

We then define the meaning of independent classes.

Definition 4.1.3. (Independent classes) Let Ci ⊂ B, i = 1, ..., n. The classes Ci are

independent, if for any choice A1, ..., An, with Ai ∈ Ci, i = 1, ..., n, we have the

events A1, ..., An independent events.

A σ field is a structure that contains a certain class of subsets. The indepen-

dence of σ-fields is defined below.

Definition 4.1.4. (Independent σ-Fields)

If for each i = 1, ..., n, Ci is a non-empty class of events satisfying

• Ci is a π-system,

• Ci, i = 1, ..., n are independent,

then,

σ(C1), ..., σ(Cn)

are independent.

4.2 Arbitrary Index Space

In this section, we introduce the concept of independence on an arbitrary index

space.
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Definition 4.2.1. (Arbitrary number of independent classes) Let T be an arbitrary

index set. The classes Ct, t ∈ T are independent families if for each finite I, I ⊂

T,Ct, t ∈ I is independent.

Corollary 4.2.1. If {Ct, t ∈ T } are non-empty π-systems that are independent,

then {σ(Ct), t ∈ T } are independent.

4.3 Random Variables

Now that we have the definition of independence of σ-fields, let us look at the

concept for random variables. The independence of random variable can be defined

in two ways. We look at both ways in this section.

4.3.1 Definition from Induced σ-Field

Definition 4.3.1. (Independent random variables) {Xt, t ∈ T } is an independent

family of random variables if {σ(Xt), t ∈ T } are independent σ-fields.

In other words, the independence of random variables are determined by the

independence of of their induced σ-fields. Let us look at an example of the indicator

functions.

Example Suppose A1, ..., An are independent events. Let IA1
, ..., IAn

be indicator

functions on A1, ..., An. For any Ai, where i ∈ {1, ..., n}, σ(IAi
) = {∅,Ω, Ai, A

c
i}.

If A1, ..., An are independent, then σ(IAi
)’s are independent. By the definition of

independence of random variables, we have IA1
, ..., IAn

independent.
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4.3.2 Definition by Distribution Functions

An alternate way of defining independence of random variables is in terms of the

distribution functions.

For a family of random variables {Xt, t ∈ T }, define

FJ (xt, t ∈ J) = P (Xt ≤ xt, t ∈ J)

for all finite subsets J ⊂ T .

Theorem 4.3.1. A family of random variables {Xt, t ∈ T } indexed by a set T, is

independent iff for all finite J ⊂ T

FJ (xt, t ∈ J) =
∏

t∈J

P (Xt ≤ xt), ∀xt ∈ R.

Corollary 4.3.2. The finite collection of random variables X1, ..., Xk is indepen-

dent iff

P (X1 ≤ x1, ..., Xk ≤ xk) =

k
∏

i=1

P (Xi ≤ xi)

for all xi ∈ R, i = 1, ..., k.

Corollary 4.3.3. The discrete random variables X1, ..., Xk with countable range R

are independent iff

P (Xi = xi, i = 1, ..., k) =

k
∏

i=1

P (Xi = xi),

for all xi ∈ R, i = 1, ..., k.

4.4 Borel-Cantelli Lemma

In this section we study the Borel-Cantelli Lemma, which is useful for proving

convergence.
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4.4.1 First Borel-Cantelli Lemma

Proposition 4.4.1. Let An be any events. If

∑

n

P (An) < ∞,

then

P ([Ani.o.]) = P (lim supn→∞An) = 0.

Proof. Since

∑

n

P (An) = P (A1) + P (A2) + ...

=

n−1
∑

j=1

P (Aj) +

∞
∑

j=n

P (Aj)

< ∞,

we have

∞
∑

j=n

P (Aj) =
∑

n

P (An)−
n−1
∑

j=1

P (Aj)

→ 0

as n → ∞. Now, by the definition of lim sup,

P ([Ani.o.]) = P ( lim
n→∞

⋃

j≥n

Aj)

= lim
n→∞

P (
⋃

j≥n

Aj) by the continuity of P

≤ lim sup
n→∞

∞
∑

j=n

P (Aj) by subadditivity of Aj

= 0,

since
∞
∑

j=n

P (Aj) → 0 as n → ∞.
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4.4.2 Second Borel-Cantelli Lemma

The previous result does not require independence among events, but the Second

Borel-Cantelli Lemma does require independence.

Proposition 4.4.2. If An is a sequence of independent events, then

P ([Ani.o.]) =















0 iff
∑

n P (An) < ∞,

1 iff
∑

n P (An) = ∞.

Proof of the above lemma can be found on page 103 in A Probability Path by

Sidney I. Resnick.
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Chapter 5

Integration and Expectation

In this chapter we study the expectation of a random variable and its relation to

the Riemann integral.

5.1 Simple Functions

To study the expectation, we first need the definition of a simple function.

Definition 5.1.1. Give a probability space (Ω,B, P ),

X : Ω 7→ R

is simple if it has a finite range.

If a simple function is B/B(R) measurable, the it can be written in the form

X(ω) =
k

∑

i=1

aiIAi
(ω),

where ai’s are the possible values of X and Ai := X−1({ai}) partitions Ω.
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5.2 Measurability

Let E be the set of all simple functions on Ω.

We then have a result that shows that any nonnegative measurable function

can be approximated by simple functions.

Theorem 5.2.1. (Measurability Theorem) Suppose X(ω) ≥ 0, for all ω. Then

X ∈ B/B(R) (X is measurable) iff there exist simple functions Xn ∈ ε and

0 ≤ Xn ↑ X.

5.3 Expectation of Simple Functions

Definition 5.3.1. Suppose X is a simple random variable of the form

X =

n
∑

i=1

aiIAi

where |ai| < ∞, and
∑k

i=1
Ai = Ω. Then for X ∈ E, we have

E[X ] ≡
∫

XdP =:

k
∑

i=1

aiP (Ai).

Notice that the definition agrees with our intuition that, for discrete random

variables, the expectation is the weighted average of all its possible values, according

to the probabilities assigned to each value.

5.4 Properties

Some nice properties arise from the above definition.

1. E[1] = 1 and E[IA] = P (A), since E[IA] = 1× IA + 0× IAc .

2. X ≥ 0 ⇒ E[X ] ≥ 0.
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Recall the definition of E[X ] =

k
∑

i=1

aiP (Ai). If ai ≥ 0 for all i, then E[X ] ≥ 0.

3. The expectation is linear, or, E[αX + βY ] = αE[X ] + βE[Y ] for α, β ∈ R.

4. The expectation is monotone on ε in the sense that for X,Y ∈ E, if X ≤ Y ,

then E[X ] ≤ E[Y ].

To show this, note that Y −X ≥ 0. By 2, we have E[Y −X ] ≥ 0. By 3, we

have E[Y −X ] = E[Y ]− E[X ] ≥ 0 ⇒ E[X ] ≤ E[Y ].

5. If Xn, X ∈ E and either Xn ↑ XorXn ↓ X , then

E[Xn] ↑ E[X ] or E[Xn] ↓ E[X ].

5.5 Monotone Convergence Theorem

Theorem 5.5.1. (Monotone Convergence Theorem) If

0 ≤ Xn ↑ X,

then

E[Xn] ↑ E[X ],

or equivalently,

E[ lim
n→∞

↑ Xn] = lim
n→∞

↑ E[Xn].

Corollary 5.5.2. (Series Version of MCT)

If ξj ≥ 0 are non-negative random variables for n ≥ 1, then

E[
∞
∑

j=1

ξj ] =
∞
∑

j=1

E[ξj ].

Proof. We can see that this corollary derives directly from MCT:

45



E[

∞
∑

j=1

ξj ] = E[ lim
n→∞

n
∑

j=1

ξj ]

= lim
n→∞

↑ E[

n
∑

j=1

ξj ]

= lim
n→∞

↑
n
∑

j=1

E[ξj ]

=

∞
∑

j=1

E[ξj ].

5.6 Fatou’s Lemma

Theorem 5.6.1. (Fatou’s Lemma) If there exists Z ∈ L1 and Xn ≥ Z, then

E[lim inf
n→∞

Xn] ≤ lim inf
n→∞

E[Xn].

Corollary 5.6.2. (More Fatou) If there exists Z ∈ L1 and Xn ≤ Z, then

E[lim sup
n→∞

Xn] ≥ lim sup
n→∞

E[Xn].

5.7 Dominated Convergence Theorem

We now present a stronger convergence result that arises from Fatou’s Lemma.

Theorem 5.7.1. (Dominated Convergence Theorem) If

Xn → X,

and there exists a dominating random variable Z ∈ L1 such that

|Xn| ≤ Z,

then

E[Xn] → E[X ].

Proof. Since
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−Z ≤ Xn ≤ Z,

both parts of Fatou Lemma apply. We get

E[X ] = E[lim inf
n→∞

Xn]

≤ lim inf
n→∞

E[Xn]

≤ lim sup
n→∞

E[Xn]

≤ E[lim sup
n→∞

Xn]

= E[X ].

Thus,

lim inf
n→∞

E[Xn] = lim sup
n→∞

E[Xn] = lim
n→∞

E[Xn] = E[X ].

5.8 The Riemann vs Lebesgue Integral

5.8.1 Definition of Lebesgue Integral

Consider

∑

i[ inf
ω∈Ai

f(ω)]λ(Ai).

Notice that it undertakes a very similar form to its simple function counterpart.

The Lebesgue integral is defined as the supremum of the sums:

∫

fdλ = sup
∑

i

[ inf
ω∈Ai

f(ω)]λ(Ai).

Alternatively, it can also be define as the infimum of the sums:

inf
∑

i

[ sup
ω∈Ai

f(ω)]λ(Ai).

For general f , consider its positive part
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f+(ω) =















f(ω) if 0 ≤ f(ω) ≤ ∞,

0 if −∞ ≤ f(ω) ≤ 0.

and its negative part,

f−(ω) =















−f(ω) −∞ ≤ f(ω) ≤ 0,

0 if if 0 ≤ f(ω) ≤ ∞.

These functions are nonnegative measurable, and f = f+−f−, |f | = f++f−.

Thus the general integral is defined by

∫

fdλ =
∫

f+dλ−
∫

f−dλ.

Similarly, the general expectation for any random variable is defined as

E[X ] = E[X+ −X−] = E[X+]− E[X−].

5.8.2 Comparison with Riemann Integral

We are familiar with computing expectations as Riemann integral from introductory

probability course. Namely,

E[X ] =
∫

xf(x)dx.

How does the Riemann integral compare with the Legesgue integral?

Theorem 5.8.1. (Riemann and Lebesgue) Suppose f : (a, b] 7→ R and
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1. f is B((a, b])/B(R) measurable,

2. f is Riemann-integrable on (a, b].

Let λ be Lebesgue measure on (a, b]. Then

The Riemann integral of f equals the Lebesgue integral.

For Legesgue integral, the linearity, monotonicity, monotone convergence the-

orem, Fatou’s lemma, and dominated convergence theorem still hold. Since the

Riemann integral can only integrate functions that are bounded, and the Lebesgue

integral does not have such restriction, the Lebesgue integral can be applied to more

functions.
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Chapter 6

Martingales

6.1 The Radon-Nikodym Theorem

Let (Ω,B) be a measurable space. Let µ and λ be positive bounded measures on

(Ω,B). We say that λ is absolutely continuous (AC) with respect to µ, written

λ << µ, if µ(A) = 0 implies λ(A) = 0.

In order to study the concept of conditional expectation, we first need the

Randon-Nikodym Theorem.

Theorem 6.1.1. (Radon-Nikodym Theorem)

Let (Ω,B, P ) be the probability space. Suppose ν is a positive bounded measure

and ν << P . Then there exists an integrable random variable X ∈ B, such that

ν(E) =
∫

E
XdP , for all E ∈ B

X is unique and is written

X =
dν

dP
.
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A corollary follows from the theorem.

Corollary 6.1.2. If µ, ν are σ-finite measures (Ω,B), there exists a measurable

X ∈ B such that

ν(A) =
∫

A
Xdµ, ∀A ∈ B

iff

ν << µ.

The next corollary is important for the definition of conditional expectation.

Corollary 6.1.3. Suppose Q and P are probability measures on (Ω,B) such that

Q << P . Let G ⊂ B be a sub-σ-field. Let Q|G, P |G be the restrictions of Q and P

to G. Then in (Ω,G)

Q|G << P |G

and

dQ|G

dP |G
is G-measurable.

6.2 Conditional Expectation

Suppose X ∈ L1(Ω,B, P ) and let G ⊂ B be a sub-σ-field. Then there exists a

random variable E[X |G], called the conditional expectation of X with respect to G,

such that

(i)E[X |G] is G-measurable and integrable.

(ii) For all G ∈ G we have

∫

G
XdP =

∫

G
E[X |G]dP .
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To show this, define

ν(A) =
∫

A
XdP,A ∈ B.

Then ν is finite and ν << P . So

ν|G << P |G.

By Radon-Nikodym theorem, there exists random variable X |G such that

E[X |G] =
dν|G

dP |G
.

So for all G ∈ G

ν|G(G) = v(G) =
∫

G

dν|G

dP |G
dP |G =

∫

G

dν|G

dP |G
dP =

∫

G
E[X |G]dP .

6.3 Martingales

Loosely speaking, a martingale is a stochastic process such that the conditional

expected value of an observation at some time t, given all the observations up to

some earlier time s, is equal to the observation at that earlier time s.

Next, we give the technical definition of a martingale.

Suppose we are given integrable random variables {Xn, n ≥ 0} and σ-fields

{Bn, n ≥ 0} which are sub σ-fields of B. Then {(Xn,Bn), n ≥ 0} is a martingale if

(i) Information accumulates as time progresses in the sense that

B0 ⊂ B1 ⊂ B2 ⊂ ... ⊂ B.

(ii) Xn is adapted in the sense that for each n, Xn ∈ Bn, or, Xn is Bn-

measurable.

(iii) For 0 ≤ m < n,

E[Xn|Bm] = Xm.
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6.3.1 Submartingale

If in (iii) equality is replaced by ≥, then {Xn} is called a submartingale. In other

words, things are ”getting better” on average.

6.3.2 Supermartingale

Similarly, if the equality is replaced by ≤, then {Xn} is called a supermartingale.

In other words, things are ”getting worse” on average.

6.3.3 Remarks

A few notes on the definition of martingale include:

1. {Xn} is a martingale if it is both a sub and supermartingale.

2. {Xn} is a supermartingale iff {−Xn} is a submartingale.

3. Postulate (iii) in the definition could be replace by

E[Xn+1|Bn] = Xn, ∀n ≥ 0.

which states that the expectation of state Xn+1, given the values of all the past

states, stays the same as the value of state Xn.

4. If {Xn} is a martingale, then E[Xn] is constant. In the case of a submartin-

gale, the mean increases, and for supermartingale, it decreases. Let us consider a

simple example of martingale.

Example Let X1, X2, ... be independent variables with zero means. We claim that

the sequence of partial sums Sn = X1 + ... + Xn is a martingale (with respect to

{Xn}).

To see this, note that
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E[Sn+1|X1, ..., Xn] = E[Sn +Xn+1|X1, ..., Xn]

= E[Sn|X1, ..., Xn] + E[Xn+1|X1, ..., Xn]

= Sn, by independence.

6.4 Martingale Convergence

In this section we study the convergence property of a martingale. Two important

types of convergence are almost sure convergence and mean square convergence.

We define both of them as follows.

Definition 6.4.1. (Almost Sure Convergence) Suppose we are given a probability

space (Ω,B, P ). We say that a statement about random elements holds almost

surely, if there exists an event N ∈ B with P (N) = 0 such that the statement holds

if ω ∈ N c.

Definition 6.4.2. (Mean Square Convergence) If we have a sequence of random vari-

ables X1, ...Xn. We Xn converges in mean squares to X if E[(Xn −X)2] converges

to 0, as n → ∞.

We are now ready to state the martingale convergence theorem.

Theorem 6.4.1. (Martingale Convergence Theorem)

If {Sn} is a martingale with E[S2
n] < M < ∞ for some M and all n, then

there exist a random variable S such that Sn converges to S almost surely and in

mean square.

This theorem has a more general version that deals with submartingales.

Theorem 6.4.2. (Submartingale Convergence Theorem)

If {(Xn,Bn), n ≥ 0} is a submartingale satisfying
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sup
n∈N

E[X+
n ] < ∞,

then there exists X∞ ∈ L1 such that

Xn → X∞.

The submartingale convergence theorem has a lot of applications including

branching processes.

6.5 Branching Processes

A branching process is a stochastic process that models a population in which

each individual in generation n produces some random number of individuals in

generation n+ 1.

Each individual reproduces according to an offspring distribution. Let Zn be

the number of individuals in generation n.Then Zn =

Zn−1
∑

k=1

Xk where Xk’s are i.i.d.

with the offspring distribution. Let µ to be the mean of the offspring distribution,

then it can be shown that

E[Zn] = µn.

Let Wn =
Zn

E[Zn]
.

Since

E[Zn+1|Z1, ..., Zn] = Znµ,

we have

E[Wn+1|Z1, ..., Zn] = E[
Zn+1

E[Zn+1]
|Z1, ..., Zn]

=
Zn

µn

= Wn.
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Thus {Wn} is a martingale.

It can be shown that

E[W 2
n ] = 1 +

σ2(1− µ−n)

µ(µ− 1)
if µ 6= 1, where σ2 = Var [Z1].

Thus, by martingale convergence theorem, we have

Wn =
Zn

µn
→ Wa.s., where W is a finite random variable.

6.6 Stopping Time

In both real life and the mathematical world, we sometimes come across events that

only depend on the past and the present, not the future. For example, the stock

price fluctuations do not rely on the prices in the future.

To state this property mathematically, let us consider a probability space

(Ω,B, P ). Let B = {B0, ...,Bn} be a filtration. We think of Bn as representing the

information which is available at time n, or more precisely, the smallest σ-field with

respect to which all observations up to and including time n are measurable.

The definition of stopping time is as follows.

Definition 6.6.1. A random variable T taking values in {0, 1, 2...}∪ {∞} is called a

stopping time if {T = n} ∈ Bn for all n ≥ 0.

6.6.1 Optional Stopping

Theorem 6.6.1. (Optional Stopping Theorem) Let (Y,B) be a martingale and let

T be a stopping time. Then E[YT ] = E[Y0] if:

• P (T < ∞) = 1,
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• E|Yt| < ∞, and

• E[YnI{T>n}] → 0 as n → ∞.

The theorem states that, under the three above conditions, the expected value

of a martingale at a stopping time is equal to its initial value.
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