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Laboratory studies of reproductive systems have long supported the idea that neural and/or muscular
structures used frequently are often enhanced in size. However, field studies integrating behavioral,
morphological, and hormonal data are needed to better understand relationships in natural environments.
We examined a natural population of green anole lizards (Anolis carolinensis) to determine whether variation
in reproductive morphology both within and between the sexes paralleled differences in courtship and
copulatory behaviors and circulating testosterone levels. Display rate in males was positively correlated with
the sizes of the cartilage supporting the dewlap (a throat fan used in courtship and aggression) and renal sex
segments (portions of the kidney that function similarly to the mammalian prostate), but correlated
negatively with seminiferous tubule size. Plasma testosterone inmales was negatively correlated with display
behavior and was not correlated with any measures of morphology. Females, which display rarely, exhibited
no relationships between morphology and frequency of behavior. Comparisons between the sexes show that
males have consistently larger courtship and copulation morphologies than females, even when accounting
for sex differences in body size. The results not only support the idea of relationships between increased
function and enhanced structures, but also show the complexity of mechanistic interactions associated with
reproductive behavior in wild animals.

© 2011 Elsevier Inc. All rights reserved.

1. Introduction

Successful reproduction requires a suite of specialized morpho-
logical and physiological traits, as well as the performance of
stereotyped behaviors demonstrating an animal's motivation to
copulate [1]. Thus, examinations of reproductive morphology and
behavior offer excellent opportunities to investigate relationships
between structure and function (reviewed in [2]). Studies across
diverse taxa document that frequently-used reproductive structures,
particularly required muscles and components of the nervous system,
are often larger than those used more rarely. This relationship is
clearly observed in comparisons between the sexes. For example, in
species where males perform complex vocal courtship displays but
females do not [e.g., zebra finches (Taeniopygia guttata), African
clawed frogs (Xenopus laevis), and midshipmen fish (Poricthys

notatus)], the neuromuscular structures supporting these behaviors
are larger in males than females [3–7]. Both developmental
organization and adult maintenance of these sexual dimorphisms
are often facilitated by steroid hormones (reviewed in [8]).

Many studies have examined the relationships between repro-
ductive behavior and morphology in the lab (reviewed in multiple
chapters of [9]), and many others have investigated associations
between sex steroid hormone levels and behavior in the lab [e.g., 10]
or field [e.g., 11–13]. However, relatively little work in reproductive
biology has focused on the associations among neuromuscular,
endocrine, and behavioral traits within individual animals in their
natural habitats.

The green anole (Anolis carolinensis) is an arboreal lizard that
reproduces seasonally, from approximately April to July in the
southeastern US [14–16]. Decades of field research on this species
has provided extensive information regarding its behavior and
reproductive ecology [e.g., 17,18]. During the breeding season,
males court females and defend territories with displays that include
head-bobs, push-ups, and extensions of a reddish-pink throat fan
called a dewlap [19] (Fig. 1). Females havemuch smaller dewlaps than
males, and they also perform these displays to defend territories, but
at much lower rates than males [20,21]. Dewlap displays are
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important for courtship and mate selection, as well as territory
defense [22,23]. Male courtship generally (and perhaps necessarily)
precedes copulation, which occurs when a male mounts a female,
maneuvers his tail under hers, everts one of two bilateral copulatory
organs called hemipenes, intromits into her cloacal vent, and
ejaculates [16]. These male reproductive behaviors are facilitated by
increased androgen, primarily T (rather than its metabolites), during
the breeding season [24–27]. Receptivity is activated by ovarian
hormones, and while neural metabolism of T into estradiol may
facilitate this behavior [25], specific roles of circulating T itself in
females are not clear [28].

The neuromuscular structures supporting the movements of the
dewlap and hemipenes have been well-characterized in green anoles
(reviewed in [28]). The dewlap extends when the ceratohyoid (CH)
muscles on each side of the throat contract, causing the second
ceratobranchial cartilage to bow out, revealing the flap of red skin of
the dewlap [29,30]. Movements of the hemipenes are controlled by
two muscles, the transversus penis (TPN) and the retractor penis
magnus (RPM). The former wraps over the hemipenis and facilitates
its eversion, and the latter is attached to the caudal end of each
hemipenis as it lies in the tail and causes its retraction [31].

The goal of the present study was to build on and begin to merge
existing literatures on the behavioral ecology (from the field) and
relationships between behavior and morphology (from the lab) in
green anoles. While field studies examine animals in their natural
environments, the complexity of these environments may limit our
ability to identify causal relationships among traits; yet, the simpler
environments of laboratory studies may constrain our ability to
extrapolate findings to the natural world. Thus, these two approaches
are complementary. Although it was not the primary focus of our
experiment, we evaluated circulating T in males to begin to assess
whether relationships between this hormone and behavior, and
particularly T and morphology, detected in the lab were observed in
unmanipulated wild animals.

2. Materials and methods

2.1. Field data collection

We conducted behavioral observations on adult green anole
lizards (18 males, snout-vent-length [SVL]=58–68 mm, and 20
females, SVL=42–59 mm) in Jean Lafitte National Park, Barataria
Preserve in Marrero, Louisiana (N 29°47.22, W 90° 06.53) in May
2008. We located animals between 08:30 and 18:00 by walking
through the forest until finding an apparently undisturbed lizard.
During each observation (males: 64–178 min, average 131 min;
females: 22–180 min; average 113 min), we recorded all display
behaviors (dewlap extensions, head-bobs, and push-ups) and
determined the proportion of time the lizard displayed during the
observation period. Because these displays do not obviously differ
with social context (territorial or courtship displays), any dewlap
extension was counted as a display bout. We also recorded all
locomotor behaviors (crawls, runs, and jumps), prey captures, and
copulations. As copulation was observed rarely, we were unable to
include it as a variable in subsequent statistical analyses. Immediately
following each observation, we captured the lizard with a noose.
Because the primary focus of this study was to elucidate naturally
occurring relationships between behavior and morphology, if obser-
vations of other lizards were in progress, we kept the captured lizard
in an air-filled clear plastic bag until we could process it. Lizards were
held for an average of 56 min (maximum of 3 h).

For each lizard, the same person took the following external
measurements: SVL (measured with a ruler), mass (using a Pesola
spring scale), and the length of the second ceratobranchial cartilage
(hereafter, ‘cartilage’) as seen under the skin (measured with digital
calipers). Animals were then rapidly decapitated and the brain,
kidneys, and gonads harvested. We also collected the portion of the
throat that contains CH muscles and the portion of the tail with the
hemipenes and RPM. All tissues were immediately frozen on dry ice
until transported to Michigan State University where they were
stored at −80 °C. We collected blood from the head and trunk of
males, and stored it on ice in the field. Within 8 h, we centrifuged the
samples and froze the plasma on dry ice until it was transported to
Michigan State University and stored at −80 °C.

All procedures were performed in accordance with the guidelines
of the Michigan State University Institutional Animal Care and Use
Committee, with permits from the National Park Service (permit #
JELA-2008-SCI-003) and the Louisiana Department of Wildlife and
Fisheries (permit # LNGP-08-059).

2.2. Histology

Frozen tissues were sectioned at 20 μm, stained with hematoxylin
and eosin, and measured using Scion (NIH) Image software. For each
tissue measured, we calculated an average per individual for use in
statistical analyses.

In the throat, we measured cross-sectional areas of 25 arbitrarily
selected fibers in the CH and GGmuscles (as in [21,32,33]). The GG is a
muscle involved in tongue extension, located in the throat near the
CH. Values were obtained from one section for both the left and right
sides within the middle third of the rostro-caudal extent of each
muscle.We alsomeasured the cross-sectional area of the cartilage and
trachea in 5 tissue sections in the middle third of the muscle [21].
Because they are in the same sections of tissue but are not involved in
dewlap extension, we used the cross-sectional areas of GG fibers and
the trachea as controls for general differences in body size (as in
[21,33]).

In the tails, we measured the cross-sectional areas of 25 arbitrarily
selectedmuscle fibers of the RPM and, as a control, the caudofemoralis
(CF), a muscle involved in leg movement that lies near the hemipenes
on each side of the tail. Values for these muscles were obtained from

Fig. 1. Male A. carolinensis with extended dewlap (Jean Lafitte National Park, Barataria,
Louisiana, USA).
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one section of each side, posterior to the end of the hemipenes.
Relative hemipenis size was determined by measuring the cross-
sectional area of the tissue on each side of the tail every 400 μm from
the rostral end of the hemipenes until RPM fibers were interdigitated
with hemipenis tissue (indicating the caudal extent of the hemipenis).

We also measured the height of epithelial cells of renal sex
segments in the kidneys (which function similarly to the mammalian
prostate, and are often used as a bioassay for androgen levels [33])
and the cross-sectional areas of seminiferous tubules in the testes
using 10 arbitrarily selected structures from a single section of each
tissue type. We confirmed the reproductive status of all males by the
presence of mature sperm in the testes and of all females by the
presence of at least one yolking follicle.

2.3. Radioimmunoassay

T concentrations from male plasma samples were evaluated in
three assays. Intra-assay coefficients of variation were 10.9% or less,
and the inter-assay coefficient of variation was 12.1%. Samples were
incubated overnight at 4 °C with 1000 CPM of 3H-T (80.4 μCi/mL;
PerkinElmer, Boston, MA) for recovery determination. The samples
were extracted twice with diethyl ether and dried under nitrogen,
then reconstituted with 500 μL of 10% ethyl acetate: iso-octane and
stored at 4 °C overnight. To remove dihydrotestosterone, which has
limited effect on male sexual behaviors [26] (see Introduction), we
ran samples through columns that contained water (3 g celite:1 mL
water) and glycol phases (2 g celite:1 mL of 1:1 propylene glycol:
ethylene glycol). Neutral lipids and dihydrotestosterone were
removed with 100% iso-octane followed by 10% ethyl acetate: iso-
octane. We collected T with application of 20% ethyl acetate: iso-
octane. Fractions were dried at 35 °C under nitrogen, reconstituted in
500 μL of phosphate-buffered saline, and stored at 4 °C overnight.
Duplicate T fractions were incubated overnight with 3H-T
(5000 CPM) and antibody (1:500; #T-3003; originally produced by
Wien Laboratories, sold by Fitzgerald, Concord, MA; as in [33]).
Unbound hormone was absorbed with dextran-coated charcoal, and
the samples centrifuged at 3000 RPM for 25 min. The supernatant was
mixed with 3.5 mL of UltimaGold scintillation fluid (PerkinElmer,
Shelton, CT) and counted on a Beckman LS 6500. We then adjusted
values for volume and recovery efficiency and compared them to a
standard curve run in triplicate (0.98 to 250 pg T per tube).

2.4. Statistical analyses

We analyzed behavioral data using two different approaches. First,
we considered the rates of display, locomotor, and foraging behavior
across the entire observation period for each individual. Second, we
considered the behaviors from each behavioral “bout” separately,
with a bout defined as all behaviors that occurred between 2 min
intervals of inactivity. In this approach, we averaged the number of
display and locomotor behaviors across the bouts for each individual,
(thus calculating a mean number of behaviors per bout rather than a
rate per unit time for each individual), allowing us to weight each
social interaction equally. On average, we observed 10.6 bouts per
female, lasting 4.2 min/bout, and 12.6 bouts per male, lasting 7.6 min/
bout.

2.4.1. Analysis of total observations
Because our reproductive behavior variables in males (proportion

of time spent displaying, rate of dewlap extension, and rate of head-
bobs/push-ups) were strongly associated with one another, we used
Principal Component Analysis (PCA) to reduce these three variables
for use in subsequent analysis. The PCA extracted one principal
component, hereafter called “display behavior” PC (λ=2.74, 91.2%
variance explained) with high loadings for each of the three variables
(display time=0.92, dewlap rate=0.97, head-bobs/push-

ups=0.98). We analyzed other behavioral rates (prey capture and
total locomotion, measured as the sum of all runs, crawls, and jumps)
individually. Pearson correlations were used to determine relation-
ships among the testosterone, morphological, and behavioral
variables.

As the structures are functionally linked, we also used PCA for the
morphological traits associated with dewlap extension and for those
regulating copulation. Using male dewlap-associated morphologies,
two PCs were extracted (PC1 λ=1.49, 49.7% variance explained; PC2
λ=0.98, 32.6% variance explained). Structures that control dewlap
extension loaded on PC1 (hereafter, “dewlap morphology” PC:
cartilage area=0.84, CH muscle fiber size=0.85) and the measure
related to overall dewlap size loaded highly on PC2 (“dewlap size” PC:
cartilage length=0.97). In a PCA with copulation-related morphol-
ogies, again two PCs were extracted (PC1 λ=1.79, 44.6% variance
explained; PC2 λ=1.21, 30.2% variance explained). PC1 (hereafter,
“hemipenis morphology” PC) had high loadings for hemipenis size
(0.92) and RPM muscle fiber size (0.87), while PC2 (“ejaculate
production” PC) had high loadings for seminiferous tubule size (0.75)
and renal sex segment height (−0.72). These PCs were used in
multiple regression analyses to determine the relationships between
morphology and behavior in males.

Parallel analyses to those described for males were performed
with the data from females. A PCA on display behavioral traits
extracted one PC (λ=1.97, 65.7% variance explained) with high
loadings for each of the three variables (display time=0.92, dewlap
rate=0.60, head-bobs/push-ups=0.80). Pearson correlations among
this “female display behavior” PC, locomotion rate, prey capture rate,
and SVL were determined. We also performed a PCA on dewlap
morphologies (cartilage length and area, CH fiber size) and extracted
2 PCs (PC1 λ=1.57, 52.4% variance explained; PC2 λ=0.99, 33.0%
variance explained). PC1 (“female dewlap morphology PC”) had high
loadings for cartilage area (0.86) and CH fiber size (0.88), while PC2
(“female dewlap size PC”) had a high loading for cartilage length
(0.97). These two PCs and renal sex segment height were used in
multiple regression analyses to determine the relationships between
morphology and behavior in females.

Individual morphological traits were compared between males
and females using ANOVA. To provide additional control for body size,
these features were compared between the sexes using multivariate
analyses of covariance (MANCOVA) with SVL as the covariate, as SVL
was significantly correlated (pb0.05) with most of the traits
measured. To compare behavioral traits between males and females,
we used MANCOVA (again with SVL as the covariate) on display,
locomotion, and prey capture rates.

2.4.2. Analysis of behavioral bouts
We analyzed behavioral bout data using the rates of display and

locomotor behaviors per bout for each individual. We used the rate of
all display behaviors (the sum of dewlap extensions and head-bobs/
push-ups) per bout as our measure of display. Total locomotion rate
per bout was calculated as described above for total observational
data. Prey capture data were not considered in the bout-based
analysis, as prey capture occurred during relatively few bouts. We
then used the morphological and testosterone measures described
above, with parallel sets of analyses, to determine whether associa-
tions exist among these variables and the behavioral bout data.

3. Results

Behavioral bout data were strongly correlated with total observa-
tion data, as follows. For males, display behavior PC and displays per
behavioral bout were positively correlated (r=0.69, P=0.002), and
movement rates in total observations and behavioral bouts were
positively correlated (r=0.67, p=0.002). Also for females, positive
correlations also exist between display behavior PC and display rate
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per behavioral bout (r=0.86, Pb0.001), and movement rates in total
observations and behavioral bouts (r=0.84, pb0.001). Thus, we focus
on reporting results from total observations, indicating where
behavioral bout analyses differed.

3.1. Behavior, morphology, and testosterone in males

Males that performed more frequent displays had enhanced
morphological traits associated with dewlap extension, but this
relationship was not associated with body size (multiple regression
of display behavior PC vs. dewlap morphology PC, dewlap size PC, and
SVL: R2=0.73, F3,14=12.35, Pb0.001; Table 1, top section). Analysis
of individual dewlap morphology traits showed that cartilage length
and area, but not CH fiber size, were associated with increased display
behavior (Table 1, bottom section; Figs. 2 and 3a, b, e, and f). Analyses
using total displays per behavioral bouts gave almost identical results,
except that cartilage area was not associated with display behavior
(results not shown).

Because of the strong associations between courtship and
copulation in this species, we also examined relationships between
courtship displays and copulatory morphology. Copulatory morphol-
ogy was associated with display behavior, but not male body size
(multiple regression of display behavior PC vs. hemipenismorphology
PC, ejaculate production PC, and SVL: R2=0.51, F3,13=4.42,
P=0.024, Table 2). Follow-up correlations between the variables
with high loadings on ejaculate production PC and display behavior PC
revealed that males that displayed more frequently had larger renal
sex segments and smaller seminiferous tubules (display behavior PC
and renal sex segment, r=0.48, P=0.044, Fig. 3c and d; display
behavior PC and seminiferous tubules, r=−0.58, P=0.015, Fig. 3g
and h). Analyses using total display rates during behavioral bouts
revealed no relationships between copulation morphology and
display behavior (results not shown).

Because we were concerned that plasma T would be affected by
the holding of animals prior to euthanasia, we examined whether T
was correlated with restraint time in our dataset. No statistical
relationship was detected (r=−0.32, p=0.23). However, the two
animals held for longer than 90 min had the lowest T levels, so these
individuals were removed from subsequent analyses of T. After this
removal, there was still no relationship between T and restraint time
(r=0.03, pN0.9).

In the remaining dataset (n=14), plasma T (mean=4.01 ng/mL,
SE=0.80) was not significantly correlated with any of the morpho-
logical variables (SVL, mass, cartilage length or area, CH muscle fiber
size, RPM muscle fiber size, hemipenis area, and renal sex segment
height; all PN0.1), except perhaps seminiferous tubule area (r=0.54,
P=0.060). T was also not significantly correlated with locomotor or
prey capture rates (both PN0.5), although increased T was associated
with reduced display rates in total observation data (T and display
behavior PC: r=−0.55, P=0.041), but this relationship was not
significant in behavioral bout data (r=−0.44, P=0.12).

Correlations among behavioral traits showed that males perform-
ing more frequent displays also performed more locomotor behaviors
(Table 3). The same relationship was also recovered in behavioral
bout data (r=0.73, P=0.001). However, SVL and prey capture rates
were not correlated with locomotion, suggesting that increased
locomotion was associated with social communication and territorial
defense, and not foraging or body size in this group.

3.2. Behavior and morphology in females

Female display rate was not associated with the female dewlap
morphology PCs or SVL (regression of female display behavior PC vs.
dewlap morphology PC1 and PC2, and SVL: R2=0.03, F3,16=0.19,
P=0.9). Renal sex segment height was also not associated with
female display behavior PC (r=0.03, P=0.91). Results from analyses
with behavioral bout data were identical (results not shown).

Correlations among behavioral traits showed that females that
performed more frequent locomotor behaviors also exhibited higher
rates of prey capture (Table 3). However, SVL or display rates were not
correlated with locomotion, suggesting that increased locomotion
was associated with foraging, and not territorial defense or body size.
Again, results from analyses with behavioral bout data were identical
(results not shown).

Table 1
Relationships between behavior and dewlap morphologies. The top section indicates
results from a multiple regression of display behavior PC vs. dewlap morphology PC,
dewlap size PC, and body size (snout-vent length) in males. The bottom section lists
results from individual regressions of display behavior PC vs. each morphological
variable. Bold font indicates statistical significance.

Β T P

Dewlap morph. PC 0.610 3.93 0.002
Dewlap size PC 0.743 4.43 0.001
SVL −0.194 −1.08 0.301

Cartilage length 0.787 4.88 b0.001
Cartilage area 0.337 2.30 0.040
CH fiber size 0.313 1.83 0.093

Fig. 2. Relationships between male display behavior PC (see text for details) and
dewlap-associated morphological traits: a) second ceratobranchial cartilage length,
b) cartilage area, c) ceratohyoid (CH) muscle fiber size. Statistical results in Table 1,
bottom section.
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3.3. Morphology and behavior between males and females

Males and females differed dramatically on all morphological traits
associated with courtship and copulatory displays (Fig. 4). Cartilage

length and cross-sectional area, as well as CH muscle fiber size were
greater in males (all F1,34N107, Pb0.001). The trachea was also larger
in males than females (F1,34=26.4, Pb0.001), although the magni-
tude of the sex difference was far smaller than for dewlap-associated

Fig. 3. Reproductive structures in high- (left column: a, c, e, g) and low-displaying (right column: b, d, f, h) males. Cross-sectional areas of cartilage (a, b) and renal sex segments (c, d)
were positively correlated with display behavior. CH muscle fiber size (e, f) did not show a significant relationship, although a trend existed for males that displayed more to have
largerfibers. Seminiferous tubules (g, h)were smaller in high displayingmales. Scale bar=330 μmfor (a) and (b); 180 μmfor (c) and (d); 60 μmfor (e) and (f); 500 μmfor (g) and (h).

Table 2
Regression of display behavior PC vs. hemipenis morphology PC, ejaculate production PC,
and body size (snout-vent length) in males. Bold font indicates statistical significance.

Β T P

Hemipenis morph. PC 0.270 1.19 0.256
Ejaculate production PC −0.539 −2.76 0.016
SVL 0.240 1.06 0.310

Table 3
Correlations among body size and behavioral traits. Male values are above the diagonal;
female values below. Bold font indicates Pb0.01; all other PN0.09.

SVL Display PC Locomotion Prey capture

SVL – 0.41 0.22 0.02
Display PC 0.09 – 0.68 −0.41
Locomotion 0.12 0.14 – −0.04
Prey capture −0.05 0.11 0.58 –
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structures (Fig. 4; compare f to b–d). Fiber size in the control muscle,
GG, did not differ between the sexes (F1,34=0.03, P=0.87).
Comparisons of male and female copulatory morphology included
only renal sex segments and CF fiber size, as females lack hemipenes
and the muscles that control their movement [34]. The size of the
renal sex segment, and androgen-stimulated organ, was greater in
males than females (F1,34=82.4, Pb0.001), but fibers of the control CF
muscle were equivalent in size in the two sexes (F1,34=0.00,
P=0.992).

The data on control tissues suggest that the dimorphisms in
reproductive structures are not simply due to differences in body size,
but males are larger in both SVL and mass than females (ANOVA, both
FN67, Pb0.001). To evaluate this issue more systematically, we
conducted a series of comparisons for which SVL was controlled.
MANCOVA comparing dewlap-associated morphologies (cartilage
length and area, CH fiber size) between males and females showed
that the sexes differed in these traits (sex: λ3,34=0.387, Pb0.001), but
that SVL was not associated with sex differences (SVL: λ3,34=0.92,
P=0.43). MANCOVA comparing copulatory morphology (renal sex
segments and CF fiber size) also revealed differences between the
sexes (sex: λ2,33=0.79, P=0.022), but no effect of body size (SVL:
λ2,33=0.95, P=0.46).

The sexes also differed in behavior. A MANCOVA comparing males
and females revealed that when controlling for body size, males
performed more dewlap extensions and marginally more head-bob
displays (sex: λ5,31=0.62, P=0.009; SVL: λ5,31=0.89, P=0.56;
ANCOVA results for each variable in Table 4). In analyses without
SVL as a covariate, males still had higher dewlap extension and head-
bob rates, proportion of time displaying, and locomotion rates than
females, but the sexes did not differ in prey capture rates (Table 4).
Analyses using behavioral bout data revealed the same behavioral
differences between the sexes (results not shown).

4. Discussion

The present study documents that a variety of structures
associated with a reproductive display are larger in animals that
perform this function more often, reinforcing common parallels

between morphology and behavior. The results are not only largely
consistent with previous laboratory studies of these lizards, but also
illustrate that the neuromuscular and endocrine mechanisms under-
lying reproductive behavior in wild animals in their natural
environments may interact in more complex ways than manipula-
tions in the laboratory may reveal.

4.1. Comparisons within the sexes

Male green anoles that display more frequently have longer and
thicker dewlap cartilage; males with larger dewlaps display those
structures more often than other males. These relationships between
behavior and morphology are not influenced by body size, as SVL was
not associated with display behavior. Thus, the data demonstrate
relatively specific relationships between structure and function.

In contrast, the size of CH muscle fibers was not associated with
the rate of dewlap extension in the present study. This result differs
from data using animals that were wild-caught, but behaviorally
tested in the lab [33]. In that experiment, CH fiber size was greater in
samples of male green anoles representing the top 18% compared to
the bottom 18% of dewlap extension rates. In parallel, a significant
positive correlation was detected between morphology and behavior
in 29 individuals across the full range. Our results showed no
correlation between CH and dewlap extension rate (r=0.33,
P=0.19), but analysis of our data using the methods of Neal and
Wade [33] (comparing the top and bottom 18% of males) produced

Fig. 4. Average values (+SE) for male and female behavioral (a) and morphological (b–h) traits: a) dewlap display rate, b) second ceratobranchial cartilage length, c) second
ceratobranchial cartilage area, d) ceratohyoid (CH) muscle fiber size, e) renal sex segment height, f) trachea area, g) genioglossus (GG) muscle fiber size, and h) caudiofemoralis (CF)
muscle fiber size. Asterisks indicate pb0.001.

Table 4
Comparisons of male and female behavioral traits. ANCOVA (with SVL as the covariate)
results comparing behaviors between the sexes. Values in parentheses show results
from ANOVA without controlling for body size. Modified fonts indicate significant
effects of sex.

F df P

Proportion display time 0.61 (33.2) 1, 35 0.440 (b0.001)
Dewlap extension rate 9.33 (91.4) 1, 35 0.004 (b0.001)
Head-bob rate 3.96 (54.6) 1, 35 0.054 (b0.001)
Locomotion rate 0.65 (15.9) 1, 35 0.424 (b0.001)
Prey capture rate 0.002 (0.30) 1, 35 0.961 (0.590)
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similar results (t=19.5, df=7, Pb0.001). Several explanations for the
differences between the two types of analyses are possible. First,
while males that display the most frequently may have larger CH
fibers than males that display the least frequently, the relationship
between dewlap rate and the size of muscle fibers producing this
movement may be nonlinear. Differences between field and lab
techniques could also account for the results. Neal and Wade [33]
determined dewlap extension rate in the laboratory by introducing a
novel female to a male in a small cage for 15 min/day over a period of
7 days. Here, we observed undisturbed behavior in the lizards' natural
habitat for 64–178 min immediately before capture. Some lizards in
this field study encountered females during the observation period,
some encountered potential rival males, and for others the target of
social interactions was not identified. Thus, the controlled setting of
the laboratory environment may have allowed Neal and Wade [33] to
detect more subtle relationships between morphology and behavior
in a specific context than were possible in our field data.

Females exhibited no relationship between display behavior and
dewlap morphology, indicating that in that sex, use of the dewlap is
not associated with the size of the structures that support its
movement. Because females perform these displays so rarely in
comparison to conspecific males [20,21], it may be that these displays
are not a sufficiently important component of female behavior to
either cause or result from enhanced morphological structures.
Females display the dewlap in their rare territorial encounters with
other females, and occasionally to potential mates or predators, but at
a rate that is generally at least one order of magnitude less than the
display rates of males [21,35,36]. Also consistent with this idea, the
variability among both dewlap-related structures and behaviors is
lower in females than in males (see Fig. 4).

While copulatory structures are not directly used during courtship
displays, reproduction comprises a full suite of behaviors such that a
male often, and possibly necessarily, extends his dewlap prior to
mounting and intromission (see Introduction). Therefore, one might
expect some relationship between courtship behavior and morphol-
ogy of copulatory structures. Here, we found that male display
behavior is an indicator of some but not all aspects of copulation
morphology. Display behavior is not related to size of the hemipenes
or fibers of the muscles that control their movement, but associations
exist between display rate and structures that produce the ejaculate.
Specifically, males that display more have larger renal sex segments
and smaller seminiferous tubules. Increased display might then relate
to a male's increased sensitivity to androgens, even though these
behaviors are negatively related to the level of circulating T itself. This
idea is consistent with evidence from lab data documenting seasonal
differences in the effectiveness of the same dose of T to both activate
reproductive behaviors and increase renal sex segment size in male
green anoles [37]. While the mechanism behind smaller seminiferous
tubules in frequently-displaying lizards is unclear, examination of
males in this study showed that all males were producing large
numbers of mature sperm. One possibility is that males that spend
more time courting females and/or defending their territories
copulate less (although this seems unlikely [38,39]), and the
decreased copulation relates to seminiferous tubule size. Further
studies under conditions that allow detailed analysis of copulatory
behavior are needed to address this issue.

Similarly, the apparent negative relationship between plasma T
and display rate may result from males with higher baseline T having
previously established dominance over those with lower T and thus
no longer having the need to display frequently, a phenomenon that
has been previously reported in this species [40]. Studies from
multiple taxa, including some on red deer (Cervus elaphus), Harris
sparrows (Zonotrichia querula), rats (Rattus norvegicus), and killifish
(Kryptolebias marmoratus), have shown that animals with higher T are
dominant to those with lower T [e.g., 41–44], and dyadic interactions
in green anoles also show that dominant animals have higher T [45].

Another possibility is that animals with lower T may display more
frequently to counterbalance performance deficiencies (lizards with
decreased plasma T have lower bite-force capacity, but as a function of
body size [12]) or to prime them for future takeovers of dominant
male territories, such as the case in collared lizards [Crotophytus
collaris; 46]. While these ideas warrant consideration, the results are
consistent with Neal and Wade [33], who found no significant
relationship between T and display rates, either across the full range
of males or when comparing the top 18% to the bottom 18% of male
dewlap rates. The results are collectively consistent with the idea that
once the level is sufficient, havingmore T does not enhance behavioral
display rate. In addition, the lack of relationship between T and any
measures of morphology in this study may reflect a threshold effect,
such that a minimum level of circulating T is necessary to maintain
androgen-sensitive structures (including sizes of motoneuron somas,
hemipenes, and RPM muscle fibers [32,47]) at a sufficient size to
achieve reproduction, but more is not necessarily beneficial. This is
true in other species, including hamsters (Mesocricetus auratus) [48]
and rats[49], such that a threshold level of T is necessary for sexual
behaviors, and any more T does not increase their display. These ideas
should be further investigated in field studies of anoles designed
specifically to address relationships of T with behavior and with
morphology.

Plasma was not collected under ideal conditions in this study for
those types of analyses, as T levels may change during restraint. Our
primary goal was to maintain focused, extended behavioral observa-
tions so that these variables could be related to morphology. This
approach resulted in the holding of some lizards prior to euthanasia
while others were being observed. However, because we did not
detect a correlation between holding time and T levels, it seems likely
that any decrease in plasma T caused by stressful conditions occurred
equivalently across individuals. The fact that there is a significant
correlation between T levels and reduced behavioral displays
supports the idea that meaningful individual variations in T existed.

4.2. Behavior and morphology between males and females

Males have larger morphologies than females for all dewlap-
associated traits (cartilage length and area, CH muscle fiber size), and
males perform display behaviors more frequently. Males also have
larger renal sex segments than females, indicating increased sensi-
tivity to T in breeding males compared to females [50]. Effects of adult
T on cartilage morphology are not known, although T does increase
cartilage length during juvenile development. Adult T does not
modulate CH fiber size, but like the cartilage, juvenile T masculinizes
morphology of this muscle [51]. Although there is evidence for yearly
variation in dewlap area [52], it is not clear that this change is due to
cartilage length, or influenced by T. Additionally, there are no effects
of adult T treatment on muscle fiber size in the dewlap [32,37].
Collectively, the results suggest that, once fully developed, the
morphology of structures regulating dewlap extension may not be
affected by differing concentrations of circulating T. This idea suggests
a dissociation between mechanisms directly regulating structure and
function, as T is clearly required for display of the behavior (see
Introduction).

The sexes do not differ in GG or CF fiber size, indicating some
specificity in sexual dimorphism of reproductive structures. These
findings are consistent with extensive previous work on green anoles
(reviewed in [28]) and with results in species from diverse taxa,
including zebra finches (Taeniopygia guttata), African clawed frogs
(Xenopus laevis), and midshipmen fish (Poricthys notatus) showing
that reproductive structures frequently used bymales are enhanced in
that sex [e.g., 3–7]. Importantly, the sex differences in the size of
reproductive structures in this study cannot be explained by
differences between the sexes in body size. In analyses that accounted
for body size, male structures remained significantly larger than those
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in females, suggesting that the size of the structures are more likely
associated with dramatic differences in their use. The present study
and others [e.g., 20,36] have documented substantial sex differences
in behavior. However, these results cannot indicate whether a causal
relationship exists, or if it does, the direction of the relationship. It is
possible that larger structures allow for more frequent use, or that
frequent use of the structures enhances their size.

Interestingly, males performed displays and locomotor behavior
more frequently than females in the present study, but the sexes did
not differ in prey capture rates (Table 4). These behavioral differences
may underlie different priorities between the sexes. Males that
displayed more frequently than other males also performed more
locomotor behaviors, but this was not related to prey capture or body
size (Table 3). Thus, males were moving around the habitat more
frequently to defend territories or court females, not to forage.
Females, however, demonstrated a correlation between locomotion
and prey capture (Table 3), so female movement was more likely
related to foraging and not territory defense.

4.3. Broader context and conclusions

As both courtship and copulation are necessary components of
reproduction for many animals, it is vital to study the behaviors and
morphologies related to both of these functions in the same animals.
These studies occur rarely in classic laboratory model systems, as
most mammals exhibit stereotyped copulation but do not have easily-
studied courtship displays, while many animals with elaborate
courtship (birds, fish, and amphibians) lack copulatory organs and
associated muscles. Lizards provide a particularly valuable opportu-
nity to study both courtship and copulation behavior andmorphology
[28,53], and green anoles are a species readily studied in both the field
and the lab.

Our observations of these animals in their natural habitats are
largely consistent with findings from captive animals in laboratory
conditions, but differences in the relationship between CH fiber size
and behavior detected in the two settings highlight the need for both
types of work. Field behavioral studies frequently provide ecological
support for relationships identified in laboratory experiments, such as
those conducted on dark-eyed juncos (Junco hyemalis) and Algerian
mice (Mus spretus) [54,55], but laboratory environments are generally
simplified versions of natural environments, providing, for example,
less complex social interactions and more homogenous microhabitats
[56]. On the other hand, laboratory settings allow for controlled
experiments that are impossible to conduct in the field. Both types of
studies are important for the complete understanding of behavioral
traits. For example, the specific advantages offered by field and
laboratory settings can be utilized to study behavioral, morphological,
and genetic traits of two different populations, such as work done in
prairie voles (Microtus orcheogaster) [57]. Additionally, work on song
sparrows (Melospiza melodia) has demonstrated neurogenesis in wild
birds, and used laboratory settings to examine more direct relation-
ships between neurogenesis and behavior [58,59]. Thus, the con-
trolled settings of laboratory studies and the natural settings offered
by field studies both offer some clear advantages, but examinations of
animal behavior and its underlying mechanisms in the laboratory and
the field are necessary and complementary.
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