
Trinity University
Digital Commons @ Trinity

Mechatronics Final Projects Engineering Science Department

5-2016

Mechalele (Self-Playing Ukulele)
Timothy F. Davison
Trinity University, tdavison@trinity.edu

Arsenio Gonzalez
Trinity University, agonza10@trinity.edu

Taylor Piske
Trinity University, tpiske@trinity.edu

Follow this and additional works at: http://digitalcommons.trinity.edu/engine_mechatronics

Part of the Engineering Commons

This Report is brought to you for free and open access by the Engineering Science Department at Digital Commons @ Trinity. It has been accepted for
inclusion in Mechatronics Final Projects by an authorized administrator of Digital Commons @ Trinity. For more information, please contact
jcostanz@trinity.edu.

Repository Citation
Davison, Timothy F.; Gonzalez, Arsenio; and Piske, Taylor, "Mechalele (Self-Playing Ukulele)" (2016). Mechatronics Final Projects. 4.
http://digitalcommons.trinity.edu/engine_mechatronics/4

http://digitalcommons.trinity.edu?utm_source=digitalcommons.trinity.edu%2Fengine_mechatronics%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.trinity.edu/engine_mechatronics?utm_source=digitalcommons.trinity.edu%2Fengine_mechatronics%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.trinity.edu/engine?utm_source=digitalcommons.trinity.edu%2Fengine_mechatronics%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.trinity.edu/engine_mechatronics?utm_source=digitalcommons.trinity.edu%2Fengine_mechatronics%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/217?utm_source=digitalcommons.trinity.edu%2Fengine_mechatronics%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.trinity.edu/engine_mechatronics/4?utm_source=digitalcommons.trinity.edu%2Fengine_mechatronics%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:jcostanz@trinity.edu

1

Mechalele (Self-Playing Ukulele)

TIMOTHY F. DAVISON, ARSENIO GONZALEZ, TAYLOR PISKE (PLEDGED)

ENGR 4397 FINAL DESIGN REPORT
05/02/16

2

Table of Contents
Design Summary ... 3

System Details ... 3

Tuning Mode ... 5

Song Playing Mode .. 7

Design Evaluation .. 11

Partial Parts Lists ... 12

Lessons Learned .. 14

Appendix ... 16

ARDUINO AND PIC CODE .. 19

3

Design Summary
This project involves the design and implementation of a self-playing ukulele. The

ukulele plays chords and plucks open strings based on a song or chord progression selected by
the user. Each string on the ukulele has a designated hobby servo motor that plucks the string
with pre-programmed timing as is shown in Figure 1 (3). The plucking is achieved by attaching a
flexible piece of cardboard to the shaft of the servo to act as the guitar pick. By moving the
motors together at once, the action of strumming can be approximated. The design uses the
last three frets on the ukulele for pressing different strings and allows the ukulele to play
different notes and chords. The strings are pressed by small push/pull solenoids (2) that are
spring loaded to push the string when active and not touch the string when passive. The output
of the system is controlled with user selection buttons that selects song or tuning mode for the
ukulele from an LCD display (6). The user can either select tuning or song playing mode using
three pushbuttons. In tuning mode, a speaker plays the desired note for a string and the LCD
display prompts the user to pluck that string. The frequency of the note is detected from a
microphone and the display tells the user if the string is tuned, too high, or too low.

Figure 1: Complete Mechalele System

System Details
This group successfully designed a ukulele that can play a chord procession that is

common in popular songs and aid the user in tuning the instrument. The ukulele is contained

4

within a wooden frame along which the solenoid and motor supports are connected. A small
black box is used at the end of this frame to contain the Arduinos and complex LCD wiring.

A small, 16x2 LCD screen is used to display information to the user as he or she tunes or
plays music with the ukulele. The LCD is programmed to display several things depending on
user input: a welcome message at startup, a selection menu where users choose between song
and tuning modes, when a song is currently being played, which string is being tuned during
tuning mode, whether that string is too high, too low, or tuned, and when the user is exiting
tuning mode and entering the selection screen again. Figure 2 was used and adapted to wire
the LCD to an Arduino Mega (rather than an Uno).

Figure 2: Arduino LCD wiring

In order to navigate the menus displayed on the LCD, three buttons were implemented
into the system: up, down and select/cancel. The internal pullup resistors in the Arduinos were
used in tandem with the buttons to provide active low manual inputs to users for mode and
string selection. The LCD display (6) and push buttons (8) are shown mounted on the black
wiring box in Figure 3.

Figure 3: LCD Display, Push Buttons, and Piezo Speaker

5

 When the system is turned on, the Arduino Mega waits for the user to use the push
buttons to select either the tuning or song playing option. This highest level procedure is shown
in the flowchart in Figure 5. The system is controlled by this basic master program run on an
Arduino Mega. It polls for user input at 100 Hz and provides a menu based system of navigation
with the LCD. A finite state machine design is implemented to achieve this end - button presses
send the controller between LCD display, song playing, and microphone interfacing states.
Controller-to-controller communication is implemented to provide the master Arduino Mega
with frequency information collected by the slave Arduino Uno and its microphone. The Mega
also interfaces with a PIC18F2550, which is wired to the twelve solenoids and programmed to
actuate them in a timed routine coordinated with the timed servo routine programmed onto
the servo controller, the Mega. The Mega provides the PIC power when the song routine begins
and removes power when the song is ended.

Figure 4: Highest level Arduino Mega Flowchart

Tuning Mode
 If tuning mode is selected the LCD displays which string is currently being tuned and the
user cycles through strings using the left and right pushbuttons, with the center pushbutton
taking the user back to the menu. As each string is selected, the system also provides a tuned
note for comparison using the piezo speaker (9) in Figure 3. When a string is selected for tuning,

6

the speaker will play the note of that string (either G4, C4, E4, or A4) for five tenths of a second.
This both helps the user tune the guitar and trains them to recognize in and out of tune notes.
To provide the user with feedback as to whether strings are in tune or not during tuning mode,
a microphone is implemented as the system’s automatic sensor. The microphone (7) is shown
in Figure 5 below.

Figure 5: Servomotors and Frequency Detecting Microphone

The microphone provides the slave Arduino with an analog signal representing the audio
data captured. The slave Arduino then measures the elapsed time during a single cycle and
outputs the frequency of the signal in Hz. This method first filters the input signal frequency
before comparing it to some threshold value around the desired frequency for that string. If the
note the microphone detects is outside this threshold it signals the Arduino to display “too
high” or “too low” on the LCD display. Though the method worked on a bare Arduino Uno, it
began to fail when added to the Arduino Mega that had already been wired to buttons, an LCD
display, and servo motors. The microphone seemed to be affected by some sort of electrical
noise generated by one of the servos. As the servo jerked and whirred randomly in system
standby, the microphone would show that it was detecting a note being played at each motor
movement. Even after the motors had been disconnected for testing, the microphone provided
poor frequency data through the Arduino Mega. The problem was resolved by implementing it
onto the bare Uno again, at which point the microphone began receiving excellent data and
allowing for a satisfyingly responsive and consistent tuning mode. A flowchart representation of
the method used in this tune assisting mode is given in Figure 6.

7

Figure 6: Tuning mode flowchart

Song Playing Mode
If the user selects “Play a Song from the LCD menu”, the motors are sequenced to pluck

the strings by the Arduino Mega and the solenoids are sequenced by the PIC to press the strings
to produce various notes. A close-up of the solenoids (2) and motor (3) is given in Figure 7.

8

Figure 7: Servomotor and Solenoids

The servos are rigged with ukulele picks made of cardboard that have enough flex to
allow for strumming without putting significant stress on the strings or moving the ukulele. At
the same time, they are not so flexible that they make a weak sound when plucking strings. The
servos are mounted on small wooden beams connected to the ukulele housing and are
carefully spaced across the strings. After initially trying to control the servos using pulse-width
modulation on a PIC16F88, the servos were switched to Arduino control. With the limited data
available on these servos, the Servo library built into the Arduino IDE allowed for more precise
and robust control. Some clever programming was used to keep track of servo positions and
command them to pluck either left or right in accordance to that position. In the song playing
mode the servos alternate between strumming (playing all at once) and sequencing one after
another to give the sound of an arpeggio. After pin initialization and setting the initial position,
the Arduino subroutine for string plucking is given in Figure 8.

9

Figure 8: Arduino plucking subroutine

The solenoids are mounted over a piece of plexiglass dotted with holes that were
carefully punched in the material to align with the frets and strings intended to be pressed by
the solenoids. The solenoids are secured above using a small piece of wood and then connected
to the ukulele frame with supports. Each solenoid is supplied current through the use of BJT
current amplifiers (5) signaled by a PIC 18F2550 (4) from Figure 1. The solenoids are rated at 5
V, 1.1 A so in order for the PIC to power the solenoids, the PIC signal was used as the input to a
power transistor with the solenoids acting as a collector output. In order to supply the
solenoids with their required current, a 5V protoboard rated at 1A was used to power them. A
fly back diode was used in parallel with the solenoid to provide protection for the circuit when
the current is switched on and off. This PIC output circuit is shown in Figure 9.

Figure 9: Solenoid collector output circuit

 The wiring and Arduinos under the black box are shown in Figure 10 with a
potentiometer used to control the brightness of the LCD screen. Each Arduino is powered with
a wall socket via USB. The functional diagram for the complete system is given in Figure 11.

10

Figure 10: Inside of Ukulele Casing

Figure 11: Mechalele complete system functional diagram

11

Design Evaluation
A. Output Display

• 16x2 LCD Display
 The LCD was not introduced in class, so some research was required in order to wire it
correctly to the system’s master Arduino and to program it to display the required text in the
desired circumstance. The Arduino IDE’s built-in LiquidCrystal library made coding for the LCD
fairly straightforward. Switching between text on the LCD depending on the user input and
tuning output required some additional programming knowledge beyond what was covered in
this class. Besides maintaining its messy wiring, there were no issues in implementing the
display, and it functions reliably.

B. Audio Output Device
• Piezo speaker

 The implementation of this speaker was not covered in class, so it took some research
to discover how to wire and code it correctly. The Arduino IDE has useful built-in libraries that
handle playing perfect pitches with piezo speakers and helped to expedite the coding process.
The speaker is strident, but it works well and reliably.

C. Manual User Input
• Pushbuttons

 The buttons are decidedly basic, but to implement a more complex control scheme for
UI navigation would have been a needless use of resources and could have potentially resulted
in a counterintuitive system for the user, which is certainly not the intent. The buttons are
simple, streamlined, and completely reliable.

D. Automatic Sensor

• Microphone
 The use of a microphone to detect sound frequency was not touched on in class, so a
solution was found online at www.prjc.com, written by Paul Stoffregen, and tested until
working satisfyingly enough for implementation into the final design. This solution was not
designed for the Arduino so some adaptation was needed to alter it for this project’s purposes.

E. Actuators, Mechanisms & Hardware

• Solenoids and plexiglass mount
• Hobby servos and wooden beam mounts

 The hobby servos were occasionally too weak to overcome the string tension when
mounted too low, but when properly placed, they were strong enough to consistently make a
clean, firm pluck. The solenoids were also adequately strong so that notes played clearly when
the solenoid connected with its string. The wooden beams provide solid support, but the
solenoid board was not completely secured in place. It can move slightly, resulting in the
solenoids missing their strings when actuated. Fixing them often requires only a slight
adjustment in board placing, but messing them up also often requires only a slight adjustment

http://www.prjc.com/

12

in board placing. This is one aspect of the design that could be easily improved with a more
sturdy structure. Overall, this is the aspect of our design that went above and beyond the
requirements for this project. Mounting and simultaneous controlling all of these actuators was
an arduous task.

F. Logic, Processing & Control

• Finite state machine
• Servo, LiquidCrystal, FreqMeasure libraries
• Arduino-to-Arduino and Arduino-to-PIC digital communication

 Extensive research was needed to understand Arduino programming and the various
libraries used in this project. Although the use of two Arduino’s was not an efficient use of
resources, it was necessary to allow both the playing and tuning modes to function properly.
Other than this slight design drawback, overall the programming complexity and simultaneous
control of numerous actuators in this project is commensurate with additional grading
adjustments. Finite state machines and controller-controller communication were also not a
part of this course’s curriculum, yet were instrumental in this project’s functionality. Many
hours were invested researching and testing various methods of inter-controller
communication before a successful one was finally found. Serial communication and the Wire
library yielded no success. It took ingenuity and improvisation to find a working solution to the
Arduino-to-PIC communication dilemma.

Partial Parts Lists

Mini Push-Pull Solenoid – 5V

(Adafruit 2776 - $4.95)

13

This is a very small and powerful solenoid with a 20 mm long body and an armature with a
return spring. The solenoid is activated with 5VDC and springs back to its original position when
the voltage is removed. Each solenoid required up to 1.1 Amps (measured 0.6 Amps), so the
solenoid needed to be placed at the collector of a BJT power transistor in parallel with a fly back
diode for protection.

Standard Precision Servo

(Futsaba S148 - $13.99)

High precision servomotor with various connectors for load applications. Operates between 4.8
and 6 V and is controlled with pulse width modulation. Mounting holes provided for easy
mounting with wood.

Sound Detector

(SparkFun Sen-12642 - $10.95)

This `microphone’ detects sounds and produces output voltages based on the amplitude of
sound. This signal is then processed in the Arduino to determine the frequency and tune the
ukulele.

14

Piezo Speaker

(SparkFun COM-07959 - $1.95)

This is a small 12 mm round speaker that operates in the audible range. Operates with 3.5-5V
and max current of 35 mA with a sound output of 95 dBA.

Lessons Learned

Problem Solution Lesson Learned

Controlling the servomotors
using PIC. There was little
documentation on the
servomotors and no procedure
or specifications on pwm. This
made control with the PIC very
difficult and led to the motors
often missing a pluck and moving
in the wrong direction.

We decided to use the Arduino
to control the servomotors with
its helpful servo library that
allowed us to easily input an
angle for the servo and proceed
with little error.

Do not be afraid to switch
your control techniques if
it is not working. At some
point, the time put in to
make something work is
not worth it if there is an
easier solution. Also, find
motors with good
datasheets.

Frequency detection using the
microphone only worked on the
Arduino Uno and was affected by
some noise from the
servomotors when implemented
on the master Arduino Mega.

We originally had the tuning
working perfectly on the Uno so
with little time left we moved it
back to the Uno and used the
Uno for frequency detection
and calculations with power
and signaling from the Mega.

When everything is
working individually is
might not work when you
put it together. Try to put
it all together early so
you have time to debug.
If the debugging does not
work do not be afraid to
take a step back and use
all of your resources.

LCD Display would sometimes
cycle through random characters
when the user was prompted to
select a mode

The wiring in the box was
complex so we had to separate
some wires and ensure none
would touch that would result
in this erroneous signal to the
LCD display from the Arduino.

Carefully wire everything
and make sure that there
is plenty of separation
and securing between
wires.

15

With guitar picks attached to the
motors the strings could not be
plucked because the motor was
too weak and the picks too rigid.

We attached more flexible, but
still strong, pieces of cardboard
to the motors that moved over
the strings easily while still
making a loud enough note.

We originally were set on
using guitar picks and
thought it was a major
road block when we
could not pluck strings. It
is important to be open
to adapting your design
and think outside the
box.

Communication between
microcontrollers was a difficult
thing to achieve. We coded our
PIC to begin its routine when a
listener port was sent a high. It
worked when one solenoid was
connected, but not when
multiple were. Serial
communication from Arduino-to-
Arduino or Arduino-to-PIC was
also a non-cooperator.

We eliminated the need for
communication between the
Mega and a servo PIC by
moving servo control to the
Mega, and we made it so that
the solenoid PIC was supplied
power by the Mega when it
were to begin its routine. The
PIC was programmed to start
the routine as soon as it turned
on, fixing the issue.

Simple solutions are
valuable in a pinch, so
keep them in your back
pocket when the
sophisticated ones don’t
pan out in time.

 Beyond these five specific lessons we learned during this project, there are several
overarching lessons we would like to pass forward to future students. The first is: start early.
Once you have an idea for the project there is no time that is too soon to start. We found
ourselves plodding along and just meeting the project deliverable deadlines throughout the
semester. When it finally came time to put our ideas and components together into the self-
playing system we spent significantly more time than we thought we would which led to a few
long nights. If we had started building and testing parts earlier in the project, we would have
been able to spread out our time more evenly. In addition, we recommend that you try to have
a near finished project before the first early bird deadline. Inevitably, something will go wrong
and you will have to come up with new ideas and debug until the final deadline. If not, you get
10 extra points, so it is a win-win.

When ordering components, if you have the budget, get yourself a spare to whatever it
is you are buying. Not only will it save you valuable time in the case that you misplace or
inadvertently destroy one of the critical pieces to your design and have to replace it, but it will
afford you the flexibility to expand or alter your design as the project progresses. Mechatronics
projects are dynamic, shifting creatures, and you must be capable of adapting to any new
discovery or pitfall that is inevitably waiting for you in the design process. As inexperience
undergrads, we are often travelling into unknown territory when we commit to a project like
this. Make sure you have a little more than you think you need, because anything can happen.

16

And it goes without saying, but back up your code, documents, and schematics on Google Drive
or something similar whenever you get the chance.

 Another important lesson we learned from this project is that you should select
something you are interested in and will want to spend many hours working on. We nearly
selected an automatic dog feeder as our project because it was a less complex design, but
ultimately chose the ukulele because our group enjoys music and would enjoy creating
something that plays it autonomously. You will spend a lot of time on this project no matter
what you pick, so it is essential that you pick something that you think is fun and are willing to
put in a little extra work for to create an awesome final product.

Appendix
Materials and Wiring Diagrams
Table 1: Purchased Materials

Item Company Quantity Price

PIC 18F2550 Digikey 1 $4.30

SEN-12642 (Sound Detector) SparkFun 1 $10.95

Mini Push-Pull Solenoid Adafruit 12 $4.46

 Total $68.77

Table 2: Borrowed Materials (not including wires and wood)

Item Company Quantity

Servomotors (S148) Futsaba 4

Arduino Uno Arduino 1

Arduino Mega Arduino 1

LCD Display Arduino 1

Piezo Speaker Arduino 1

NO Pushbutton Arduino 3

17

Figure 12: Arduino Wiring Diagram

18

Figure 13: Wiring Diagram for PIC 18F2550

19

ARDUINO AND PIC CODE
I. Arduino Mega Master Sketch
/* ukuleleMaster.ino
 By Taylor Piske, Arsenio Gonzales, and Tim Davidson
 Written for Arduino Mega interfacing with a PIC18F2550, an Uno,
 an LCD display, buttons, hobby servos, and a piezo buzzer.

 This sketch is designed to control self-playing ukulele system. Users
 will be able to choose between two modes: song play or tuning. In
 song play, the Mega will begin a timed picking routine with the
 servos. At the same time, it will power the PIC18F2550, which will
 actuate solenoids to finger frets in time with the servos' picking.

 In tuning mode, the Mega will communicate to the Uno the string being
 tuned with two digital pinouts. The Uno will listen to its microphone
 for the frequency of the plucked note and determine whether the note
 is too low, too high, or out of tune in relation to the string's target
 pitch. It will communicate that in-tuneness with two digital pinouts,
 and the Mega will display that result on the LCD for the user.

 An LCD display will display mode choices as well, and three buttons will
 be used to move up, move down, and select/cancel.

 The LCD circuit:
 * RS pin to digital pin 42
 * Enable pin to digital pin 44
 * D4 pin to digital pin 46
 * D5 pin to digital pin 48
 * D6 pin to digital pin 50
 * D7 pin to digital pin 52
 * R/W pin to ground
 * VSS pin to ground
 * VCC pin to 5V
 * 10K resistor:
 * ends to +5V and ground
 * wiper to LCD VO pin (pin 3)
*/

#include <LiquidCrystal.h>
#include <Servo.h>
#include "pitches.h"
#include <SoftwareSerial.h>

// initialize the library with the numbers of the interface pins
LiquidCrystal lcd(42,44,46,48,50,52);
//LiquidCrystal lcd(12, 11, 5, 4, 3, 2);

20

// initialize all servos
Servo Gservo;
Servo Cservo;
Servo Eservo;
Servo Aservo;

// set button, microphone, speaker, and PIC pins
const int downBut = 22;
const int selectBut = 24;
const int upBut = 26;
const int speaker = 7;

// frequency communication with Arduino Uno.
// StringSig is two bits telling the Uno which string is being tuned,
// 1 (00), 2 (01), 3 (10), or 4 (11).
// inTune signals tell the Mega whether the string is in tune, too low, or too high.
// Too low is highOrLow = 0, too high is highOrLow = 1
const int msdStringSig = 23;
const int lsdStringSig = 25;
const int inTune = 27;
const int highOrLow = 29;

// Song command pins talking to the solenoid PIC. High when playing song, low when not
const int beatlesSolCmd = 30;
//const int zeldaSolCmd = 32;
int beatlesSerCmd = 0;
int zeldaSerCmd = 0;

// String tuning command pins talking to the PICS
int tuneGCmd = 0;
int tuneCCmd = 0;
int tuneECmd = 0;
int tuneACmd = 0;

/* states, assigned to variable 'option' */
// 1.0: on the select screen for 'Here Comes the Sun'
// 1.1: wait state going from state 2.0 -> 1.0
// 1.9: wait state going from state 1.0 -> 2.0
//
// 2.0: on the select screen for 'Zelda's Lullaby'
// 2.1: wait state going from state 3.0 -> 2.0
// 2.9: wait state going from state 2.0 -> 3.0
//
// 3.0: on the select screen for the tuner
// 0.1: wait state going from state 1.0 -> 3.0
// 0.9: wait state going from state 3.0 -> 1.0
//

21

// 3.5: wait state going from state 3.0 -> 3.51
// 3.511: wait state going from state 3.52 -> 3.51
// 3.519: wait state going from state 3.51 -> 3.52
// 3.521: wait state going from state 3.53 -> 3.52
// 3.529: wait state going from state 3.52 -> 3.53
// 3.531: wait state going from state 3.54 -> 3.53
// 3.539: wait state going from state 3.53 -> 3.54
// 3.501: wait state going from state 3.51 -> 3.54
// 3.509: wait state going from state 3.54 -> 3.51
//
// 1.4: wait state going from state 1.0 -> 1.5
// 2.4: wait state going from state 2.0 -> 2.5
//
// 1.5: playing 'Here Comes the Sun'
// 2.5: playing 'Zelda's Lullaby'
// 3.51: in tuning mode -> tuning first string, G (392.0 Hz)
// 3.52: in tuning mode -> tuning second string, C (261.6 Hz)
// 3.53: in tuning mode -> tuning third string, E (329.6 Hz)
// 3.54: in tuning mode -> tuning fourth string, A (440.0 Hz)
//
// 0.0: wait state going from song play or tuning mode -> 1.0 when select/cancel is pressed
//
// -1.0: intermediate state for going from the intro screen to song/mode select
float option;

// Servo positions in degrees and position trackers, 0 being left, 1 being right
// Gservo lPos = 95, rPos = 140
// Cservo lPos = 85, rPos = 135
// Eservo lPos = 110, rPos = 160
// Aservo lPos = 90, rPos = 135
int Gpos = 0;
int Cpos = 0;
int Epos = 0;
int Apos = 0;

// Button readers
int upState;
int selectState;
int downState;

// Frequency holder
float frequency;

// Used to silence the speaker after 2 seconds of playing.
// Also used to send the system back to State 1.0 when a song has finished playing.
int tonePlayed = 0;
double count = 0.0;

22

void setup() {
 Serial.begin(9600);
 lcd.begin(16,2);
 pinMode(upBut,INPUT_PULLUP);
 pinMode(selectBut,INPUT_PULLUP);
 pinMode(downBut,INPUT_PULLUP);
 pinMode(beatlesSolCmd,OUTPUT);
 pinMode(msdStringSig,OUTPUT);
 pinMode(lsdStringSig,OUTPUT);
 pinMode(inTune,INPUT);
 pinMode(highOrLow,INPUT);
 lcd.setCursor(0,0);
 lcd.print("THE MECHALELE");
 lcd.setCursor(0,1);
 lcd.print("Play or tune!");
 delay(2500);
 lcd.clear();
 delay(500);
 option = -1.0;
 resetServos();
}

void loop() {
 upState = digitalRead(upBut);
 selectState = digitalRead(selectBut);
 downState = digitalRead(downBut);

 /////// song and tuning mode select screens ////////
 if (option == 1.0) {
 if (upState == 0) {
 option = 2.9;
 }
 if (downState == 0) {
 option = 0.1;
 }
 if (selectState == 0) {
 option = 1.4;
 lcd.clear();
 lcd.setCursor(0,0);
 lcd.print("Playing song... ");
 digitalWrite(beatlesSolCmd,HIGH);
 beatlesSerCmd = 1;
 count = 0.0;
 }
 }

 else if (option == 2.0) {
 if (upState == 0) {

23

 option = 2.9;
 }
 if (downState == 0) {
 option = 1.1;
 }

 if (selectState == 0) {
 option = 2.4;
 lcd.clear();
 lcd.setCursor(0,0);
 lcd.print("Enjoy Z's Lullaby!");
 lcd.setCursor(0,1);
 lcd.print("Cancel to quit");
 //digitalWrite(zeldaSolCmd,HIGH);
 //zeldaSerCmd = 1;
 count = 0.0;
 }
 }

 else if (option == 3.0) {
 if (upState == 0) {
 option = 0.9;
 }
 if (downState == 0) {
 //option = 2.1; // for multiple songs
 option = 1.1;
 }

 if (selectState == 0) {
 count = 0;
 option = 3.50;
 lcd.clear();
 }
 }

 else if (option == 3.51 && selectState == 1) {
 lcd.setCursor(0,0);
 lcd.print("Tuning Mode");
 lcd.setCursor(0,1);
 if ((digitalRead(inTune) == 1) && (digitalRead(highOrLow) == 1)) {
 //lcd.print("String 1 ... ");
 }
 else if (digitalRead(inTune) == 1 && (digitalRead(highOrLow) == 0)) {
 lcd.print("String 1 Tuned! ");
 }
 else if ((digitalRead(inTune) == 0) && (digitalRead(highOrLow)) == 0) { //(frequency > 360 &&
frequency < 410) {
// if (frequency < 392-8) {

24

 lcd.print("String 1 Too Low");
 }
 else if ((digitalRead(inTune) == 0) && (digitalRead(highOrLow) == 1)) { //(frequency > 392+8) {
 lcd.print("String 1 Too Hi ");
 }
// }
// lcd.print(frequency);
// tuningMode();
 if (upState == 0) {
 option = 3.519;
 }
 if (downState == 0) {
 option = 3.501;
 }
 if (count <= 5.0 && tonePlayed == 0) {
 tone(speaker,NOTE_G4);
 }
 else {
 noTone(speaker);
 tonePlayed = 1;
 }
 count += 1.0;
 }

 else if (option == 3.52 && selectState == 1) {
 lcd.setCursor(0,0);
 lcd.print("Tuning Mode");
 lcd.setCursor(0,1);
 if ((digitalRead(inTune) == 1) && (digitalRead(highOrLow) == 1)) {
 //lcd.print("String 2 ... ");
 }
 else if ((digitalRead(inTune) == 1) && (digitalRead(highOrLow) == 0)) {
 lcd.print("String 2 Tuned! ");
 }
 else if ((digitalRead(inTune) == 0) && (digitalRead(highOrLow) == 0)) { //(frequency > 210 &&
frequency < 350) {
 //if (frequency < 262-8) {
 lcd.print("String 2 Too Low");
 }
 else if ((digitalRead(inTune)) == 0 && (digitalRead(highOrLow) == 1)) { //(frequency > 262+8) {
 lcd.print("String 2 Too Hi ");
 }
// }
// lcd.print(frequency);
// tuningMode();
 if (upState == 0) {
 option = 3.529;
 }

25

 if (downState == 0) {
 option = 3.511;
 }
 if (count <= 5.0 && tonePlayed == 0) {
 tone(speaker,NOTE_C4);
 }
 else {
 noTone(speaker);
 tonePlayed = 1;
 }
 count += 1.0;
 }

 else if (option == 3.53 && selectState == 1) {
 lcd.setCursor(0,0);
 lcd.print("Tuning Mode");
 lcd.setCursor(0,1);
 if ((digitalRead(inTune) == 1) && (digitalRead(highOrLow) == 1)) {
 //lcd.print("String 3 ... ");
 }
 else if ((digitalRead(inTune) == 1) && (digitalRead(highOrLow) == 0)) {
 lcd.print("String 3 Tuned! ");
 }
 else if ((digitalRead(inTune) == 0) && (digitalRead(highOrLow) == 0)) { //(frequency > 290 &&
frequency < 410) {
 //if (frequency < 330-8) {
 lcd.print("String 3 Too Low");
 }
 else if ((digitalRead(inTune) == 0) && (digitalRead(highOrLow) == 1)) { //(frequency > 330+8) {
 lcd.print("String 3 Too Hi ");
 }
// }
// lcd.print(frequency);
// tuningMode();
 if (upState == 0) {
 option = 3.539;
 }
 if (downState == 0) {
 option = 3.521;
 }
 if (count <= 5.0 && tonePlayed == 0) {
 tone(speaker,NOTE_E4);
 }
 else {
 noTone(speaker);
 tonePlayed = 1;
 }
 count += 1.0;

26

 }

 else if (option == 3.54 && selectState == 1) {
 lcd.setCursor(0,0);
 lcd.print("Tuning Mode");
 lcd.setCursor(0,1);
 if ((digitalRead(inTune) == 1) && (digitalRead(highOrLow) == 1)) {
 //lcd.print("String 4 ... ");
 }
 else if ((digitalRead(inTune) == 1) && (digitalRead(highOrLow) == 0)) {
 lcd.print("String 4 Tuned! ");
 }
 else if ((digitalRead(inTune) == 0) && (digitalRead(highOrLow) == 0)) { //(frequency > 380 &&
frequency < 500) {
// if (frequency < 440-8) {
 lcd.print("String 4 Too Low");
 }
 else if ((digitalRead(inTune) == 0) && (digitalRead(highOrLow) == 1)) { //(frequency > 440+8) {
 lcd.print("String 4 Too Hi ");
 }
// }
// lcd.print(frequency);
// tuningMode();
 if (upState == 0) {
 option = 3.509;
 }
 if (downState == 0) {
 option = 3.531;
 }
 if (count <= 5.0 && tonePlayed == 0) {
 tone(speaker,NOTE_A4);
 }
 else {
 noTone(speaker);
 tonePlayed = 1;
 }
 count += 1.0;
 }

 // song playing states. When cancel is pressed, interupt PICs and move back to song select states
 else if ((option == 1.5 || option == 2.5 || (option >= 3.51 && option <= 3.54)) && selectState == 0) {
 beatlesSerCmd = 0;
 zeldaSerCmd = 0;
 digitalWrite(beatlesSolCmd,LOW);
 //digitalWrite(zeldaSolCmd,LOW);
 digitalWrite(tuneGCmd,LOW);
 digitalWrite(tuneCCmd,LOW);
 digitalWrite(tuneECmd,LOW);

27

 digitalWrite(tuneACmd,LOW);
 Gservo.attach(13);
 Cservo.attach(10);
 Eservo.attach(5);
 Aservo.attach(2);
 resetServos();
 lcd.clear();
 lcd.setCursor(0,0);
// lcd.print("Cancelled...");
 lcd.print("Done tuning!");
 lcd.setCursor(0,1);
 lcd.print("Back to menu...");
 delay(2000);
 lcd.clear();
 option = 0.0;
 }

 ////////// wait states //////////
 else if (option == 0.1 && downState == 1) {
 lcd.clear();
 lcd.print("Mode select:");
 lcd.setCursor(0,1);
 lcd.print("Tune the uke");
 option = 3.0;
 }
 else if (option == 0.9 && upState == 1) {
 lcd.clear();
// lcd.print("Song select:");
 lcd.print("Mode select: ");
 lcd.setCursor(0,1);
// lcd.print("The Beatles ");
 lcd.print("Play a song ");
 option = 1.0;
 }
 else if (option == 1.1 && downState == 1) {
 lcd.clear();
// lcd.print("Song select:");
 lcd.print("Mode select: ");
 lcd.setCursor(0,1);
// lcd.print("The Beatles ");
 lcd.print("Play a song ");
 option = 1.0;
 }
 else if (option == 1.9 && upState == 1) {
 lcd.clear();
 lcd.print("Song select:");
 lcd.setCursor(0,1);
 lcd.print("Zelda's Lullaby ");

28

 option = 2.0;
 }
 else if (option == 2.1 && downState == 1) {
 lcd.clear();
 lcd.print("Song select:");
 lcd.setCursor(0,1);
 lcd.print("Zelda's Lullaby ");
 option = 2.0;
 }
 else if (option == 2.9 && upState == 1) {
 lcd.clear();
 lcd.print("Mode select:");
 lcd.setCursor(0,1);
 lcd.print("Tune the uke");
 option = 3.0;
 }
 else if (option == 3.511 && downState == 1) {
 count = 0;
 tonePlayed = 0;
 tuneGCmd = 1;
 tuneCCmd = 0;
 digitalWrite(lsdStringSig,LOW);
 digitalWrite(msdStringSig,LOW);
 lcd.clear();
 lcd.setCursor(0,1);
 lcd.print("String 1");
 option = 3.51;
 }
 else if (option == 3.519 && upState == 1) {
 count = 0;
 tonePlayed = 0;
 tuneCCmd = 1;
 tuneGCmd = 0;
 digitalWrite(lsdStringSig,HIGH);
 digitalWrite(msdStringSig,LOW);
 lcd.clear();
 lcd.setCursor(0,1);
 lcd.print("String 2");
 option = 3.52;
 }
 else if (option == 3.521 && downState == 1) {
 count = 0;
 tonePlayed = 0;
 tuneCCmd = 1;
 tuneECmd = 0;
 digitalWrite(lsdStringSig,HIGH);
 digitalWrite(msdStringSig,LOW);
 lcd.clear();

29

 lcd.setCursor(0,1);
 lcd.print("String 2");
 option = 3.52;
 }
 else if (option == 3.529 && upState == 1) {
 count = 0;
 tonePlayed = 0;
 tuneECmd = 1;
 tuneCCmd = 0;
 digitalWrite(lsdStringSig,LOW);
 digitalWrite(msdStringSig,HIGH);
 lcd.clear();
 lcd.setCursor(0,1);
 lcd.print("String 3");
 option = 3.53;
 }
 else if (option == 3.531 && downState == 1) {
 count = 0;
 tonePlayed = 0;
 tuneECmd = 1;
 tuneACmd = 0;
 digitalWrite(lsdStringSig,LOW);
 digitalWrite(msdStringSig,HIGH);
 lcd.clear();
 lcd.setCursor(0,1);
 lcd.print("String 3");
 option = 3.53;
 }
 else if (option == 3.539 && upState == 1) {
 count = 0;
 tonePlayed = 0;
 tuneACmd = 1;
 tuneECmd = 0;
 digitalWrite(lsdStringSig,HIGH);
 digitalWrite(msdStringSig,HIGH);
 lcd.clear();
 lcd.setCursor(0,1);
 lcd.print("String 4");
 option = 3.54;
 }
 else if (option == 3.501 && downState == 1) {
 count = 0;
 tonePlayed = 0;
 tuneACmd = 1;
 tuneGCmd = 0;
 digitalWrite(lsdStringSig,HIGH);
 digitalWrite(msdStringSig,HIGH);
 lcd.clear();

30

 lcd.setCursor(0,1);
 lcd.print("String 4");
 option = 3.54;
 }
 else if (option == 3.509 && upState == 1) {
 count = 0;
 tonePlayed = 0;
 tuneGCmd = 1;
 tuneACmd = 0;
 digitalWrite(lsdStringSig,LOW);
 digitalWrite(msdStringSig,LOW);
 lcd.clear();
 lcd.setCursor(0,1);
 lcd.print("String 1");
 option = 3.51;
 }
 else if (option == 3.5 && selectState == 1) {
 count = 0;
 tonePlayed = 0;
 tuneGCmd = 1;
 Gservo.detach();
 Cservo.detach();
 Eservo.detach();
 Aservo.detach();
 digitalWrite(lsdStringSig,LOW);
 digitalWrite(msdStringSig,LOW);
 lcd.clear();
 lcd.setCursor(0,1);
 lcd.print("String 1");
 option = 3.51;
 }
 else if (option == 0.0 && selectState == 1) {
 lcd.clear();
// lcd.print("Song select:");
 lcd.print("Mode select: ");
 lcd.setCursor(0,1);
// lcd.print("The Beatles ");
 lcd.print("Play a song ");
 option = 1.0;
 }
 else if (option == 1.4 && selectState == 1) {
 option = 1.5;
 }
 else if (option == 2.4 && selectState == 1) {
 option = 2.5;
 }
 else if (option == -1.0) {
// lcd.print("Song select:");

31

 lcd.print("Mode select: ");
 lcd.setCursor(0,1);
// lcd.print("The Beatles ");
 lcd.print("Play a song ");
 Gservo.attach(13);
 Cservo.attach(10);
 Eservo.attach(5);
 Aservo.attach(2);
 option = 1;
 }

 //////// Check servo song and tuning commands for initialization /////////
 if (beatlesSerCmd == 1) {
 delay(100);
 // C major chord
 sweep();
 delay(700);
 sweep();
 delay(350);
 pluckC();
 delay(350);
 pluckE();
 delay(350);
 pluckA();
 delay(350);
 pluckC();
 delay(350);
 pluckE();
 delay(350);
 // G major chord
 sweep();
 delay(700);
 sweep();
 delay(350);
 pluckC();
 delay(350);
 pluckE();
 delay(350);
 pluckA();
 delay(350);
 pluckC();
 delay(350);
 pluckE();
 delay(350);
 // A major chord
 sweep();
 delay(700);

32

 sweep();
 delay(350);
 pluckC();
 delay(350);
 pluckE();
 delay(350);
 pluckA();
 delay(350);
 pluckC();
 delay(350);
 pluckE();
 delay(350);
 // C major chord
 sweep();
 delay(2800);
 beatlesSerCmd = 0;
 digitalWrite(beatlesSolCmd,LOW);
 lcd.clear();
// lcd.print("Song select:");
 lcd.print("Mode select: ");
 lcd.setCursor(0,1);
// lcd.print("The Beatles ");
 lcd.print("Play a song ");
 option = 1.0;
 }

// if (zeldaSerCmd == 1) {
// if (count == 1.0) {
// pluckG();
// }
// else if (count == 2.0) {
// sweep();
// }
// else if (count > 100.0) {
// zeldaSerCmd = 0;
// }
// count += 0.01;
// }

 //////// Checking states and counts via the Serial Monitor ////////
 Serial.print("Option: ");
 Serial.print(option);
 Serial.print(", StringSig: ");
 Serial.print(digitalRead(msdStringSig));
 Serial.print(digitalRead(lsdStringSig));
 Serial.print(", Too High: ");
 Serial.print(digitalRead(highOrLow));
 Serial.print(", Tuned: ");

33

 Serial.println(digitalRead(inTune));
 delay(10);
}

///// Servo control functions for each string /////
void pluckG() {
 Serial.println("Plucking G");
 if (Gpos == 0) {
 Gservo.write(140);
 delay(10);
 Gpos = 1;
 }
 else {
 Gservo.write(90);
 delay(10);
 Gpos = 0;
 }
}

void pluckC() {
 Serial.println("Plucking C");
 if (Cpos == 0) {
 Cservo.write(122);
 delay(10);
 Cpos = 1;
 }
 else {
 Cservo.write(75);
 delay(10);
 Cpos = 0;
 }
}

void pluckE() {
 Serial.println("Plucking E");
 if (Epos == 0) {
 Eservo.write(115);
 delay(10);
 Epos = 1;
 }
 else {
 Eservo.write(160);
 delay(10);
 Epos = 0;
 }
}

void pluckA() {

34

 Serial.println("Plucking A");
 if (Apos == 0) {
 Aservo.write(100);
 delay(10);
 Apos = 1;
 }
 else {
 Aservo.write(140);
 delay(10);
 Apos = 0;
 }
}

void sweep() {
 Serial.println("Sweeping strings");
 pluckG();
 delay(10);
 pluckC();
 delay(10);
 pluckE();
 delay(10);
 pluckA();
 delay(10);
}

void resetServos() {
 Serial.println("Resetting servos");
 //if (Gpos == 1) {
 Gservo.write(90);
 delay(10);
 Gpos = 0;
 //}
 //if (Cpos == 1) {
 Cservo.write(75);
 delay(10);
 Cpos = 0;
 //}
 //if (Epos == 1) {
 Eservo.write(160);
 delay(10);
 Epos = 0;
 //}
 //if (Apos == 1) {
 Aservo.write(140);
 delay(10);
 Apos = 0;
 //}
}

35

II. Arduino Uno Frequency Measurement Sketch

/* FreqMeasureUno.ino
 * by Taylor Piske, Arsenio Gonzales, and Tim Davison
 *
 * For the Mechalele. Reads two digital pinouts of the
 * master Mega controller to determine which string
 * is being tuned, reads frequency from Sparkfun
 * microphone, and signals to the Mega whether the played
 * string is too high, too low, or tuned by communicating
 * via its own two digital pinouts.
 */

#include <FreqMeasure.h>

/* Most significant and least significant digits of
 * string signal from the Mega. 00 means string 1,
 * 01 string 2, 10 string 3, 11 string 4 */
const int msdStringSig = 2;
const int lsdStringSig = 3;

/* Result signal sent to the Mega for display on the
 * LCD. inTune is msd, highOrLow is lsd.
 * 00 is string too low, 01 is string too high
 * 10 is string in tune, and 11 is bad frequency
 * measurement, ignore. */
const int inTune = 4;
const int highOrLow = 5;

void setup() {
 Serial.begin(9600);
 FreqMeasure.begin();
 pinMode(msdStringSig,INPUT);
 pinMode(lsdStringSig,INPUT);
 pinMode(inTune,OUTPUT);
 pinMode(highOrLow,OUTPUT);
}

double sum=0;
int count=0;
float frequency;

void loop() {
 if (FreqMeasure.available()) {
 // average several reading together

36

 sum = sum + FreqMeasure.read();
 count = count + 1;
 if (count > 60) {
 frequency = FreqMeasure.countToFrequency(sum / count);
 sum = 0;
 count = 0;

 // Tuning string 1
 if (digitalRead(msdStringSig) == 0 && digitalRead(lsdStringSig) == 0) {
 if (frequency > 320 && frequency < 450) {
 if (frequency < 392-8) {
 digitalWrite(inTune,LOW);
 digitalWrite(highOrLow,LOW);
 }
 else if (frequency > 392+8) {
 digitalWrite(inTune,LOW);
 digitalWrite(highOrLow,HIGH);
 }
 else {
 digitalWrite(highOrLow,LOW);
 digitalWrite(inTune,HIGH);
 }
 }
 else {
 digitalWrite(highOrLow,HIGH);
 digitalWrite(inTune,HIGH);
 }
 }
 // Tuning string 2
 if (digitalRead(msdStringSig) == 0 && digitalRead(lsdStringSig) == 1) {
 if (frequency > 210 && frequency < 320) {
 if (frequency < 262-8) {
 digitalWrite(inTune,LOW);
 digitalWrite(highOrLow,LOW);
 }
 else if (frequency > 262+8) {
 digitalWrite(inTune,LOW);
 digitalWrite(highOrLow,HIGH);
 }
 else {
 digitalWrite(highOrLow,LOW);
 digitalWrite(inTune,HIGH);
 }
 }
 else {
 digitalWrite(highOrLow,HIGH);
 digitalWrite(inTune,HIGH);
 }

37

 }
 // Tuning string 3
 if (digitalRead(msdStringSig) == 1 && digitalRead(lsdStringSig) == 0) {
 if (frequency > 290 && frequency < 380) {
 if (frequency < 330-8) {
 digitalWrite(inTune,LOW);
 digitalWrite(highOrLow,LOW);
 }
 else if (frequency > 330+8) {
 digitalWrite(inTune,LOW);
 digitalWrite(highOrLow,HIGH);
 }
 else {
 digitalWrite(highOrLow,LOW);
 digitalWrite(inTune,HIGH);
 }
 }
 else {
 digitalWrite(highOrLow,HIGH);
 digitalWrite(inTune,HIGH);
 }
 }
 // Tuning string 4
 if (digitalRead(msdStringSig) == 1 && digitalRead(lsdStringSig) == 1) {
 if (frequency > 390 && frequency < 480) {
 if (frequency < 440-8) {
 digitalWrite(inTune,LOW);
 digitalWrite(highOrLow,LOW);
 }
 else if (frequency > 440+8) {
 digitalWrite(inTune,LOW);
 digitalWrite(highOrLow,HIGH);
 }
 else {
 digitalWrite(highOrLow,LOW);
 digitalWrite(inTune,HIGH);
 }
 }
 else {
 digitalWrite(highOrLow,HIGH);
 digitalWrite(inTune,HIGH);
 }
 }
 // Monitoring inputs and outputs
 Serial.print("Frequency: ");
 Serial.print(frequency);
 Serial.print(", String: ");
 Serial.print(digitalRead(msdStringSig));

38

 Serial.print(digitalRead(lsdStringSig));
 Serial.print(", highOrLow: ");
 Serial.print(digitalRead(highOrLow));
 Serial.print(", inTune: ");
 Serial.println(digitalRead(inTune));
 }
 }
}

39

III. PIC18F2550 Solenoid Chord Progression Routine

'**
'* Name : ukuleleSolenoidPICSimple.BAS
'* Author : Taylor Piske, Tim Davison, and Arsenio Gonzales
'* Date : 3/19/2016
'* Notes : Written for a PIC18F2550.
'* Waits for the master to signal a song choice and
'* carries out the song routine.
'**

' Define I/O pins for solenoids and Arduino communication
Gfret1 var porta.0
Gfret2 var porta.1
Gfret3 var porta.2
Cfret1 var porta.3
Cfret2 var porta.4
Cfret3 var porta.5
Efret1 var portb.3
Efret2 var portb.2
Efret3 var portb.1
Afret1 var portb.6
Afret2 var portb.5
Afret3 var portb.4

' Main loop
' Note that pause 500 correlates to about 0.2 seconds of pause
while(1)
 'high Cfret1
 'pause 500
 'low Cfret1
 'pause 500
 'high Gfret2
 'pause 500
 'low Gfret2
 'pause 500
 'high Cfret1
 'high Gfret2
 'pause 500
 'low Cfret1
 'low Gfret2
 'pause 500
 gosub CmajChord
 pause 7000
 gosub GmajChord

40

 pause 7000
 gosub release
 pause 7000
 gosub CmajChord
 pause 7000
 gosub release
 pause 10000
wend

AmajChord:
 LOW Gfret1
 high Gfret2
 LOW Gfret3
 high Cfret1
 low Cfret2
 LOW Cfret3
 low Efret1
 low Efret2
 low Efret3
 LOW Afret1
 low Afret2
 LOW Afret3
return

AminChord:
 LOW Gfret1
 high Gfret2
 LOW Gfret3
 LOW Cfret1
 low Cfret2
 LOW Cfret3
 low Efret1
 LOW Efret2
 low Efret3
 LOW Afret1
 low Afret2
 LOW Afret3
return

CmajChord:
 LOW Gfret1
 LOW Gfret2
 LOW Gfret3
 LOW Cfret1
 low Cfret2
 LOW Cfret3
 LOW Efret1
 LOW Efret2

41

 low Efret3
 LOW Afret1
 LOW Afret2
 high Afret3
return

DmajChord:
 LOW Gfret1
 high Gfret2
 LOW Gfret3
 LOW Cfret1
 high Cfret2
 LOW Cfret3
 LOW Efret1
 high Efret2
 low Efret3
 LOW Afret1
 LOW Afret2
 low Afret3
return

FmajChord:
 LOW Gfret1
 high Gfret2
 LOW Gfret3
 LOW Cfret1
 low Cfret2
 LOW Cfret3
 high Efret1
 LOW Efret2
 low Efret3
 LOW Afret1
 low Afret2
 LOW Afret3
return

GmajChord:
 LOW Gfret1
 LOW Gfret2
 LOW Gfret3
 LOW Cfret1
 high Cfret2
 LOW Cfret3
 LOW Efret1
 LOW Efret2
 high Efret3
 LOW Afret1
 high Afret2

42

 LOW Afret3
return

Gmin7Chord:
 LOW Gfret1
 LOW Gfret2
 LOW Gfret3
 LOW Cfret1
 high Cfret2
 LOW Cfret3
 high Efret1
 LOW Efret2
 low Efret3
 LOW Afret1
 high Afret2
 LOW Afret3
return

release:
 LOW Gfret1
 LOW Gfret2
 LOW Gfret3
 LOW Cfret1
 LOW Cfret2
 LOW Cfret3
 LOW Efret1
 LOW Efret2
 LOW Efret3
 LOW Afret1
 LOW Afret2
 LOW Afret3
return

	Trinity University
	Digital Commons @ Trinity
	5-2016

	Mechalele (Self-Playing Ukulele)
	Timothy F. Davison
	Arsenio Gonzalez
	Taylor Piske
	Repository Citation

	Design Summary
	System Details
	Tuning Mode
	Song Playing Mode

	Design Evaluation
	Partial Parts Lists
	Lessons Learned
	Appendix
	Materials and Wiring Diagrams
	Arduino and PIC Code

