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Abstract

Consider the alphabet A and define A∗ as the set of words over A. Define a

vector of sequences of subsets of N as ~u = (u1, u2, . . . , uk). Consider a word w ∈ A∗.

Define their to be an embedding of ~u in w, ~u ≤ w if there is some i such that,

wi ∈ uj , wi+1 ∈ uj+1, . . . wi+k−1 ∈ uj+k−1. Define a word that avoids the vector ~u as a

word where there is no such i, such that wi ∈ uj , wi+1 ∈ uj+1, . . . wi+k−1 ∈ uj+k−1.

We define the weight of a function as wt(w) = t|w|x
∑

(w). We define the generating

function for a certain pattern ~u as F (u;x, t) =
∑

u≤w wt(w). We consider two patterns

~u and ~v to be Wilf Equivalent if F (~u;x, t) = F (~v;x, t). We then prove some properties

for Wilf Equivalence of patterns. We use these properties to then try to describe classes

of Wilf Equivalent objects.

1 Introduction

Given an alphabet A, let: A∗ = {w = w1w2 . . . wl : n ≥ 0 and wj ∈ A ∀j} and Ai =

{w = w1w2 . . . wi : n ≥ 0 and wj ∈ A ∀j}. That is A∗ is the set of all words over A and

Ai is the set of all words of length i over A. Let N = {1, 2, 3, . . . } and for any k ∈ N let

[k] = {1, 2, . . . , k}. Define the length of a word |w|, as the number of characters in the word.

Define the norm of a word w,
∑

(w) =
∑l

i=1wi. For example, given the word w = 14252,

|w| = 5 and
∑

(w) = 14. A permutation of a non-empty set A is a bijection between A and

itself. We will consider permutations of the set [k]. We will denote the set of permutations

of [k] as Sk. The permutations of [3] are the set {123, 132, 213, 231, 321, 312}.
Given a word w ∈ [n]∗ such that |w| = `, given an i such that 1 ≤ i ≤ `, consider a

subword to be w′ = wi, wi+1, . . . , wi+k−1. Let a subsequence of a word w ∈ [n]∗ and |w| = `,

be w′ = wm1 , wm2 , . . . , wmk such that 1 ≤ mi ≤ `, and mi < mi+1. For example given

the word w = 14252 an example of a subword and a subsequence is w1w2w3 = 142, while

w1w3w5 = 122 is an example of a subsequence.

One of the first considered problems in the field of pattern avoidance was classical per-

mutation avoidance. Given permutations τ ∈ Sn and σ ∈ Sk, we say σ embeds in τ if there

is some subsequence of length k in τ such that the letters of this subsequence are in the same

relative order as the permutation σ. That is if σi < σi+j then τmi < τmi+j , and if σi > σi+j

then τmi > τmi+j . As an example, σ = 312 and τ = 42568317, σ embeds in τ in three places:

42568317, 42568317, and 42568317. If there is no subsequence where σ embeds in τ we say

σ avoids τ . For instance σ = 54321 avoids τ = 312 since σ1 > σ2 > · · · > σ5, and to embed
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312 there must be an increase in the permutation. Let the number of words of length n that

avoid a permutation σ be An(312). It is known that An(312) = Cn the Catalan numbers,

but this problem is generally very difficult for a general σ.

The problem of classical permutation pattern avoidance was then generalized to words

avoiding words in this relative order. Given a pattern u is a word which contains all letters,

and only letters from the alphabet [k]. Examples of such patterns using the alphabet [k] are

1243 and 1442113. We say a word w pattern embeds u if there is some subsequence w′ which

is order isomorphic to the pattern u. That is if |u| = |w′| and if ui < ui+j then wmi < wmi+j ,

if ui > ui+j then wmi > wmi+j , and if ui = ui+j then wmi = wmi+j. For example: the word

w = 17356348 pattern embeds u = 1243, since w′ = w1w3w5w7 = 1364 is order isomorphic

to u. Again, we say a word w avoids u if there is no subsequence such that u pattern embeds

in w. The word w = 12345 avoids the pattern u = 1321 because there is no way to get a

decreasing pair of letters for the 32 portion of the pattern u = 1321.

All of these definitions of avoidance consider themselves with classical avoidance. There

is another type of avoidance which we will concern ourselves with more, which is consecutive

avoidance. In this case, instead of using subsequences of words we will use subwords. So

for instance permutation pattern avoidance is redefined to say that σ embeds in τ if there

is some subwords of length k in τ such that the letters of this subword are in the same

relative order as σ. So even though if σ = 312 and τ = 42568317, σ embeds using classical

pattern avoidance in τ in three places: 42568317, 42568317, and 42568317. We have that σ

avoids τ in consecutive permutation avoidance, because none of these embeddings consist of

subwords.

Previously Kitaev et al published a paper called Rationality, irrationality, and Wilf equiv-

alence in generalized factor Order. In this paper, they describe a style of embedding called

factor order, where given a word w, w′ embeds in w if there are words u, v such that

w = uw′v. For example if w = 12321422, w′ = 214 is a factor of w since it appears in w, as

seen here 12321422. Then the authors sought to generalize factor order, by defining a word

u to factor embed in w denoted u ≤ w, if |u| = |w′|, and |ui| ≤ |w′i| for 1 ≤ i ≤ |u|. For

example, if u = 132, and w = 12321422, then u factor embeds in w. It factor embeds in the

place 12321422, since 1 ≤ 1, 3 ≤ 4, and 2 ≤ 2. We will consider this definition of embedding

until we introduce our generalization.

In Section 2, we will introduce generating functions and Wilf equivalence, and give the

findings found in [Kitaev et. al., 2009]. In section 3, we will introduce our generalization of

factor embedding, and give definitions. In section 4, we will introduce the theorems which
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give properties for which Wilf equivalence holds.

2 Generating Functions on Words

In an effort to describe properties of a certain pattern, authors have considered generating

functions. Let t, x be commuting variables, and consider the a word w, we let the weight

of w, wt(w) be defined as wt(w) = t|w|x
∑

(w). For example, given the word w = 14252,

wt(w) = t5x14.

In [Kitaev et. al., 2009], new sets are defined. Using generalized factor embedding we

denote the set F(u) = {w|u embeds in w}. Using generalized factor embedding, u is suf-

fix embedded into w if the first time u embeds in w is in the last spot in w. We let

S(u) = {w|the first embedding of u is in the suffix of w}. We let A(u) = {w|w avoids u}.
Generating functions for these sets are also defined as below, we have

F (u;x, t) =
∑

w∈F(u)

wt(w),

S(u;x, t) =
∑

w∈S(u)

wt(w) and

A(u;x, t) =
∑

w∈A(u)

wt(w).

Note that the generating function for all words is

1

1−
∑

n≥1 tx
n

=
1− x

1− x− tx
.

From this, the authors in [Kitaev et. al., 2009] defined these relations between F (u;x, t),

S(u;x, t), and A(u;x, t).

1. F (u;x, t) =
1− x

1− x− tx
− A(u;x, t)

2. F (u;x, t) = S(u;x, t)
1− x

1− x− tx

Two words u and v are defined as Wilf equivalent if F (u;x, t) = F (v;x, t). Using the rela-

tionships between the three generating functions it is easy to see that it Wilf equivalence also

follows if A(u;x, t) = A(v;x, t), or S(u;x, t) = S(v;x, t). The authors in [Kitaev et. al., 2009]

proved these three properties about Wilf equivalence of words:



Garner Cochran Page 6 of 11 Total Pages

1. given a word u, u ∼ ur,

2. if u ∼ v, then 1u ∼ 1v, and

3. if u ∼ v, then u+ ∼ v+, where u+ is gotten by increasing every element in u by 1.

Now we will seek to generalize the notion of generalized factor embeddings.

3 Generalized Interval Embeddings

Define the sequence of subsets of N as ~u = (u1, u2, . . . uk), and an element w ∈ A∗. Define

set operations on two sequences ~u and ~v to be pairwise. Define there to be an embedding

of ~u in w if there is some i such that, wi ∈ uj, wi+1 ∈ uj+1, . . . wi+k−1 ∈ uj+k−1. For

example, if w = 153244, and a set of intervals ~u = {[1, 5], [2, 4], [3, 5]}, this set of intervals

is embedded consecutively in the word in two places: 153244, and 153244. This is because

3 ∈ [1, 5], 2 ∈ [2, 4], and 4 ∈ [3, 5] for the first embedding, and similarly, 2 ∈ [1, 5], 4 ∈ [2, 4],

and 4 ∈ [3, 5]. An example of a word that avoids this set of intervals is, 152142. Call

this type of embedding generalized interval embedding. Given the set of intervals ~u, in the

case that ui = [ai, bi], define the distance of ui, denoted d(ui) = bi − ai + 1. Define d(~u) =

(d(u1), d(u2), . . . d(uk)). For example, in the case that ~u = ([1, 5], [2, 4], [3, 5]), d(~u) = (5, 3, 3).

Given two interval sets u and v for which d(~u) = d(~v), let ∆(~u,~v) = (δ1, δ2, . . . , δk) where

given ui = [ai, bi], and vi = [a′i, b
′
i], δi = a′i − ai. For example consider ~u = ([2, 3], [3, 5], [6, 9])

and ~v = ([2, 3], [5, 7], [4, 7]) Then d(~u) = (1, 2, 3) and d(~v) = (1, 2, 3). Since d(~u) = d(~v), then

we may consider ∆(~u,~v) = (0, 2,−2). If we consider the possibility that bi =∞ for all i we

now see that our embedding definition is a generalization of generalized factor order, which

was used in the paper [Kitaev et. al., 2009]. Consider the example where we wish to embed

u = 132. This correlates to avoiding the interval sets u = {[1,∞], [3,∞], [2,∞]}.

4 Wilf Equivalence of Interval Embeddings

Our previous definitions of generating functions and wilf equivalence will hold in the case of

generalized interval embeddings. Let A(~u) represent the set of all words which avoid ~u, and

let S(~u) represent all words which avoid ~u in all possible places to embed but the last one,
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that is the suffix. Let

A(~u;x, t) =
∑

w∈A(~u)

wt(w) and S(~u;x, t) =
∑

w∈A(~u)

wt(w)

. In order to prove properties that show ~u ∼ ~v we want a bijection φ : A(~u) → A(~v), such

that if φ(w) = w′, wt(w) = wt(w′).

Theorem 1. Given sets of intervals ~u and ~v with the following properties,

1. d(~u) = d(~v),

2.
∑
δi = 0,

3. there exists an m such that
m⋃
r=1

ur
⋂ k⋃

s=m+1

us = ∅, and

4. there exists an n such that
n⋃
r=1

vr
⋂ k⋃

s=n+1

vs = ∅,

then ~u ∼ ~v.

Proof. Given a pair of interval sets ~u and ~v, which satisfy the stated conditions, consider

the function φ : A(~u)→ A(~v). Given a word w ∈ A(~u), let φ(w) be defined by the following

rules:

• if w ∈ A(u) ∩ A(v), let φ(w) = w,

• if w ∈ A(u)\A(v), for any an occurrence of ~v which is embedded in the word w, where

the first letter of the occurrence is at wi, let w′i+j−1 = δj + wi+j−1,

• if you get a word w /∈ A(u) ∪ A(v) repeat the process until the embedding is in

A(v) \ A(u). Once this algorithm terminates, we have φ(w).

Lemma 1. No embeddings of ~u or ~v with the above properties in a word w will overlap with

embeddings of themselves.

Proof. Noting properties 3 and 4, we see that each interval set must have a place where

the left is disjoint from the right, let this be um. Assume towards a contradiction there are

two embeddings of ~u in w which overlap and are not in the same place. Consider that um

correlates to wi+m−1 for the first embedding and some other letter wi+m−1+j for the second
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embedding. Consider any letter wl between wi+m−1 and wi+m−1+j. Letter wl ∈
m⋃
r=1

ur since

for the second embedding of ~u wl is to the left of um. Also wl ∈
k⋃

s=m+1

us since for the first

embedding of ~u, wl is to the right of um. But this means wl ∈
m⋃
r=1

ur
⋂ k⋃

s=m+1

us = ∅, therefore

no embeddings will overlap.

Lemma 2. φ is a bijection.

Proof. Note that if ~u = ~v then it is trivially true that ~u ∼ ~v, so assume now that ~u 6= ~v with

the above properties. Since w ∈ A(~u), then w ∈ F(~v) ∪ A(~u). That is, any embedding of

~v in w must not also be an embedding of v. From Lemma 1, we realize that if we consider

words of where with the same length as the number of intervals in ~u let us call this length

l, since we can consider these independently of each other. Given a word of length l, since

~u 6= ~w, then there exists δi < 0. Since no element ui or vi in ~u or ~v has a lower bound ai < 1,

then after the algorithm runs for some time, some wi will eventually leave the interval vi.

At this point the algorithm will terminate.

Now if we consider any y ∈ A(~v), and wish to to send it to some element w ∈ A(~u) since

∆(~v, ~u) = −∆(~u,~v) then we consider the function φ : A(~v) → A(~u), we realize it uses the

same steps, except backwards. Therefore we realize φ(φ(w)) = w, so φ = φ−1. Therefore φ

is a bijection.

Since φ is a bijection, we have that ~u ∼ ~v

Consider the following example. Given the interval sets ~u = ([1, 1], [2, 7], [7, 12]), and

~v = ([1, 1], [4, 9], [5, 10]). Certainly properties 1 and 2 hold. Note that d(~u) = d(~v) = (1, 6, 6),

δ(~u,~v) = (0, 2,−2), and0+2−2 = 0, so properties 3 and 4 hold. For ~u and ~v, [1, 1] is disjoint

from everything else, so properties 5 and 6 hold. Therefore ~u ∼ ~v.

The algorithm works as follows, consider the element w = (1, 2, 9, 9, 1, 2, 11). We see that

w ∈ A(~v), but there are two embeddings of ~u: (1, 2, 9, 9, 1, 2, 11), and (1, 2, 9, 9, 1, 2, 11). We

wish to have our function φ take this to an element in A(~u). After step one, w′ = (1 + 0, 2 +

2, 9− 2, 9, 1 + 0, 2 + 2, 11− 2) = (1, 4, 7, 9, 1, 4, 9). We notice that in w′ there are still places

where ~u embeds. w′ = (1, 4, 7, 9, 1, 4, 9), and w′ = (1, 4, 7, 9, 1, 4, 9) so we do the algorithm

again. This time in w′′ = (1 + 0, 4 + 2, 7− 2, 9, 1 + 0, 4 + 2, 9− 2) = (1, 6, 5, 9, 1, 6, 7) there is

only one place where ~u embeds: (1,6,5,9,1,6,7). So we operate again on this embedding to

get: w′′′ = (1, 6, 5, 9, 1 + 0, 6 + 2, 7− 2) = (1, 6, 5, 9, 1, 8, 5) = φ(w) = x.
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Theorem 2. We may change property 1 from Theorem 1 from d(~u) = d(~v) to the following

d(~u) = σ(d(~v)), where σ is some permutation of the elements of the vector, and and δi =

avσi − aui.

Proof. A similar proof to Theorem 1 is considered with the following steps. Before you

operate with the δi permute the embedding of v, y as σ(y) = y′, so we then have some

subword y′ of w such that σ(v) ≤ y′. Now consider the same algorithm as above, then when

you get to the end, every subsequence which was permuted, is reversed with σ−1. Since σ is

invertible, then it still holds with this algorithm that φ = φ−1.

Lemma 3. Generalizing the Wilf equivalence properties in [Kitaev et. al., 2009], we have

the following Wilf Equivalences:

1. ~u ∼ (~u)r where (~u)r is the reverse of ~u,

2. if ~u ∼ ~v then (U, u1, u2, . . . , uk) ∼ (U, v1, v2, . . . , vk), and

(u1, u2, . . . , uk, U) ∼ (v1, v2, . . . , vk, U),

3. if ~u ∼ ~v then if we add 1 to all ai and bi then the resulting interval vectors are wilf

equivalent.

The proofs for these follow very similarly to the proofs they given in the paper [Kitaev et. al., 2009]

for generalized factor order.

Theorem 3 (Corollaries). By mixing our previous theorems we have the following corollaries:

Let (~u~v) = (u1, u2, . . . , uk, v1, v2, . . . , vj), and generalize this operation for any number of

interval sets as ( ~u1 ~u2 . . . ~uk). If ∪(ui)
⋂
∪(vi) = ∅, ∪(u′i)

⋂
∪(v′i) = ∅, ~u ∼ ~u′ and ~v ∼ ~v′

1. (~u~v) ∼ (~u′~v′) ∼ (~v~u) ∼ (~v′~u′),

2. (U~u~v) ∼ (U ~u′~v′) ∼ (U~v~u) ∼ (U~v′~u′) and (~u~vU) ∼ (~u′~v′U) ∼ (~v~uU) ∼ (~v′~u′U)

Theorem 4 (Rearrangement Theorem). Let ~u and ~v be intervals such that there is at least

1 ui <∞, and ~u ∼ ~v. Then d(~u) = d(~v) up to reordering.

Proof. It is easy to show that if ~u ∼ ~v then ~u and ~v are of the same length, and
∑
aui =∑

avi, so there exist permutations σ = σ1σ2 . . . σk and τ = τ1τ2 . . . τk so that uσ = uσ1 ≥
uσ2 ≥ · · · ≥ uσk and vτ = vτ1 ≥ vτ2 ≥ · · · ≥ vτ Suppose that u and v are not rearrangements.

Then there exists some 1 ≤ i ≤ k such that uσj = vτj for each 1 ≤ j ≤ i − 1 and, without

loss of generality, vτi > uσi . Define Auσ to be the set of w ∈ S(uσ) such that
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1. wt(w) = xk+n−vτi+1tk, and

2. wz = uσz for 1 ≤ z ≤ i− 1,

that is, uσ and w have the same length, and the first i− 1 letters of uσ and w are the same.

Now, define Bu to be the set of w ∈ Sn(uσ) such that

1. wt(w) = xk+n−vτi+1tk, and

2. wz > uσz for at least one z ≤ i− 1.

Then the coefficient of xk+n−vτi+1tk in Sn(uσ, x, t) is |Auσ |+|Buσ |, and similarly, the coefficient

of xk+n−vτi+1tk in S(vτ , x, t) is |Avτ |+ |Bvτ |. By construction, each word in Auσ corresponds

to an element (a1, . . . , ak−i+1) of the set Tuσ such that

1. for each 1 ≤ r ≤ k − i+ 1, 0 ≤ ar ≤ n− vτi + 1, and

2. a1 + · · ·+ ak−i+1 = n− vτi + 1.

Each word in Avτ corresponds to an element (a1, . . . , ak−i+1) of the set Tvτ such that

1. 0 ≤ a1 < k − i+ 1,

2. for each 2 ≤ r ≤ k − i+ 1, 0 ≤ ar ≤ n− vτi + 1, and

3. a1 + · · ·+ ak−i+1 = n− vτi + 1.

We can see from these descriptions that Tvτ ⊂ Tuσ , which gives that

|Avτ | = |Tvτ | < |Tuσ | = |Auσ |.

Now, every word of Buσ corresponds to an element (b1, . . . , bk) of the set Luσ such that

1. for each 1 ≤ r ≤ i− 1, 0 ≤ br ≤ n− uσr ,

2. for each i ≤ r ≤ k, 0 ≤ br < n− vτi + 1, and

3. b1 + · · ·+ bk = n− vτi + 1.

Each word in Bvτ corresponds to an element (b1, . . . , bk) of the set Lvτ such that

1. for each 1 ≤ r ≤ i− 1, 0 ≤ br ≤ n− vτr ,
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2. for each i ≤ r ≤ k, 0 ≤ br < n− vτi + 1, and

3. b1 + · · ·+ bk = n− vτi + 1.

We can see from these descriptions that, since uσr = vτr for 1 ≤ r ≤ i− 1, Lvτ = Luσ , which

gives that

|Bvτ | = |Lvτ | = |Luσ | = |Buσ |.

Since we are dealing with embedding words of the same length of the original words, u and

v, |Au| = |Auσ |, |Bu| = |Buσ |, |Av| = |Avτ |, and |Bv| = |Bvτ |. Thus, Sn(u, x, t) 6= Sn(v, x, t)

as their coefficients of xk+n−vτi+1tk do not agree, that is, u 6∼n v.
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