
Trinity University
Digital Commons @ Trinity

Mechatronics Final Projects Engineering Science Department

5-2016

A DJ Robot
Robert Hure
Trinity University, rhure1@trinity.edu

Josh King
Trinity University, jking1@trinity.edu

Follow this and additional works at: http://digitalcommons.trinity.edu/engine_mechatronics

Part of the Engineering Commons

This Report is brought to you for free and open access by the Engineering Science Department at Digital Commons @ Trinity. It has been accepted for
inclusion in Mechatronics Final Projects by an authorized administrator of Digital Commons @ Trinity. For more information, please contact
jcostanz@trinity.edu.

Repository Citation
Hure, Robert and King, Josh, "A DJ Robot" (2016). Mechatronics Final Projects. 5.
http://digitalcommons.trinity.edu/engine_mechatronics/5

http://digitalcommons.trinity.edu?utm_source=digitalcommons.trinity.edu%2Fengine_mechatronics%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.trinity.edu/engine_mechatronics?utm_source=digitalcommons.trinity.edu%2Fengine_mechatronics%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.trinity.edu/engine?utm_source=digitalcommons.trinity.edu%2Fengine_mechatronics%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.trinity.edu/engine_mechatronics?utm_source=digitalcommons.trinity.edu%2Fengine_mechatronics%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/217?utm_source=digitalcommons.trinity.edu%2Fengine_mechatronics%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.trinity.edu/engine_mechatronics/5?utm_source=digitalcommons.trinity.edu%2Fengine_mechatronics%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:jcostanz@trinity.edu

Mechatronics Design Report: A DJ Robot

Mechatronics
ENGR 4376

Instructor: Dr. Kevin Nickels

Robert Hure (pledged) Josh King (pledged)

 2

TABLE OF CONTENTS

1. DESIGN SUMMARY 3

2. SYSTEM DETAILS 5

3. DESIGN EVALUATION 14

4. PARTIAL PARTS LIST 16

5. LESSONS LEARNED 16

6. ACKNOWLEDGEMENTS 17

7. APPENDIX 18

 3

1. DESIGN SUMMARY

This report discusses the design of an audio entertainment device incorporating

movement, lights, and motion in order to entertain the user, shown in Fig. 1. The user inserts a

source of music through an AUX cord, which controls the color of the lights display based on the

frequency of music. Through a control box tethered to the device, shown in Fig. 2, the user

controls the amplitude of rotary motion the lights move before returning back to its original

position and repeating, which is controlled by a stepper motor. The user also has control of

which color represents the bass, mid, and treble frequency bands through the use of a single push

button that cycles through all of the options. There are also three modes that the light can be in:

a smooth response to the music, a strobe response to the music, and an off state with a simple

fade sequence. These modes are selected through the use of a three-position-switch with the

middle state being the off state. The kill switch allows for the lights to be quickly turned off in

the event that the strobes become disorienting. While the lights are in either of the on states, the

Arduino will start the off fade sequence if it detects that no music is being played for 5 seconds,

then switches back to the previous mode as soon as music starts playing; this prevents the lights

from being completely off for too long. The functional diagram for the device is shown in Figs. 3

& 4.

Figure 1. Overall design implemented

 4

Figure 2. Control Box. Left knob controls motor sweep, right knob controls strobe time,

button allows color selection, three position switch allows mode selection

Figure 3. Functional Diagram for PIC

Figure 4. Function Diagram for Arduino

PIC
MICROCONTROLLER

POWER CHIP (ULN2003A)

POTENTIOMETER

STEPPER MOTOR

 5

2. SYSTEM DETAILS

2.1 Output Display: Lights

Lights were attached to steel wire using the built-in adhesive on the back of the light

strands. The light strands were coupled to the stepper motor by inserting wire into holes drilled

into an attachment on the stepper motor, shown in Fig. 5. Lights were cut into segments for each

piece of wire. One end of each light segment was exposed so that wires could be soldered to

power and control the lights. The LED strips were powered by a 12V supply using the circuit

shown in Fig. 6. The TIP 110 was chosen because it the only BJT in the lab rated to handle the

2A and 12V required by the light strip. The strips were sectioned into sets of three RGB LEDs

where the strip could be cut across the copper contacts; cutting the strips in in other locations

ruins that section of lighting.

Figure 5. Light Display

 6

Figure 6. Circuit Schematic for the LED strips

2.2 Audio Output Device: Jam Speaker

The audio input from the user was split to send the same signal to the Arduino controlling

the light system as well as the audio device, which was a small Jam personal speaker that can be

purchased online for $25, shown in Fig. 7. The speaker runs on a battery with a charge of

roughly 6 hours, according to the manufacturer. A home-made audio splitter was made for this

device.

Figure 7. Jam Speaker used in design

 7

2.3 Manual User Input: Control Box

 The control box consists of a small metal casing containing two potentiometers, a NO

push button, and a three-position switch. 5V and ground are supplied from the Arduino. The

schematic for the control box is shown in Fig. 8. The Arduino reads the strobe potentiometer

while the motor pot is read by the PIC. The switch connects the D6 pin to 5V when it is toggled

up, neither pin is connected to 5V when the switch is toggled down, and the D7 pin is connected

to 5V when the switch is toggled down. The Arduino interoperates the values of these two pins

to determine the state of the switch and set the mode of the lights. When the push button is

pressed, 0V is applied to the D4 pin of the Arduino, causing cycling through the color

combinations.

Figure 8. Schematic for manual control box

2.4 Automatic Input: Music

 The audio signal acts as an automatic input into this system. It is interpreted by the

MSGEQ7 music chip in the schematic shown in Fig. 9. This chip provides analog readings for 7

different frequency bands. The Arduino sends a pulse to the strobe pin to signal the IC to send

the next value. Once it has received all seven values it signals the chip to reset. The values

received control the brightness of RGB LEDs, causing the color assigned to the particular band

to increase in brightness when a higher reading is being received for that band. The lights will

also switch to the fade sequence when no music being received.

 8

Figure 9. Schematic for MSGEQ7 music chip

2.5 Hardware: Stepper Motor

A stepper motor was used to spin the light display, shown in Fig. 5. Signals sent from the

PIC are amplified to 12 V by the ULN2003 and sent to the stepper motor to energize different

coils in sequence to rotate a shaft, shown in Fig. 10. The stepper motor schematic can be seen in

Fig. 11. The size of the motor and the load attached to the stepper motor determine how fast the

motor can spin. If the step time is too small or the load is too great, the stepper will not progress

from step to step and may stall or process backwards with a great enough load imbalance. To

combat this, a brief transition phase was added between steps. Similar to microstepping, the

previous coil and the next coil are energized in the transition phase, preparing the stepper to

transition into the next stage. By attaching a load and observing minimum step time before

failure, it was determined that addition of the transition phase increased motor torque.

Microstepping was not implemented for simplicity, as microstepping requires four PWM

outputs.

Once the load was attached, the minimum step time was tuned and found to be 0.6 s/step.

An analog input from a potentiometer in the control box determined how many steps the motor

would take in the clockwise direction before reversing and taking that many steps in the

counterclockwise direction to return to the original position and take another reading from the

potentiometer.

Stepper motors are well suited for position control applications, which was important to

the design; wiring to lights was connected to the main control circuitry by a tether of wires. An

uneven amount of spinning by the light display would put the tether under tension, damaging the

control circuitry and light display. Stepper motors are also quieter than PMDC motors, which is

important in audio applications.

 9

Figure 10. Stepper motor mounted to wooden frame from top (left) and bottom

(right)

Figure 11. Stepper motor schematic

2.6 Logic & Processing: Arduino & PIC

A Microchip PIC16F88 microcontroller was used to read an analog input from a

potentiometer and send out four digital signals to control the stepper motor. The code

implemented follows the flowcharts shown in Figs. 12 & 13. The entire code can be seen in the

Appendix. The PIC reads the input from the potentiometer through the ADC and uses this value

 10

to set the amplitude of the stepper motor sweep, which has a maximum of roughly 1.5 rotations

and a minimum of no rotation. The stepper motor then moves clockwise an amount equal to the

amplitude, then moves back.

 The Arduino adjusts the brightness of the red, green, and blue LEDs to achieve a color

that represents the amplitude of each frequency band. To do this the Arduino preforms a

statistical analysis of the three major frequencies bands (bands 1, 3, and 5) using a downloaded

statistics library. This library can return the average and standard deviation of a collected data

set. The first thing the Arduino does for each run is it checks the size of each statistics data set

and resets them if they reach the maximum. When the data set is reset the last two readings are

added to the new data set to prevent any errors that might be cause by statistical analysis on an

empty data set.

After the Arduino confirms the sample sizes of the statistics, it reads the input values

from the control box. The first component checked is the push button, which the Arduino will

only respond to if it is both low and not equal to its state from the previous run. This prevents

multiple reads being registered from one press. When it is registered that the button is pressed,

the Arduino increments the count for the color mode and tells the rest of the code that a new

color mode has been choses and to reset to the initial condition for the zero mode through

Boolean variables. After this the code stores the state of the pushbutton to compare with the next

run through and takes the readings of the two pins attached to the three-position switch. If it

detected that the strobe on pin is high it tells the code that it is in the strobe mode and that it is

not in the kill mode, if it detects that the strobe off pin is high it tells the code that it is in strobe

off mode and that it is not in kill mode, and if it detects that both pins are low it tell the code that

it is in kill mode.

Finally it will read and map the value of the strobe sensitivity potentiometer. After it has

read the inputs from the control box, the Arduino checks to see if it needs to change the color

mode. If the Boolean variable tells the Arduino that it does not need to change the color mode

the code advances to the next step. However, if the code does need to change the color mode it

will set the Boolean variables for each color and frequency combination based on the value

generated from the control box reading and then tells the code that it no longer needs to change

the color mode.

 11

Next the Arduino takes the readings from the MSGEQ7 chip after sending it the

command to reset. This is done by sending a low value to the strobe pin on the chip and taking

and ADC input from the chip. Once the reading is taken, the value is constrained to remove

noise, mapped to the same range that the LEDs can receive, and the difference from the previous

reading is calculated. This is repeated for all frequency ranges using a for loop. Once all the

values have been collected, the three major bands are added to their respective statistics data set.

The next step is to determine if all of the readings were zero. When all bands are completely off,

the code resets the nonzero count and increments the zero count. When at least on band is above

0, the code increments the nonzero count and if it reaches 5 then the code resets the zero count.

This removes the possibility of the code registering small levels of interference as a music input.

Now that all the necessary inputs have been taken the code can decide on which state it is

supposed to be in. If the code is told to enter the zero state, it first checks to see if it has also

been told to reset in zero mode. If it has been told to reset then it sets the bass value to the

maximum and the middle and treble values to 0. Otherwise the code will run through a slow

fade sequence that can be sped up or slowed down by changing the delay constant in the code.

The colors on this fade sequence are also altered using the pushbutton.

The fade sequence preforms one step and then returns to the beginning of the main loop

allowing for the lights to exit the zero mode almost instantly if music is detected. If the code is

not told to enter the zero mode, it will run through the process of defining the minimum,

maximum, step size, and finally value for each light.

The maximum of each light is decided on which band has the greatest amplitude with the

largest reading having a maximum of 255, the second highest having a maximum of 200, and the

lowest having a maximum of 150. This idea behind this limitation of the colors is to help

prevent the bright white light that can be cause if the input volume is too high and to also ensure

that more unique colors are provided. The minimum value of each light is set the reading from

the MSGEQ7 preventing the light from going of if a steady value is being received. If the

MSGEQ7 reading is larger than the maximum, then the minimum is set to the maximum. The

step size for each light is defined by comparing the current reading to the running average. For a

reading larger than 1 standard deviation away from the average the step size is set to twice the

upward step size. For a reading between the average and 1 standard deviation above the average,

the step size is set to the upward step size. For a reading between the average and 1 standard

 12

deviation below the average, the step size is set to the downward step size. For a reading 1

standard deviation below the average, the step size is set to twice the downward step size. The

section of the code that define the values for each light will check to see if the step size puts the

value above or below the minimum or maximum and sets it the respective value if it does.

Otherwise, the code will set the value to the previous value plus the decided step size.

Now that every value has been defined, the Arduino will either implement the strobe on

conditions to the lights or the strobe off conditions. In the off strobe mode, the code will adjust

the Boolean variables for the color and band combinations and set the values for each LED

accordingly. The strobe on mode works the same way as the strobe on mode, but it will limit the

values of the bands based on the difference readings in relation to the strobe sensitivity. This

allows for rapid changes in the amplitude of the frequency bands to be displayed on the light

strands. The lights respond better to the music in this mode, but, since the strobes can be

disorienting to people, the option to turn it off and adjust the sensitivity is given. At this point

the code return to the beginning of the main loop keeping all the values recoded from the last run

as only global variable are used. The flow charts and code for the Arduino processing can be

found in the Appendix.

 The entire circuit was constructed on a printed circuit board that connected into the

Arduino, similar to a test shield, as shown in Fig. 14. The printed circuit board is two sided based

on the number of components needed and is roughly 2.5” x 4”. The overall schematic is shown

in the Appendix.

 13

Figure 12. Flowchart followed by PIC to control stepper motor

Figure 13. Flowchart of subroutine to move stepper motor

 14

Figure 14. Printed Circuit Board atop Arduino with all components soldered on.

Foreground from the right: 470 uF capacitor to level the power supply, PIC16F88,
ULN2003A. Middleground: Audio processing chip. Background: TIP110 BJTs to power

lights.

3. DESIGN EVALUATION

The implemented design functioned in all listed design categories. The light strands

changed color based on Arduino inputs to span the entire RGB range. The lights responded the

music quickly and exactly as desired. Every type of music showed up well in either the strobe or

fade setting. The transition to and from the off state were smooth and quick. The Jam Speaker

attached to the home-made audio splitter produced clear sound at appropriate volumes. The

control box allowed the user to alter the light display and rotation of the lights using two

potentiometers and a button.

The stepper motor successfully rotated the light system around and accepted inputs from

the potentiometer. Difficulties were experienced with the stepper motor; some back-rotation did

occur due to the size of the load, which became a greater problem with use. Understanding how

to interface with the stepper motor and increase torque required extensive research from the

assigned textbook, internet sources, Trinity University’s Electronics Shop, and the instructor.

 15

Implementing the transition phase to increase torque as a simpler version of microstepping was

the author’s original idea after reading about microstepping.

The code was able to process and adjust the lights faster than the human eye can detect.

Unique colors were created from different songs and the lights were successfully prevented from

all being at max brightness. There was no lag time switching between color modes and strobe

states

The project proposal deliverable received a grading adjustment of +2, and our device was

demonstrated on the early early-bird date for a grading adjustment of +10. All components were

well integrated on a tidy printed circuit board, and all connections were soldered. Connecting

wires were taped together and tied down for neatness. The Arduino-PCB combination was zip-

tied down to the device for durability, shown in Fig. 15. Creating the PCB required extensive

work on the author’s part and the shop technician’s part. The authors learned how to use the

software Eagle to design a printed circuit board, then re-designed the circuit board twice after

receiving feedback from the shop technicians. The authors’ soldering skills improved

significantly from creating the PCB.

The speaker ran on a battery supply. All other components were powered from one wall

plug connected to an AC/DC converter to deliver 12 V to the stepper and lights, which was

brought down to 5 V by the Arduino for all other components.

A PIC was used to control the stepper motor, while an Arduino was used to control the

lights. The Arduino was able to handle the load placed on it, but the 12V power source did cause

it to heat up a fair amount.

Initially the design implemented 4 PICs to control the lights instead of the Arduino. One

PIC would read the values from the MSGEQ7 and send them to the three other PICs, which

would interoperate them and send a PWM command to their respective light color. The reason

PICs were not used for light control was due to the difficulties that arose when attempting to get

the PICs to communicate with each other in slave and master modes. The use of an Arduino also

allowed for the implementation of the statistics library, which would have been much more

difficult with the PICs.

 16

Figure 15. Implemented wiring. All connections are soldered, all wires are zip tied down,

all wires going to the same location are taped together

4. PARTIAL PARTS LIST

Table 1. Partial Parts List
Component/Description Part Number Vendor Price

Stepper Motor 4017-868 Trinity Electronics Shop ~$40
Current Amplifier for

Stepper
ULN2003A Trinity Electronics Shop $0.50

Speaker Jam Personal Speaker Best Buy $30
Microcontroller PIC16F88 Trinity Electronics Shop $1

Arduino Arduino Uno Trinity Electronics Shop $25
Graphic equalizer chip

used to process the audio
signal

MSGEQ7 Adafruit $3

3X BJTs used as
amplifiers for the LED

strip.

TIP 110 Trinity Electronics Shop $1

LED light strip TaoTronics LED light
Strip

Amazon $20

5. LESSONS LEARNED

 We faced difficulties implementing the printed circuit board (PCB). Based on the number

of components and size restraints to fit atop the Arduino Uno, a two-sided circuit board was

required. Our PCB was the first two-sided board made at Trinity University, which required

additional research by Trinity’s shop technicians. Over a full week, roughly 12 hours were spent

 17

by the author designing the circuit board, 4 hours by the shop technician preparing the board for

printing, and 4 hours for the printer to create the board.

After the board was printed, it was discovered that each component had to be soldered on

both sides of the PCB, doubling the number of required solders. Soldering on both sides of the

PCB proved particularly difficult for sockets holding the PIC, ULN, and music chip, as solder

had to be slid between the plastic socket and the PCB in a gap the width of solder wire. Two

traces on the PCB were severed during the soldering process and had to be reattached with

solder. Roughly 15 hours were spent soldering on the PCB. It is recommended that continuity is

checked between all pins.

There was difficulty sizing the stepper motor. In order to ensure proper rotation of the

lights, the length of lights and speed of rotation had to be reduced. If the authors were to redesign

the system, a more powerful motor would be used to allow faster spinning of more lights, which

would be more entertaining.

The lights had trouble with clipping if the music input was placed much above half

values. The solution to this implemented in this design was to just have the user turn down the

volume on the input device. However, this limits how loud the user can play the music out of the

speaker. A solution that was discussed but not implemented due to time was to add a separate

amplifier for the music signal going into the MSGEQ7 to prevent clipping without affecting the

sound of the music coming out of the speaker.

6. ACKNOWLEDGEMENTS

The authors would like to acknowledge Trinity University Shop Technicians Ernest

Romero and Marc Trestman for their advice and help finding components, selecting components,

and creating the printed circuit board. The authors would like to acknowledge the instructor, Dr.

Kevin Nickels, for his advice throughout the project and for guiding research on controlling the

stepper motor.

 18

7. APPENDIX

Appendix A-1: Full Schematic

Appendix A-2: PIC Code
'**
'* Name : Mechatronics Project General Code *
'* Author : Robert Hure *
'* Date : 4/18/2016 *
'* Notes : Mechatronics Project: DJ Robot *
'**

' Define ADCIN parameters
DEFINE ADC_BITS 10 ' Set number of bits in result
DEFINE ADC_CLOCK 3 ' Set clock source (3=rc)
DEFINE ADC_SAMPLEUS 15 ' Set sampling time in uS

'Photoresistor ADC
adcVar2 VAR WORD ' ADC result
dutyCycle2 var byte ' Duty cycle for PWM

 19

input porta.0
output porta.2

'Motor ADC
adcVar VAR WORD ' ADC result
amplitude var byte ' Duty cycle for PWM
input porta.1

' Set up ADCON1
ADCON1 = %10000000 ' Right-justify results (lowest 10 bits)

'Enable PORTB pull-ups
OPTION_REG = $7f

'Initialize I/O
TRISB = %00000000

'Define Variables
motor var Byte 'Used to store the step of the motor
i var byte 'Used for step counting
num_steps var byte 'Used to assign number of steps to move
motor_dir var byte 'Used to store direction motor is to rotate

'Define Constants
CW con 0
CCW Con 1
stage1 con %0001 'Stages stepper motor moves through during motion, corresponding to active coil
stage2 con %0010
stage3 con %0100
stage4 con %1000
step_delay con 400 'Amount of time spent in each stage (ms)
partstep con 15 'Amount of time spent between stages (ms)

motor = stage4 'Initial motor state assignment

'Main subroutine
move:
 while (1) 'Always loop
 ADCIN 1, adcVar 'Input to stepper motor
 ' convert ADC value to a byte value:
 amplitude = 10+ adcVar / 8 'Amplitude of sweep
 motor_dir = CW 'Declare direction and steps
 num_steps=amplitude
 gosub move_steps 'Move specified steps, then reverse
 motor_dir = CCW
 gosub move_steps
 wend 'loop forever

Return

'Subroutine to move the motor a given number of steps
move_steps:
 For i=1 to num_steps
 Gosub step_motor
 gosub lights 'check photoresistor
 Next i

 20

Return

'Subroutine to read photoresistor
lights:
 ADCIN 0, adcVar2
 dutyCycle2 = adcVar2 / 4
 if (dutyCycle2 > 100) then
 high porta.2
 else
 low porta.2
 endif
return

'Subroutine to move to the next step in the desired direction
step_motor:

 if (motor=stage1) and (motor_dir=CW)then
 motor=stage2 'Set the new motor stage
 gosub stage12 'Transition phase
 gosub stage2o 'Next motor phase
 else
 if (motor=stage2) and (motor_dir=CW) then
 motor=stage3
 gosub stage23
 gosub stage3o
 else
 if (motor=stage3) and (motor_dir=CW) then
 motor=stage4
 gosub stage34
 gosub stage4o

 else
 if (motor=stage4) and (motor_dir=CW)then
 motor=stage1
 gosub stage14
 gosub stage1o

 else
 if (motor=stage4) and (motor_dir=CCW)then
 motor=stage3
 gosub stage34
 gosub stage3o

 else
 if (motor=stage3) and (motor_dir=CCW)then
 motor=stage2
 gosub stage23
 gosub stage2o

 else
 if (motor=stage2) and (motor_dir=CCW)then
 motor=stage1
 gosub stage12

 21

 gosub stage1o

 else
 'if (motor=stage1) and (motor_dir=CCW)then
 motor=stage4
 gosub stage14
 gosub stage4o

 'endif
 endif
 endif
 endif
 endif
 endif
 endif
 endif
 pause step_delay
return

'Subroutines to command the motor
stage1o:
low portb.3 'Pin assignments for this stage
low portb.2
low portb.1
high portb.0
return

stage12:
low portb.3 'Pin assignments for transition stage
low portb.2
high portb.1
high portb.0
pause partstep
return

stage2o:
low portb.3
low portb.2
high portb.1
low portb.0
return

stage23:
low portb.3
high portb.2
high portb.1
low portb.0
pause partstep
return

stage3o:
low portb.3
high portb.2
low portb.1
low portb.0

 22

return

stage34:
high portb.3
high portb.2
low portb.1
low portb.0
pause partstep
return

stage4o:
high portb.3
low portb.2
low portb.1
low portb.0
return

stage14:
high portb.3
low portb.2
low portb.1
high portb.0
pause partstep
return

 23

Appendix A-3: Arduino Flowcharts

 24

 25

 26

 27

 28

 29

 30

 31

 32

 33

 34

 35

 36

 37

Appendix A-4: Arduino Code

//*
//* LED Lightshow for Mechatronics with Dr. Kevin Nikles *
//* By: Robert Hure and Josh King *
//* This code takes the input from an audio signal processed by an MSGEQ7 *
//* and creates an RGB light show based off of the different frequencies *
//* in the given audio signal. The color of each frequency and the option *
//* to turn on and off a strobe mode can be manipulated using a controlbox *
//* with a three position switch, a button, and a potentiometer. If no *
//* music is detetected, the program will run a fade sequence. This can *
//* also be activated at anytime using the controlbox. *
//* *
//*
//_ //

// Set up LED libary:
#include <LED.h>
LED red = LED(10); // Define initial bass LED pin (D10)*
LED green = LED(3); // Define initial midband LED pin (D3)*
LED blue = LED(11); // Define initial treble LED pin (D11)*
//*Note: these must match the intial state in Color_Mode() and all be PWM pins
// This libary can be found at: http://playground.arduino.cc/Code/LED

// Set up Statistic libary:
#include <Statistic.h>
Statistic band1; // Define band1 as a dataset
Statistic band3; // Define band3 as a dataset
Statistic band5; // Define band5 as a dataset
//This libary can be found at: http://playground.arduino.cc/Main/Statistics

// Define analog pins:
#define EQin 0 // MSGEQ7 OUT pin
#define strobe_pot 5 // Analog pin for the strobe sensitivity potentiomiter

// Define digital pins:
#define resetPin 2 // MSGEQ7 RESET pin
#define GREENPIN 3 // PWM pin connected to the green LED
#define strobePin 4 // MSGEQ7 STROBE pin
#define strobe_on_pin 6 // Digital pin for on state of the 3 position switch
#define strobe_off_pin 7 // Digital pin for the off state of the 3 position switch
#define color_switch 8 // Digital pin for button that runs through all possible pairings for the bands and colors
#define REDPIN 10 // PWM pin connected to the red LED
#define BLUEPIN 11 // PWM pin connected to the blue LED

// Global Variables:
int spectrumValue1[7]; // Last readings from MSGEQ7
int spectrumValue2[7]; // Current readings from MSGEQ7
int diffValue[7]; // Difference bewteen the two readings
int diff_bass = 0; // Stored value for the difference bewteen last two bass bands (band1)
int diff_mid = 0; // Stored value for the difference bewteen last two middle bands (band3)
int diff_treb = 0; // Stored value for the difference bewteen last two treble bands (band5)
int bass_step = 0; // Stored value for the change in brightness for the bass LED
int mid_step = 0; // Stored value for the change in brightness for the midband LED
int treb_step = 0; // Stored value for the change in brightness for the treble LED

 38

int red_value = 0; // Stored value for the brightness of red LED (0-255)
int green_value = 0; // Stored value for the brightness of green LED (0-255)
int blue_value = 0; // Stored value for the brightness of blue LED (0-255)
int bass_value = 0; // Stored value for the brightness of the bass LED (0-255)
int mid_value = 0; // Stored value for the brightness of the midband LED (0-255)
int treb_value = 0; // Stored value for the brightness of the treble LED (0-255)
int bass_min = 0; // Stored value for the minmum allowed bass light brightness
int mid_min = 0; // Stored value for the minmum allowed midband light brightness
int treb_min = 0; // Stored value for the minmum allowed treble light brightness
int bass_max = 255; // Stored value for the maximum allowed bass light brightness
int mid_max = 255; // Stored value for the maximum allowed midband light brightness
int treb_max = 255; // Stored value for the maximum allowed treble light brightness
int color_mode = 0; // Defines which LED color the bass, midband, and treble (0-5)
int zerocount = 0; // Stored value for the number of times all bands read 0
int nonzerocount = 0; // Stored value for the number of times not all bands read 0
int strobe_sensitivity = 0; // Defines the maximum differnece required in a band for it to strobe
int button_state = 0; // Stored value for current state of the button
int last_button_state = 0; // Stored value for the previouse state of the button
int strobe_on = 0; // Stored value for state of strobe on input from 3 position switch
int strobe_off = 0; // Stored value for state of strobe off input from 3 position switch
int zero_mode_run = 0; // Stored value for the state of fade sequince for zero mode

// Constants: (alter these to tune the code)
const int filterValue = 60; // Value to remove noise
const int mapValue = 255; // Value to map spectrumValues to
const int readnum = 20; // Defines how many datapoints will be held for each band reading statistic
const int stepsizeup = 3; // Alters the rate at which the LEDs will brighten
const int stepsizedown = -4; // Alters the rate at which the LEDs will dim
const int zerocountmax = 80; // Defines the number of counts needed to enter the zero state
const int nonzerocountmax = 5; // Defines the number of counts needed to leave the zero state
const int zero_mode_step = 5; // Defines the stepsize of each run for zero mode
const int zero_mode_delay = 50; // Defines delay between steps for zero mode (ms)
const int strobe_delay = 20; // Defines length of strobe in strobe mode (ms)

// Boolean logic variables:
bool strobe_mode; // True: strobe mode on False: strobe mode off
bool kill_switch; // True: disable music response False: enable music response
bool new_color_mode; // True: redefine colors for each band False: keep colors for each band
bool initial_zero_mode; // True: reset values to intial state of zero mode False: continue running zero mode
bool red_bass; // True: red is bass band False: red is not bass band
bool red_mid; // True: red is mid band False: red is not mid band
bool red_treb; // True: red is treble band False: red is not treble band
bool green_bass; // True: green is bass band False: green is not bass band
bool green_mid; // True: green is mid band False: green is not mid band
bool green_treb; // True: green is treble band False: green is not treble band
bool blue_bass; // True: blue is bass band False: blue is not bass band
bool blue_mid; // True: blue is mid band False: blue is not mid band
bool blue_treb; // True: blue is treble band False: blue is not treble band

void setup() {
 analogReference(DEFAULT); // Set reference voltage: 5V
 Serial.begin(9600); // Step up Serial in 9600 baud
 pinMode(EQin, INPUT); // Set Input pins
 pinMode(strobe_on_pin, INPUT);
 pinMode(strobe_off_pin, INPUT);
 pinMode(strobe_pot, INPUT);

 39

 pinMode(color_switch, INPUT);
 pinMode(strobePin, OUTPUT); // Set output pins
 pinMode(resetPin, OUTPUT);
 digitalWrite(resetPin, LOW); // Set startup values for putput pins
 digitalWrite(strobePin, HIGH);
 digitalWrite(resetPin, HIGH); // Reset MSGEQ7
 digitalWrite(resetPin, LOW);
 band1.clear(); // Clear statstics bands
 band3.clear();
 band5.clear();
 red_bass = true;
 green_mid = true;
 blue_treb = true;
 initial_zero_mode = true;
}

// Main loop:
void loop() {
 Check_Stats(); // Resets all stats if they have more than readnum data points
 Read_Control_Box(); // Reads and interperates all values from the control box
 Check_Color_Mode(); // Changes to the next color layout if prompted
 Read_MSGEQ7(); // Reads values form the MSGEQ7
 Check_Zeros(); // Sets zerocount
 if (zerocount > zerocountmax || kill_switch == 1) { // Conditions for zeromode
 Zero_Mode(); // Sends a fade sequence
 Serial.print("Zeromode");
 }
 else {
 Define_Light_Min_and_Max(); // Defines min and max values for each LED
 Define_Step_Size(); // Defines change in brightness for each LED
 Define_Light_Values(); // Defines the brightness for each LED
 if (strobe_mode == false) { // Conditions for strobe mode off
 Strobe_Mode_Off(); // Sets light values without strobing
 initial_zero_mode = true;
 Serial.print("StrobeOff");
 }
 else if (strobe_mode == true) { // Conditions for strobe mode on
 Strobe_Mode_On(); // Sets LED values and stobes based off of the differnce spectrum
 initial_zero_mode = true;
 Serial.print("StrobeOn");
 }
 }
 Serial.println();
}

int Check_Stats() {
 if (band1.count() == readnum) { // Clears band1 if it reaches the max number of datapoints
 band1.clear();
 band1.add(spectrumValue1[1]); // Adds the last two readings to the next dataset
 band1.add(spectrumValue2[1]);
 }
 if (band3.count() == readnum) { // Clears band3 if it reaches the max number of datapoints
 band3.clear();
 band3.add(spectrumValue1[3]); // Adds the last two readings to the next dataset
 band3.add(spectrumValue2[3]);
 }

 40

 if (band5.count() == readnum) { // Clears band5 if it reaches the max number of datapoints
 band5.clear();
 band5.add(spectrumValue1[5]); // Adds the last two readings to the next dataset
 band5.add(spectrumValue2[5]);
 }
}

int Read_MSGEQ7() {
 digitalWrite(resetPin, HIGH); // Reset MSGEQ7
 digitalWrite(resetPin, LOW);
 for (int i = 0; i < 7; i++) {
 spectrumValue1[i] = spectrumValue2[i]; // Store previous reading in spectrum1
 digitalWrite(strobePin, LOW); // Tell MSGEQ7 to send band
 delayMicroseconds(20); // Allow output to settle
 spectrumValue2[i] = analogRead(EQin); // ADC on MSGEQ7 output
 spectrumValue2[i] = constrain(spectrumValue2[i], filterValue, 1023); // Constrain any value above
1023 or below filterValue
 spectrumValue2[i] = map(spectrumValue2[i], filterValue, 1023, 0, mapValue); // Remap the value to a
number between 0 and mapValue
 diffValue[i] = spectrumValue2[i] - spectrumValue1[i]; // Calculate difference value
 digitalWrite(strobePin, HIGH); // Set strobe on the MSGEQ7 to default state
 Serial.print(spectrumValue2[i]); // Send results to serial monitor
 Serial.print(", ");
 }
 band1.add(spectrumValue2[1]); // Add spectrum values into respective data
sets
 band3.add(spectrumValue2[3]);
 band5.add(spectrumValue2[5]);
}

int Check_Color_Mode() {
 if (new_color_mode == true) { // Only procede if new_color_mode is true
 if (color_mode == 0) { // Sets up boolean logic for relation between color and frequency
band
 red_bass = true; red_mid = false; red_treb = false;
 green_bass = false; green_mid = true; green_treb = false;
 blue_bass = false; blue_mid = false; blue_treb = true;
 Serial.print("colormode: 0"); // Prints state to serial when the color mode changes
 }
 else if (color_mode == 1) {
 red_bass = true; red_mid = false; red_treb = false;
 green_bass = false; green_mid = false; green_treb = true;
 blue_bass = false; blue_mid = true; blue_treb = false;
 Serial.print("colormode: 1");
 }
 else if (color_mode == 2) {
 red_bass = false; red_mid = true; red_treb = false;
 green_bass = true; green_mid = false; green_treb = false;
 blue_bass = false; blue_mid = false; blue_treb = true;
 Serial.print("colormode: 2");
 }
 else if (color_mode == 3) {
 red_bass = false; red_mid = true; red_treb = false;
 green_bass = false; green_mid = false; green_treb = true;
 blue_bass = true; blue_mid = false; blue_treb = false;
 Serial.print("colormode: 3");

 41

 }
 else if (color_mode == 4) {
 red_bass = false; red_mid = false; red_treb = true;
 green_bass = true; green_mid = false; green_treb = false;
 blue_bass = false; blue_mid = true; blue_treb = false;
 Serial.print("colormode: 4");
 }
 else if (color_mode == 5) {
 red_bass = false; red_mid = false; red_treb = true;
 green_bass = false; green_mid = true; green_treb = false;
 blue_bass = true; blue_mid = false; blue_treb = false;
 Serial.print("colormode: 5");
 }
 new_color_mode = false; // Set new_color_mode to flase to prevent code from setting up
the LED pins each run
 delay(10);
 }
}

int Define_Light_Min_and_Max() { // Sets maximum values to each
band
 if (spectrumValue2[1] > spectrumValue2[3] && spectrumValue2[3] > spectrumValue2[5]) { // when strobe
is off to prevent solid
 bass_max = 255; // white light due to clipping
 mid_max = 200;
 treb_max = 150;
 }
 else if (spectrumValue2[1] > spectrumValue2[5] && spectrumValue2[5] > spectrumValue2[3]) {
 bass_max = 255;
 mid_max = 150;
 treb_max = 200;
 }
 else if (spectrumValue2[3] > spectrumValue2[1] && spectrumValue2[1] > spectrumValue2[5]) {
 bass_max = 200;
 mid_max = 255;
 treb_max = 150;
 }
 else if (spectrumValue2[3] > spectrumValue2[5] && spectrumValue2[5] > spectrumValue2[1]) {
 bass_max = 150;
 mid_max = 255;
 treb_max = 200;
 }
 else if (spectrumValue2[5] > spectrumValue2[1] && spectrumValue2[1] > spectrumValue2[3]) {
 bass_max = 200;
 mid_max = 150;
 treb_max = 255;
 }
 else if (spectrumValue2[5] > spectrumValue2[3] && spectrumValue2[3] > spectrumValue2[1]) {
 bass_max = 150;
 mid_max = 200;
 treb_max = 255;
 }
 else { // When strobe mode is on all bands have highest value as maximum
 bass_max = 255;
 mid_max = 255;
 treb_max = 255;

 42

 }
 if (spectrumValue2[1] < bass_max) { // Sets the minimum value to the current reading if it is below
the max
 bass_min = spectrumValue2[1];
 }
 else {
 bass_min = bass_max; // Sets the minimum equal to the maximum otherwise
 }
 if (spectrumValue2[3] < mid_max) {
 mid_min = spectrumValue2[3];
 }
 else {
 mid_min = mid_max;
 }
 if (spectrumValue2[5] < treb_max) {
 treb_min = spectrumValue2[5];
 }
 else {
 treb_min = treb_max;
 }
}

int Define_Step_Size() {
 if (spectrumValue2[1] > band1.average() + band1.pop_stdev()) { // If the current reading is more than 1
standard deviation above the average
 bass_step = 2 * stepsizeup; // set the bass step to twice the up step size
 }
 else if (spectrumValue2[1] > band1.average()) { // Otherwise if the current reading is above the
average
 bass_step = stepsizeup; // set the bass step to the up step size
 }
 else if (spectrumValue2[1] < band1.average()) { // Otherwise if the current reading is below the
average
 bass_step = stepsizedown; // set the bass step to the step size down
 }
 else if (spectrumValue2[1] < band1.average() - band1.pop_stdev()) { // Otherwise if the current reading is
more than 1 standard deviation below the average
 bass_step = 2 * stepsizedown; // set the bass step to twice the step size down
 }
 if (spectrumValue2[3] > band3.average() + band3.pop_stdev()) { // If the current reading is more than 1
standard deviation above the average
 mid_step = 2 * stepsizeup; // set the mid step to twice the up step size
 }
 else if (spectrumValue2[3] > band3.average()) { // Otherwise if the current reading is above the
average
 mid_step = stepsizeup; // set the mid step to the up step size
 }
 else if (spectrumValue2[3] < band3.average()) { // Otherwise if the current reading is below the
average
 mid_step = stepsizedown; // set the mid step to the step size down
 }
 else if (spectrumValue2[3] < band3.average() - band3.pop_stdev()) { // Otherwise if the current reading is
more than 1 standard deviation below the average
 mid_step = 2 * stepsizedown; // set the mid step to twice the step size down
 }

 43

 if (spectrumValue2[5] > band5.average() + band5.pop_stdev()) { // If the current reading is more than 1
standard deviation above the average
 treb_step = 2 * stepsizeup; // set the treble step to twice the up step size
 }
 else if (spectrumValue2[5] > band5.average()) { // Otherwise if the current reading is above the
average
 treb_step = stepsizeup; // set the treble step to the up step size
 }
 else if (spectrumValue2[5] < band5.average()) { // Otherwise if the current reading is below the
average
 treb_step = stepsizedown; // set the trebl step to the step size down
 }
 else if (spectrumValue2[5] < band5.average() - band5.pop_stdev()) { // Otherwise if the current reading is
more than 1 standard deviation below the average
 treb_step = 2 * stepsizedown; // set the treble step to twice the step size down
 }
}

int Define_Light_Values() {
 if (bass_value + bass_step > bass_max) { // Prevents the bass value from going above the max
 bass_value = bass_max;
 }
 else if (bass_value + bass_step < bass_min) { // Prevents the bass value from going below the min
 bass_value = bass_min;
 }
 else { // Otherwise changes bass value by bass step
 bass_value = bass_value + bass_step;
 }
 if (mid_value + mid_step > mid_max) { // Prevents the midband value from going above the max
 mid_value = mid_max;
 }
 else if (mid_value + mid_step < mid_min) { // Prevents the midband value from going below the min
 mid_value = mid_min;
 }
 else { // Otherwise changes midband value by mid step
 mid_value = mid_value + mid_step;
 }
 if (treb_value + treb_step > treb_max) { // Prevents the treble value from going above the max
 treb_value = treb_max;
 }
 else if (treb_value + treb_step < treb_min) { // Prevents the treble value from going below the min
 treb_value = treb_min;
 }
 else { // Otherwise changes treble value by treb step
 treb_value = treb_value + treb_step;
 }
}

int Check_Zeros() {
 if (spectrumValue2[0] == 0 && spectrumValue2[1] == 0 && spectrumValue2[2] == 0 // If
all bands are 0 increase zero count
 && spectrumValue2[3] == 0 && spectrumValue2[4] == 0 && spectrumValue2[5] == 0 && spectrumValue2[6]
== 0) {
 nonzerocount = 0;
 zerocount ++;
 }

 44

 else { // Otherwise set zero count to 0
 nonzerocount ++;
 if (nonzerocount > nonzerocountmax){
 zerocount = 0;
 }
 }
}

int Strobe_Mode_On() {
 if (diffValue[0] > strobe_sensitivity) { // If band 0 has a difference reading larger than strobe_sensitivity
 if (red_bass == true){ // If red is bass band
 red.setValue(bass_value); // Set red LED to bass value
 }
 else if (green_bass == true){ // If green is bass band
 green.setValue(bass_value); // Set green LED to bass value
 }
 else if (blue_bass == true){ // If blue is bass band
 blue.setValue(bass_value); // Set blue LEd to bass value
 }
 if (red_mid == true){ // If red is mid band
 red.setValue(mid_value/4); // Set red LED to 1/4 mid value
 }
 else if (green_mid == true){ // If green is mid band
 green.setValue(mid_value/4); // Set green LED to 1/4 mid value
 }
 else if (blue_mid == true){ // If blue is mid band
 blue.setValue(mid_value/4); // Set blue LED to 1/4 mid value
 }
 if (red_treb == true){ // If red is treble band
 red.setValue(treb_value/4); // Set red LED to 1/4 treble value
 }
 else if (green_treb == true){ // If green is treble band
 green.setValue(treb_value/4); // Set green LED to 1/4 treble value
 }
 else if (blue_treb == true){ // If blue is treble band
 blue.setValue(treb_value/4); // Set blue LED to 1/4 treble value
 }
 delay(strobe_delay); // Delay to hold values
 }
 else if (diffValue[1] > strobe_sensitivity) { // If band 1 has a difference reading larger than strobe_sensitivity
 if (red_bass == true){ // If red is bass band
 red.setValue(bass_value); // Set red LED to bass value
 }
 else if (green_bass == true){ // If green is bass band
 green.setValue(bass_value); // Set green LED to bass value
 }
 else if (blue_bass == true){ // If blue is bass band
 blue.setValue(bass_value); // Set blue LEd to bass value
 }
 if (red_mid == true){ // If red is mid band
 red.setValue(mid_value/2); // Set red LED to 1/2 mid value
 }
 else if (green_mid == true){ // If green is mid band
 green.setValue(mid_value/2); // Set green LED to 1/2 mid value
 }
 else if (blue_mid == true){ // If blue is mid band

 45

 blue.setValue(mid_value/2); // Set blue LED to 1/2 mid value
 }
 if (red_treb == true){ // If red is treble band
 red.setValue(treb_value/4); // Set red LED to 1/4 treble value
 }
 else if (green_treb == true){ // If green is treble band
 green.setValue(treb_value/4); // Set green LED to 1/4 treble value
 }
 else if (blue_treb == true){ // If blue is treble band
 blue.setValue(treb_value/4); // Set blue LED to 1/4 treble value
 }
 delay(strobe_delay); // Delay to hold values
 }
 else if (diffValue[2] > strobe_sensitivity) { // If band 2 has a difference reading larger than strobe_sensitivity
 if (red_bass == true){ // If red is bass band
 red.setValue(bass_value); // Set red LED to bass value
 }
 else if (green_bass == true){ // If green is bass band
 green.setValue(bass_value); // Set green LED to bass value
 }
 else if (blue_bass == true){ // If blue is bass band
 blue.setValue(bass_value); // Set blue LEd to bass value
 }
 if (red_mid == true){ // If red is mid band
 red.setValue(mid_value); // Set red LED to mid value
 }
 else if (green_mid == true){ // If green is mid band
 green.setValue(mid_value); // Set green LED to mid value
 }
 else if (blue_mid == true){ // If blue is mid band
 blue.setValue(mid_value); // Set blue LED to mid value
 }
 if (red_treb == true){ // If red is treble band
 red.setValue(treb_value/4); // Set red LED to 1/4 treble value
 }
 else if (green_treb == true){ // If green is treble band
 green.setValue(treb_value/4); // Set green LED to 1/4 treble value
 }
 else if (blue_treb == true){ // If blue is treble band
 blue.setValue(treb_value/4); // Set blue LED to 1/4 treble value
 }
 delay(strobe_delay); // Delay to hold values
 }
 else if (diffValue[3] > strobe_sensitivity) { // If band 3 has a difference reading larger than strobe_sensitivity
 if (red_bass == true){ // If red is bass band
 red.setValue(bass_value/4); // Set red LED to 1/4 bass value
 }
 else if (green_bass == true){ // If green is bass band
 green.setValue(bass_value/4); // Set green LED to 1/4 bass value
 }
 else if (blue_bass == true){ // If blue is bass band
 blue.setValue(bass_value/4); // Set blue LEd to 1/4 bass value
 }
 if (red_mid == true){ // If red is mid band
 red.setValue(mid_value); // Set red LED to mid value
 }

 46

 else if (green_mid == true){ // If green is mid band
 green.setValue(mid_value); // Set green LED to mid value
 }
 else if (blue_mid == true){ // If blue is mid band
 blue.setValue(mid_value); // Set blue LED to mid value
 }
 if (red_treb == true){ // If red is treble band
 red.setValue(treb_value/4); // Set red LED to 1/4 treble value
 }
 else if (green_treb == true){ // If green is treble band
 green.setValue(treb_value/4); // Set green LED to 1/4 treble value
 }
 else if (blue_treb == true){ // If blue is treble band
 blue.setValue(treb_value/4); // Set blue LED to 1/4 treble value
 }
 delay(strobe_delay); // Delay to hold values
 }
 else if (diffValue[4] > strobe_sensitivity) { // If band 4 has a difference reading larger than strobe_sensitivity
 if (red_bass == true){ // If red is bass band
 red.setValue(bass_value/4); // Set red LED to 1/4 bass value
 }
 else if (green_bass == true){ // If green is bass band
 green.setValue(bass_value/4); // Set green LED to 1/4 bass value
 }
 else if (blue_bass == true){ // If blue is bass band
 blue.setValue(bass_value/4); // Set blue LEd to 1/4 bass value
 }
 if (red_mid == true){ // If red is mid band
 red.setValue(mid_value); // Set red LED to mid value
 }
 else if (green_mid == true){ // If green is mid band
 green.setValue(mid_value); // Set green LED to mid value
 }
 else if (blue_mid == true){ // If blue is mid band
 blue.setValue(mid_value); // Set blue LED to mid value
 }
 if (red_treb == true){ // If red is treble band
 red.setValue(treb_value); // Set red LED to treble value
 }
 else if (green_treb == true){ // If green is treble band
 green.setValue(treb_value); // Set green LED to treble value
 }
 else if (blue_treb == true){ // If blue is treble band
 blue.setValue(treb_value); // Set blue LED to treble value
 }
 delay(strobe_delay); // Delay to hold values
 }
 else if (diffValue[5] > strobe_sensitivity) { // If band 5 has a difference reading larger than strobe_sensitivity
 if (red_bass == true){ // If red is bass band
 red.setValue(bass_value/4); // Set red LED to 1/4 bass value
 }
 else if (green_bass == true){ // If green is bass band
 green.setValue(bass_value/4); // Set green LED to 1/4 bass value
 }
 else if (blue_bass == true){ // If blue is bass band
 blue.setValue(bass_value/4); // Set blue LEd to 1/4 bass value

 47

 }
 if (red_mid == true){ // If red is mid band
 red.setValue(mid_value/2); // Set red LED to 1/2 mid value
 }
 else if (green_mid == true){ // If green is mid band
 green.setValue(mid_value/2); // Set green LED to 1/2 mid value
 }
 else if (blue_mid == true){ // If blue is mid band
 blue.setValue(mid_value/2); // Set blue LED to 1/2 mid value
 }
 if (red_treb == true){ // If red is treble band
 red.setValue(treb_value); // Set red LED to treble value
 }
 else if (green_treb == true){ // If green is treble band
 green.setValue(treb_value); // Set green LED to treble value
 }
 else if (blue_treb == true){ // If blue is treble band
 blue.setValue(treb_value); // Set blue LED to treble value
 }
 delay(strobe_delay); // Delay to hold values
 }
 else if (diffValue[6] > strobe_sensitivity) { // If band 6 has a difference reading larger than strobe_sensitivity
 if (red_bass == true){ // If red is bass band
 red.setValue(bass_value/4); // Set red LED to 1/4 bass value
 }
 else if (green_bass == true){ // If green is bass band
 green.setValue(bass_value/4); // Set green LED to 1/4 bass value
 }
 else if (blue_bass == true){ // If blue is bass band
 blue.setValue(bass_value/4); // Set blue LEd to 1/4 bass value
 }
 if (red_mid == true){ // If red is mid band
 red.setValue(mid_value/4); // Set red LED to 1/4 mid value
 }
 else if (green_mid == true){ // If green is mid band
 green.setValue(mid_value/4); // Set green LED to 1/4 mid value
 }
 else if (blue_mid == true){ // If blue is mid band
 blue.setValue(mid_value/4); // Set blue LED to 1/4 mid value
 }
 if (red_treb == true){ // If red is treble band
 red.setValue(treb_value); // Set red LED to treble value
 }
 else if (green_treb == true){ // If green is treble band
 green.setValue(treb_value); // Set green LED to treble value
 }
 else if (blue_treb == true){ // If blue is treble band
 blue.setValue(treb_value); // Set blue LED to treble value
 }
 delay(strobe_delay); // Delay to hold values
 }
 else { // If no bands have a difference reading larger than strobe_sensitivity
 Strobe_Mode_Off(); // Run strobe mode off
 }
}

 48

int Strobe_Mode_Off() {
 if (red_bass == true){ // If red is bass band
 red.setValue(bass_value); // Set red LED to bass value
 }
 else if (green_bass == true){ // If green is bass band
 green.setValue(bass_value); // Set green LED to bass value
 }
 else if (blue_bass == true){ // If blue is bass band
 blue.setValue(bass_value); // Set blue LEd to bass value
 }
 if (red_mid == true){ // If red is mid band
 red.setValue(mid_value); // Set red LED to mid value
 }
 else if (green_mid == true){ // If green is mid band
 green.setValue(mid_value); // Set green LED to mid value
 }
 else if (blue_mid == true){ // If blue is mid band
 blue.setValue(mid_value); // Set blue LED to mid value
 }
 if (red_treb == true){ // If red is treble band
 red.setValue(treb_value); // Set red LED to treble value
 }
 else if (green_treb == true){ // If green is treble band
 green.setValue(treb_value); // Set green LED to treble value
 }
 else if (blue_treb == true){ // If blue is treble band
 blue.setValue(treb_value); // Set blue LED to treble value
 }
 }

int Zero_Mode() {
 if (initial_zero_mode == true) { // If told to reset
 bass_value = 255; // Set bass to max
 mid_value = 0; // Set mid to 0
 treb_value = 0; // Set treble to 0
 zero_mode_run = 0; // Reset the run number
 initial_zero_mode = false; // Done reseting
 }
 else {
 if (zero_mode_run == 0) { // For run 0: decrease bass and increase mid untill bass is 0
 if (bass_value > 0) { // and mid is 255 then advance run number
 bass_value = bass_value - zero_mode_step;
 mid_value = mid_value + zero_mode_step;
 }
 else {
 zero_mode_run = 1;
 }
 }
 if (zero_mode_run == 1) { // For run 1: decrease mid and increase treble untill mid is 0
 if (mid_value > 0) { // and treble is 255 then advance run number
 mid_value = mid_value - zero_mode_step;
 treb_value = treb_value + zero_mode_step;
 }
 else {
 zero_mode_run = 2;
 }

 49

 }
 if (zero_mode_run == 2) { // For run 2: decrease treble and increase bass untill treble is 0
 if (treb_value > 0) { // and bass is 255 then advance run number
 bass_value = bass_value + zero_mode_step;
 treb_value = treb_value - zero_mode_step;
 }
 else {
 zero_mode_run = 0;
 }
 }
 }
 Strobe_Mode_Off(); // Set light values
 delay(zero_mode_delay); // Delay to slow fade sequence
 Serial.print(initial_zero_mode);
 Serial.print(", ");
 Serial.print(zero_mode_run);
}
// Setting the values for the LEDs after each step instead of using a fade command
// allows the code to leave zero mode at any point in the fade sequance rather than
// at just the ends of a cycle. This was an issue the first demo had trouble with

int Read_Control_Box() {
 button_state = digitalRead(color_switch); // Store the current state of the button
 if (button_state != last_button_state && button_state == LOW) { // If the button if low and is not equal to the
previous state
 if (color_mode < 5) {
 color_mode ++; // Increase color mode if less than 5
 }
 else { // If color mode is 5
 color_mode = 0; // Set color mode to 0
 }
 new_color_mode = true; // Tell code to switch color mode
 initial_zero_mode = true; // Tell code to reset zero mode
 delay(50); // Delay to prevent bouncing
 }
 last_button_state = digitalRead(color_switch); // Store last button state for next run
 strobe_on = digitalRead(strobe_on_pin); // Store strobe on pin reading
 strobe_off = digitalRead(strobe_off_pin); // Store strobe off pin reading
 if (strobe_on == 1) { // If the strobe on pin is high
 kill_switch = false; // Tell code not to go to zero mode
 strobe_mode = true; // Tell code to go to strobe on mode
 }
 else if (strobe_off == 1) { // If the strobe off pin is high
 kill_switch = false; // Tell code not to go to zero mode
 strobe_mode = false; // Tell code to go to srobe off mode
 }
 else if (strobe_on == 0 && strobe_off == 0) { // If both pins are low
 kill_switch = true; // Tell code to go to zero mode
 }
 strobe_sensitivity = analogRead(strobe_pot); // Read value from potentiomiter (ADC)
 strobe_sensitivity = map(strobe_sensitivity, 0, 1023, 0, 50); // map value from 0 to 1023 to 0 to 50
}

	Trinity University
	Digital Commons @ Trinity
	5-2016

	A DJ Robot
	Robert Hure
	Josh King
	Repository Citation

	tmp.1462292737.pdf.8gp28

