
Trinity University
Digital Commons @ Trinity

Mechatronics Final Projects Engineering Science Department

5-2016

Campus Cruiser
Mikey Robison
Trinity University, mrobison@trinity.edu

Todd Edwards
Trinity University, tedward1@trinity.edu

Follow this and additional works at: http://digitalcommons.trinity.edu/engine_mechatronics

Part of the Engineering Commons

This Report is brought to you for free and open access by the Engineering Science Department at Digital Commons @ Trinity. It has been accepted for
inclusion in Mechatronics Final Projects by an authorized administrator of Digital Commons @ Trinity. For more information, please contact
jcostanz@trinity.edu.

Repository Citation
Robison, Mikey and Edwards, Todd, "Campus Cruiser" (2016). Mechatronics Final Projects. 6.
http://digitalcommons.trinity.edu/engine_mechatronics/6

http://digitalcommons.trinity.edu?utm_source=digitalcommons.trinity.edu%2Fengine_mechatronics%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.trinity.edu/engine_mechatronics?utm_source=digitalcommons.trinity.edu%2Fengine_mechatronics%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.trinity.edu/engine?utm_source=digitalcommons.trinity.edu%2Fengine_mechatronics%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.trinity.edu/engine_mechatronics?utm_source=digitalcommons.trinity.edu%2Fengine_mechatronics%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/217?utm_source=digitalcommons.trinity.edu%2Fengine_mechatronics%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.trinity.edu/engine_mechatronics/6?utm_source=digitalcommons.trinity.edu%2Fengine_mechatronics%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:jcostanz@trinity.edu

	
Figure	1:The	Campus	Cruiser	

	

Mikey	Robison	and	Todd	Edwards	

GROUP	F			

ENGR	4367	

5/2/2016	

Dr.	Nickels	

Dr.	Nickels	

	

	 	

Table	of	Contents	

Design	Summary	..	3	

System	Details	..	3	
Throttle	System	..	4	
Kill	Switch	..	4	
Tachometers	..	5	

Design	Evaluations	...	5	
Output	Display	...	5	
Audio	Output	Display	...	6	
Manual	User	Input	...	6	
Automatic	Sensor	...	6	
Actuators,	Mechanisms	&	Hardware	..	7	
Logic	Processing	and	Control	..	7	

Partial	Parts	List	...	8	

Lessons	Learned	...	8	

Appendix	..	9	
	

	

	 	

Design	Summary		
	

	 Throughout	the	course	of	this	semester	we	designed	and	built	an	electronic	control	unit	

for	a	gas-powered	go-kart.	The	goal	for	our	project	was	to	design	and	install	an	electronic	control	

unit	that	would	incorporate:	an	electronic	throttle,	an	electronic	kill	switch,	two	tachometers	–	

one	to	measure	vehicle	speed	and	one	to	measure	engine	shaft	speed	–	with	LCDs	to	display	the	

speed	and	RPM	values.	The	control	unit,	displays,	and	controls	were	mounted	on	steering	wheel	

and	dashboard	housings	that	included	two	LEDs	to	display	the	status	of	the	engine	kill	switch	and	

a	speaker	which	beeps	to	alert	the	user	that	the	engine	is	ready	to	be	started	once	the	control	

system	has	been	activated	and	initialized.	The	finished	go-kart	can	be	seen	in	Figure	1.		

System	Details	
	 	

The	 control	 unit	was	 designed	 to	 use	 three	 PIC16F88	microcontrollers	mounted	 on	 a	

printed	circuit	board.	The	 first	PIC	was	designed	 to	handle	 the	 throttle	 system,	kill	 switching,	

diagnostic	LEDs,	and	diagnostic	buzzer.	The	remaining	two	PICs	were	designed	to	decode,	process	

and	display	on	the	LCDs	the	inputs	from	the	speed	tachometer	and	engine	shaft	tachometers	

respectively.	The	overall	control	unit	functionality	is	illustrated	in	the	functional	block	diagram	

seen	in	Figure	2.		

The	control	unit	was	powered	using	a	12V	2Ah	battery.	The	battery	mounted	next	to	the	

steering	 column	 in	 a	 3D	 printed	 box	 and	 connected	 to	 the	 circuit	 through	 a	 key-lock	 switch	

mounted	on	 the	 steering	 column	 seen	 in	 Figure	3	 so	 that	 the	 vehicle	 could	not	 be	operated	

without	the	key,	for	added	security.	The	battery	was	connected	to	the	circuit	board	through	an	

LM-317	linear	voltage	regulator	to	step	the	battery	down	to	5V	to	protect	the	PICs	and	other	

circuitry	rated	for	5V.	The	software	flowchart	and	wiring	diagram	for	the	control	system	can	be	

seen	in	Figure	4,	5	respectively.		

The	 printed	 circuit	 board,	 wiring,	 and	 displays	 were	 all	 mounted	 inside	 a	 3D	 printed	

dashboard	mounted	on	top	of	the	steering	column.	At	the	top	are	red	and	green	LEDs	that	serve	

as	a	visual	indication	to	the	user	whether	or	not	the	engine	can	be	started.	The	display	panel	also	

houses	the	speedometer	and	RPM	displays	as	well	as	a	piezo	buzzer	that	beeps	to	indicate	that	

the	system	is	ready	for	the	engine	to	be	started.	The	dashboard	and	wiring	can	be	seen	in	Figure	

9,	10.	

	

	

Throttle	System		
	 The	throttle	system	for	our	go-kart	was	designed	to	use	a	potentiometer	mounted	on	the	

steering	wheel	to	vary	a	voltage	read	by	a	PIC16F88	microcontroller.	The	microcontroller	was	

programmed	to	turn	a	small	hobby	servo	motor	in	a	130˚	arc	corresponding	to	approximately	a	

40˚	turn	of	the	potentiometer.	The	servo	was	connected	to	a	spring	underneath	the	gas	tank	that	

is	directly	connected	to	the	engine’s	built	in	mechanical	control	system	where	more	tension	on	

the	spring	corresponds	to	more	power	output	from	the	engine.	

The	 servo	 mounting	 and	 assembly	 can	 be	 seen	 in	 Figure	 6.	 A	 throttle	 paddle	 was	

developed	using	a	small	door	hinge	with	the	potentiometer	mounted	inside	the	hinge	pin	so	that	

moving	the	hinge	towards	the	operator	would	turn	the	potentiometer	the	control	surface	and	

mounted	potentiometer	were	covered	with	3D	printed	covers	for	user	comfort	and	protection	

of	the	components.	The	throttle	assembly	and	covers	can	be	seen	in	Figure	7,	10.		

	

Kill	Switch	
	 The	kill	switch	for	the	go-kart	was	designed	to	use	a	solenoid	relay	to	control	the	sparkplug	

connection.	The	original	kill	switch	was	disassembled	and	re-wired	to	the	solenoid	relay	so	that	

the	 sparkplug	 would	 be	 grounded,	 thus	 disabling	 the	 engine,	 when	 the	 solenoid	 was	 not	

powered.	When	the	solenoid	was	energized	the	spark	plug	is	connected	to	the	starter	coil	and	

thus	the	engine	is	able	to	be	started.	The	solenoid	was	mounted	on	the	front	of	the	engine	in	a	

3D	printed	box	for	protection	from	outside	interference.	This	assembly	can	be	seen	in	Figure	8.	

In	order	to	protect	the	PIC	from	the	high	current	that	the	solenoid	sinks	when	active	a	N-channel	

MOSFET	was	used	as	a	power	switch	to	control	the	solenoid	current	using	the	low	current	PIC	

output.		

	 The	solenoid	was	controlled	through	the	same	PIC16F88	used	to	control	the	throttle.	The	

button	on	the	upper	right	of	the	steering	wheel	seen	in	Figure	7	was	read	as	an	input	by	the	PIC	

and	 when	 pressed	 would	 set	 the	 solenoid	 low	 so	 that	 the	 engine	 would	 die.	 Using	 this	

configuration	also	meant	 that	 if	 power	was	 lost,	 the	 circuit	was	damaged,	or	no	battery	was	

connected	the	engine	would	not	start	or	continue	running,	making	the	vehicle	safer	to	operate.		

	

Tachometers	
	 In	order	to	measure	the	speed	of	the	go-kart	as	well	as	the	speed	of	the	engine	output	

shaft	we	used	two	separate	tachometers,	one	mounted	on	the	axle	and	one	mounted	on	the	

output	shaft.	The	tachometers	were	built	in	two	parts.	The	first	part	was	a	U	shaped	bracket	with	

a	small	Hall	effect	sensor	mounted	on	one	inside	and	a	permanent	magnet	mounted	on	the	other	

inside.	The	second	part	was	an	aluminum	disk	approximately	six	inches	in	diameter.	Each	disk	

was	positioned	so	that	it	would	rotate	between	the	magnet	and	the	sensor.	Each	disk	had	a	small	

strip	of	steel	screwed	onto	the	face	so	that	the	strip	would	block	the	magnetic	field	from	the	

magnet	and	the	sensor	would	produce	a	five	volt	pulse	each	time	the	strip	passed	through	the	

sensor.	The	engine	shaft	tachometer	had	a	single	strip	to	measure	the	speed,	the	axel	tachometer	

had	two	strips	to	allow	for	a	more	precise	speed	measurement.		

	 These	hall	effect	sensors	were	connected	to	each	of	their	respective	PICs.	These	PICs	were	

programmed	 to	 count	 the	 pulses	 received	 in	 a	 given	 period	 of	 time	 and,	 according	 to	 the	

tachometer	in	question,	perform	some	arithmetic	to	produce	the	desired	value.	For	the	speed	

tachometer	the	speed	in	MPH	was	displayed.	For	the	engine	shaft	tachometer,	the	revolutions	

per	minute	were	measured	and	then	displayed	in	progress	bar	form	ranging	between	0	and	3600,	

the	limits	of	the	engine	performance.	The	speedometer	and	RPM	tachometer	assemblies	can	be	

seen	in	Figure	11,	12	respectively.	

	 	

Design	Evaluations	
Output	Display	
	 All	of	our	Output	displays	performed	their	function	exactly	as	anticipated.	The	two	status	

LEDs	were	similar	to	what	we	used	in	class	and	were	relatively	simple	to	use.	The	two	LCDs	that	

display	 the	 speed	 and	 engine	 RPM	were	 quite	 difficult	 to	 implement	 and	 required	 extensive	

research	that	was	not	found	anywhere	in	the	course	material.	Since	we	used	PICs	for	all	of	our	

functionality	we	had	to	learn	how	to	use	LCDs	completely	from	scratch.	Creating	the	iterating	

progress	bar	for	the	RPM	tachometer	was	especially	difficult	and	required	strenuous	effort	to	

pull	off.	Using	two	LCDs	with	different	display	modes	also	added	an	extra	degree	of	difficulty.	We	

believe	our	project	deserves	a	rating	of	20	in	this	category.		

	

Audio	Output	Display	
	 Besides	the	sweet	tones	from	the	engine	our	audio	output	display	consisted	of	a	Piezo	

buzzer	designed	to	indicate	when	the	system	was	ready	for	the	engine	to	be	started.	This	topic	

was	not	discussed	in	class	or	lab	and	took	some	significant	research	in	the	book	to	develop	the	

software	to	achieve	the	desired	response.	The	buzzer	works	exactly	as	desired	and	works	every	

time.	We	believe	our	project	deserves	a	rating	of	15	in	this	category.		

Manual	User	Input	
	 Our	manual	user	inputs	consisted	of	the	throttle	potentiometer	and	the	kill	switch	button.	

The	 button	 is	 simple	 enough	 and	 is	 the	 same	 as	 every	 other	 button	 we	 used	 all	 year.	 The	

potentiometer	 is	 similar	 to	 what	 we	 used	 in	 the	 labs	 throughout	 the	 semester.	 However,	

significant	 software	modifications	had	 to	be	made	 since	 the	potentiometer	was	 restricted	 to	

approximately	40˚	of	rotation.	This	was	very	difficult	to	achieve	but	the	solution	works	exactly	as	

desired	every	time.	Besides	the	software	modifications	the	method	of	mounting	and	interacting	

with	the	potentiometer	was	very	difficult	to	design	and	implement.	We	believe	that	our	project	

deserves	a	rating	of	15	in	this	category.	

Automatic	Sensor	
	 Our	 project	 had	 two	 versions	 of	 the	 same	 automatic	 sensor.	 Both	 tachometers	 took	

extensive	and	strenuous	independent	research	to	develop.	The	construction	of	two	tachometers	

from	scratch	alone	was	very	difficult	but	developing	the	software	to	process	the	outputs	from	

the	sensors	and	give	the	correct	value	was	 incredibly	difficult.	We	had	to	do	some	significant	

research	 to	 learn	 how	 to	 use	 the	 PICs	 to	 count	 pulses	 and	 produce	 a	 usable	 value.	 The	

speedometer	was	especially	difficult	due	to	the	fact	that	the	changes	in	speed	of	the	go-kart	are	

not	very	significant,	a	change	of	1	Hz	of	the	tach	frequency	correlates	to	a	change	of	about	2.5	

MPH.	Since	the	compiler	we	were	using	does	not	support	floating	point	decimal	calculation	we	

had	to	find	a	solution	to	give	us	better	resolution	for	the	speed	display.	We	ended	up	increasing	

the	 sampling	 frequency	 to	 once	 a	 second	 and	 doubling	 the	 number	 of	 steel	 strips	 on	 the	

tachometer	wheel	to	two	to	ensure	we	had	enough	resolution.	The	result	was	very	good	and	

gives	a	very	accurate	speed	reading.	We	believe	that	our	project	definitely	deserves	a	rating	of	

20	in	this	category.		

Actuators,	Mechanisms	&	Hardware	
	 Our	project	had	two	actuators.	The	kill	switch	solenoid	relay	was	relatively	easy	to	use	as	

it	only	required	a	high	or	a	low	to	function	and	it	was	easy	to	extrapolate	what	we	learned	in	class	

to	implement	it.	Our	other	actuator	was	the	servo	motor	used	to	control	the	throttle.	This	was	

much	more	difficult	to	do	as	it	was	not	covered	in	any	of	the	course	material.	Since	we	only	used	

PICs	 there	was	no	easy	command	to	control	a	servo.	Once	we	 learned	how	to	control	 servos	

through	 extensive	 research	 we	 decided	 to	 use	 the	 pulse	 out	 command	 modified	 by	 the	

potentiometer	 input	 to	control	 the	position	of	 the	 servo.	As	 far	as	hardware	goes	we	had	 to	

extensively	modify	a	pre-existing	go-kart.	We	re-built	the	rear	axle,	adding	a	larger	sprocket,	and	

open	differential.	We	re-built	the	steering	assembly,	including	making	modifications	to	the	frame.	

We	also	completely	re-built	the	brakes.	We	believe	that	our	project	deserves	a	rating	of	20	in	this	

category.	

	

Logic	Processing	and	Control	
	 For	 our	 LCC	 category	 we	 included	 open-loop	 control	 of	 a	 servo	 motor	 using	 a	

potentiometer	that	was	very	difficult	to	implement	due	to	the	fact	that	the	PWM	command	we	

learned	 in	 class	 is	 not	 suitable	 for	 servo	 control.	We	 inevitably	 learned	how	 to	use	 a	 slightly	

modified	version	of	the	pulse	out	command	to	control	the	servo.	We	also	included	counting	and	

arithmetic	with	our	two	tachometers	and	displays	that	took	a	lot	of	independent	research	as	well	

as	 construction	 of	 the	 tachometers.	 We	 believe	 our	 project	 deserves	 a	 rating	 of	 20	 in	 this	

category.		

	

Partial	Parts	List	
	

Solenoid	Relay	 -	 The	electronics	shop	 -	

Small	Hobby	Servo	 From	Arduino	starter	

kit	

The	electronics	shop	 -	

hall	effect	sensor	 US5881LUA	 Adafruit.com	 $2.00	

High	strength	‘rare-

earth’	magnet	

Product	ID:	9	 Adafruit.com	 $2.00	

12V	2Ah	battery	 -	 The	electronics	shop	 -	

PIC16F88	X3	 -	 The	electronics	shop	 $3.74	

Key-Lock	switch	 CKC8039-ND	 Digi-key.com	 $11.73	

Piezo	buzzer	 From	Arduino	starter	

kit
The	electronics	shop	 -	

16mm	Panel	Mount	

Momentary	

Pushbutton	-	Black	

Product	ID:	1505	 Adafruit.com	 $0.95	

	

	 	

	

Lessons	Learned	
	 The	biggest	difficulty	we	faced	with	this	project	was	dealing	with	the	fact	that	we	were	

strapping	a	bunch	of	electronics	 to	a	motor	vehicle.	To	 try	and	solve	 this	problem	we	used	a	

printed	circuit	board,	designed	in	eagle	to	solder	all	of	our	connections	to.	DO	NOT	TRUST	THE	

AUTOROUTER.	The	 auto	 router	makes	 lots	 of	mistakes,	 though	 it	may	 seem	daunting,	 route	

everything	by	hand	it	will	guarantee	a	better	board.	I	ended	up	scraping	copper	off	my	board	

because	one	of	my	signals	was	accidentally	connected	through	the	5V	bus,	an	easy	fix	had	I	caught	

it	 in	 the	 schematic.	 Another	 piece	 of	 advice	 about	 eagle:	 double	 check	 the	 pinouts	 in	 the	

schematic,	they	may	be	labeled	in	a	different	order	than	your	wiring	diagram.	In	our	case	the	

voltage	regulator	schematic	 I	used	to	design	the	circuit	had	pins	 in	a	different	order	than	the	

eagle	schematic	which	resulted	in	the	wrong	pin	being	connected	to	everything	that	needed	5V.		

	 Try	and	think	ahead	as	much	as	possible	when	making	design	decisions.	Think	about	what	

things	will	look	like	and	how	they	will	work.	We	faced	a	lot	of	difficulty	when	connecting	our	wires	

to	the	board	because	of	the	way	we	connected	them.	It	was	very	difficult	to	make	the	connections	

in	the	small	space	of	the	dashboard.	They	also	weren’t	as	solid	as	we	would	have	liked.	If	I	could	

go	back	and	re-do	the	wire	connectors	so	that	they	would	be	easier	to	connect	and	more	robust	

connections.			

	

Appendix	
	

	
Figure	2:	Functional	block	diagram	outlining	overall	functionality	of	go-kart	controller	

	

	

	

	
Figure	3:	Key-lock	power	switch	and	battery	housing	

	

	
Figure	4:	Software	flowchart	for	the	go-kart	control	unit	

	
Figure	5:	Wiring	diagram	for	go-kart	control	unit	

	

	
Figure	6:	Throttle	servo	mounting	and	assembly	

	

	
Figure	7:	Throttle	potentiometer	assembly	with	throttle	cover	

	

	
Figure	8:	Kill	switch	solenoid	wiring	and	housing	

	

	
Figure	9:	Wiring	inside	dashboard	

	

	
Figure	10:	Dashboard	and	steering	wheel	assembly	

	

	
Figure	11:	Speedometer	tachometer	

	

	
Figure	12:	RPM	tachometer	

C:\Users\merga\Google Drive\Spring 2016\TU Sp 2016_ (1)\Mechatronics\PicBasid Codes\Go_kart_servo_control.pbp

'**
'* Name : Go_kart_servo_control *
'* Author : [Mikey Robison and Todd Edwards] *
'* Notice : Copyright (c) 2016 [select VIEW...EDITOR OPTIONS] *
'* : All Rights Reserved *
'* Date : 3/27/2016 *
'* Version : 1.0 *
'* Notes : *
'* : *
'***

' The following configuration bits and register settings
' enable the internal oscillator, set it to 8MHz,
' disables master clear, and turn off A/D conversion

' Configuration Bit Settings:
' Oscillator INTRC (INT102) (RA6 for I/O)
' Watchdog Timer Enabled
' Power-up Timer Enabled
' MCLR Pin Function Input Pin (RA5 for I/O)
' Brown-out Reset Enabled
' Low Voltage Programming Disabled
' Flash Program Memory Write Enabled
' CCP Multiplexed With RB0
' Code Not Protected
' Data EEPROM Not Protected
' Fail-safe Clock Monitor Enabled
' Internal External Switch Over Enabled

' Define configuration settings (different from defaults)
#CONFIG
 __CONFIG _CONFIG1, _INTRC_IO & _PWRTE_ON & _MCLR_OFF & _LVP_OFF
#endconfig

' Set the internal oscillator frequency to 8 MHz
define OSC 8
OSCCON = %01111000

define ADC_BITS 10 ' Set number of bits in result
define ADC_CLOCK 3 ' Set clock source (3=rc)
define ADC_SAMPLEUS 15 ' Set sampling time in uS

'Set register I/O
TRISA = %11111111
TRISB = %11000001

'Define I/O pin names and initialze
servo var portB.0
low servo
kill var portB.7
relay var portB.1
green_status var portB.2
red_status var portB.3
buzz_status var portB.5
governor_in var portb.4
i var byte
' Set up ADCON1
ADCON1 = %10000000 ' Right-justify results (lowest 10 bits)
ansel.6=0 'turn off AN6 to allow digital I/O
' Enable PORTB pull-ups
OPTION_REG = $7f

Page 1 of 2 5/1/2016 9:36 PM

C:\Users\merga\Google Drive\Spring 2016\TU Sp 2016_ (1)\Mechatronics\PicBasid Codes\Go_kart_servo_control.pbp

'Declare adc variables
ad_word var word '10 bit word from adcin
ad_byte var byte 'pot position byte

inititial: 'power on, wait for LCDs, give audible & visual signal that go-kart is
ready
 low red_status
 low green_status
 toggle green_status
 pause 300
 toggle green_status
 pause 300
 toggle green_status
 pause 300
 toggle green_status
 pause 300
 toggle green_status
 sound buzz_status,[100,600]

main:
while(1)
 adcin 0, ad_word
 ad_byte = ad_word

 pulsout servo,1125-ad_word 'scale pot and offset for use with throttle pot
 pause 10 - (ad_byte/100)

 if kill = 1 then
 high relay
 pause 10
 else
 low relay
 pause 10
 endif

 if relay =1 then
 high green_status
 low red_status
 else
 high red_status
 low green_status
 endif

wend

Page 2 of 2 5/1/2016 9:36 PM

C:\Users\merga\Google Drive\Spring 2016\TU Sp 2016_ (1)\Mechatronics\PicBasid Codes\Speedo_LCD.pbp

'**
'* Name :Go-kart spedometer *
'* Author : Mikey Robison & Todd edwards *
'* Notice : Copyright (c) 2016 [select VIEW...EDITOR OPTIONS] *
'* : All Rights Reserved *
'* Date : 4/1/2016 *
'* Version : 1.0 *
'* Notes : counts shaft rotations, translates to mph, then *
'* : displays on an LCD *
'**
' Define configuration settings (different from defaults)
#CONFIG
 __CONFIG _CONFIG1, _INTRC_IO & _PWRTE_ON & _MCLR_OFF & _LVP_OFF
#endconfig

' Set the internal oscillator frequency to 8 MHz
define OSC 8
OSCCON = %01111000
ansel=0 'deactivate adc

'Declare variables
rpm_word var word '16 bit value for counts every 1/10 sec on pin 7
rpm_byte var word
speed var word
governor var portb.1
 pause 500 'let LCD initialize
 main:
 lcdout $fe,1
 lcdout $fe,$80+5,"Speed"
 lcdout $fe,$c0+11, "MPH"

while (1)

 count portb.7, 1000, rpm_word 'counts pulses every 1/10 sec
 rpm_byte = rpm_word*125 'scale to pulses per second
 speed=rpm_byte/100 'conversion from rotations per second to MPH

 if speed>10 then
 lcdout $fe, $c0+7,dec speed
 else
 lcdout $fe, $c0+7, dec speed, " " 'clear extra 0 if speed less than 10
 endif

 if speed > 20 then
 high governor
 else
 low governor
 endif
wend

Page 1 of 1 5/1/2016 9:38 PM

C:\Users\merga\Google Drive\Spring 2016\TU Sp 2016_ (1)\Mechatronics\PicBasid Codes\LCD_code.pbp

'**
'* Name : Go-Kart Rpm Code *
'* Author : [Mikey Robison & Todd Edwards] *
'* Notice : Copyright (c) 2016 [select VIEW...EDITOR OPTIONS] *
'* : All Rights Reserved *
'* Date : 3/30/2016 *
'* Version : 1.0 *
'* Notes : *
'* : *
'**
' Define configuration settings (different from defaults)
#CONFIG
 __CONFIG _CONFIG1, _INTRC_IO & _PWRTE_ON & _MCLR_OFF & _LVP_OFF
#endconfig

' Set the internal oscillator frequency to 8 MHz
define OSC 8
OSCCON = %01111000
'turn off adc
ansel=0

'Declare variables
rpm_word var word '10 bit word from adcin (tachometer)
rpm_byte var byte 'RPM byte
i var byte
prev_rpm var byte
 pause 500 'let LCD initialize
 main:
 lcdout $fe,1
 lcdout $fe,$80,"0 RPM 3600"
 prev_rpm = 0

while (1)
 count portb.7, 100, rpm_word
 rpm_byte = rpm_word*10/4 'scale input to 0-16
 if (prev_rpm<>rpm_byte) then
 'set i to follow tach voltage

 for i= 16 to rpm_byte step -1 'clear progress bar'
 lcdout $fe,$C0+i," "
 next i

 for i= 0 to rpm_byte 'iterate up progress bar'
 lcdout $fe,$C0+i,$ff
 next i
 prev_rpm = rpm_byte
else
 prev_rpm=rpm_byte
endif

wend

Page 1 of 1 5/1/2016 9:37 PM

	Trinity University
	Digital Commons @ Trinity
	5-2016

	Campus Cruiser
	Mikey Robison
	Todd Edwards
	Repository Citation

	Microsoft Word - Mechatronics Report.docx

