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THE ROLE OF MOLECULAR DYNAMICS SIMULATIONS IN  
INVESTIGATING DIFFUSION ON MESOSCOPIC SCALES  

 

Abstract:  In order to investigate transport properties of molecular solutions on 

mesoscopic scales, we use the fluctuation-dissipation theorem and velocity and noise 

autocorrelation to determine the diffusion constant of two simulated solutions of 

particles interacting through Lennard-Jones potentials. This thesis describes classical 

transport theories which are valid for macroscopic diffusion, and includes a discussion 

of the nature of the force on solute particles which are comparable in size to solvent 

particles (we call diffusion in this limit ‘mesoscopic diffusion’). Next, it discusses 

transport theories of systems in this limit, and methods of determining their diffusion 

constant by extracting the velocity autocorrelation of particles in simulations. Finally, it 

includes results from a molecular dynamics simulation with GROMACS, and the details 

of preparing and running a force-field dependent simulation on MATLAB. The 

MATLAB simulation of liquid methyl red (or, otherwise, methyl red in a solvent whose 

molecules have mass and size properties exactly like itself) gives a value for the 

diffusion constant to be ܦ ൌ ሺ7	 േ 1ሻ ൈ 10ି଺ ௠
మ

௦
. This is value is significantly different 

from several experimentally determined diffusion coefficients of methyl red in organic 

solvents. 
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I. Introduction 

Diffusion lies at the heart of liquid state physics, a prodigious field which physicists often 

explore using fluid dynamics and statistical mechanics guided by laws of thermodynamics. 

Models developed in liquid state physics can be used to represent and study many biological and 

chemical processes. These processes typically involve the interactive dynamics of molecules or 

species on molecular scales in solution. For instance, consider the biological process of 

biomixing, the tendency of microscopic organisms (such as bacteria) in a liquid medium to 

increase the diffusion of other particles scattered in the liquid to increase its chances of 

encountering useful substances such as food. The subjects of investigation are the processes that 

enable the organism to achieve this goal. First, however, the rate and mechanisms through which 

the organism itself as well as its surrounding substances move and diffuse with respect to each 

other need to be understood. Because all the entities involved, including the bacterium, its 

surrounding particles and the molecules of the liquid medium, are comparable in size and mass, 

these entities affect each other’s motion through interactions and collisions. The different 

diffusion mechanisms involved in processes such as biomixing determine the properties of the 

liquid in question: their understanding is therefore imperative to the prediction and analysis of 

the fluid’s behavior. It is important to identify the relevant diffusion mechanisms or, otherwise, 

to determine the diffusion mechanism that best describes the fluid motion based on dimensional, 

structural and interactive parameters of the system. Once the correct diffusion mechanism is 
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known, the diffusion coefficients of the different particle species can be determined 

experimentally, predicted theoretically, or evaluated from simulations [1, 2] in order to 

determine the subsequent fluid dynamics and transport. Diffusion coefficients are of interest 

because their knowledge is vital to the investigation of transport properties of solutions on 

various length scales.  

Classical theories of diffusion on macroscopic scales, which have long been developed 

using thermodynamics and statistical mechanics, continue to be useful in the study of fluid 

dynamics [3, 4]. However, a significant amount of research has been dedicated in recent years 

towards developing transport theories for smaller length scales, such as micro- and nanometer 

scales [5, 6, 7, 8]. Once developed, these theories will greatly facilitate the study of the 

dynamical molecular processes needing modeling in the chemical and biological sciences, as the 

size of relevant molecules in these processes is typically on the order of a few angstroms to a few 

hundred nanometers. The theories may also help resolve certain discrepancies that arise in 

diffusivity experiments when the particles involved approach mesoscopic (i.e., nanometer to 

micrometer) length scales. An example of such a discrepancy is the disagreement between 

theoretically expected linearity and experimentally observed non-linearity between the diffusion 

coefficient and the inverse viscosity of certain microscopic solutions [9, 10].  

The classical models for macroscopic diffusion become less adequate on the molecular 

level as microscopic parameters (such as the van der Waal’s interaction between particles) which 
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are not considered in these classical models become significant [9, 11]. Research has been geared 

towards comprehending mesoscopic diffusion and arriving at an analytical expression for the 

diffusion constant [12]. Meanwhile, an efficient way to determine diffusion constants on the 

molecular level is through the use of molecular dynamics simulations. In fact, these simulations 

retroactively assist in the development of transport theories on the mesoscopic scale. Simulations 

take into account molecular interactions and often employ quantum mechanics in addition to 

thermodynamics and statistical mechanics [1, 2]. Before the physics behind the simulations can 

be understood, it is important to understand the existing transport theories. Though the classical 

model of random walk diffusion is most relevant on macroscopic scales, the theoretical steps of 

its development are essential in understanding diffusion in general, regardless of the length 

scales involved. In this thesis I will present a review of the developmental theory of macroscopic 

diffusion, discuss simulation techniques and their advantages, and finally present some 

simulation results.  

First, let us distinguish the differences in the length scales of diffusion that I have 

mentioned. A system is macroscopic when the size and mass ratios of solute to solvent molecules 

are large (for example, for the macroscopic solution of glucose in water, these ratios are, 

respectively, 3.3 and 10). In this case, the much smaller and lighter solvent molecules have 

minimal effect on the solute molecules in the dynamical solution. We consider two different 

categories of effects, the first being the displacement of a solute molecule on the occasion of a 

collision with a solvent molecule, and the second being the contribution of the solvent molecules 
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to the potential energy of a solute molecule. In macroscopic solutions, the solvent particles lack 

sufficient mass to significantly distort the potential of the system, and by the same token they 

lack sufficient momentum to impart a large momentum to the solute molecules upon collision. 

Because of the comparatively less significant and continuous effect of the solvent molecules on 

the solute molecules on the macroscopic scale, over long time frames these effects can be 

statistically averaged and the random walk (or Brownian motion) characteristics of the solute 

molecules emerge. [3, 4, 5] 

The development of classical theories of diffusion, which describe macroscopic rather 

than mesoscopic systems, involve taking ensemble averages of isolated systems containing 

single solute particles surrounded by numerous, much smaller solvent particles. The 

displacements due to the bombardment of the solute molecule with the solvent particles are small 

enough, and the bombardments occur often enough (compared to time scales used in diffusion 

measurements), that the net effect is that of continuous random displacements of the solute 

molecule, and over time, the particle’s diffusion is proportional to the average of the square 

displacements.  [3, 4, 5] (See detailed discussion of Brownian dynamics in the section II.)  

As the size and mass ratios of the solute to solvent molecules approach one or smaller, 

however, the effects of the interaction and bombardment of the solvent particles on the solute 

particles grow significant [2, 10, 12]. We call solutions in this limit mesoscopic solutions. If we 

consider the isolated systems (of a single solute molecule surrounded by numerous solvent 



Santona Tuli.  Honors Thesis, Spring 2013. 
Trinity University Department of Physics and Astronomy. 

 
 

 

9 
 
 

 

molecules) in the mesoscopic scenario, we find that these systems are not statistically similar. 

That is, now that the solvent molecules are comparable in size and mass to the solute molecules 

and can therefore affect the solute molecules significantly, no generalizations can be made about 

ensembles of such isolated systems. For instance, though the solute molecule in some system A 

may undergo a hundred collisions in a given time frame, it is impossible to claim that some other 

system B witnesses a similar number of collisions in the same time frame. Furthermore, it also 

cannot be said that one thousand such systems will undergo a hundred collisions each, on 

average. Finally, we must also bear in mind that it is not only the number of collisions, but also 

the nature of the collisions that affect the solute particles trajectory. Therefore, we realize that 

pure Brownian motion cannot be safely assumed in the case of mesoscopic fluid interactions. [2, 

10, 11, 12, 13] 

II. Classical Transport Theory:  

Brownian Motion for the Macroscopic Scale  

On the macroscopic level, i.e. when the size and mass ratios of solute to solvent 

molecules are large, Brownian motion, or random walk, is responsible for particle diffusion in a 

homogeneous solution [3, 4, 5]. A rapidly varying random force due to the thermal fluctuations 

in the velocities of the solvent molecules produces the Brownian motion of the solute molecules. 
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In the absence of external forces, the Brownian motion of a particle of mass, ݉, in a solvent can 

be described by the Langevin equation: 

   ݉ௗ௩

ௗ௧
ൌ െݒߙ ൅  ሻ    (1)ݐሺ′ܨ

where ݒ is the velocity of the particle relative to the solution, ߙ is the friction constant, and ܨ′ሺݐሻ 

is a rapidly fluctuating force which arises due to the result of irregular collisions by solvent 

particles. In thermal equilibrium, the mean displacement of the particle vanishes by symmetry 

since the particle is equally likely to be displaced in any direction by any given collision. The 

magnitude of the fluctuations in the displacement therefore gives us a measure of the particle’s 

random diffusion. Next, by multiplying (1) by ݔ we get, 

ݔ݉  ௗ௫ሶ

ௗ௧
ൌ ݉ ቂ ௗ

ௗ௧
ሺݔݔሶሻ െ ሶݔ ଶቃ ൌ െݔݔߙሶ ൅  ሻ  (2)ݐሺ′ܨݔ

We can consider the time-evolving system of solute molecules in the solvent as an 

ensemble of single solute particles surrounded by solvent molecules. Thus, taking ensemble 

averages on (2), and recognizing that the mean value of the fluctuating force, ܨ′ሺݐሻ, vanishes 

when we do so, we find (since the operations of taking a time derivative and taking an ensemble 

average commute) that, 

  ݉ 〈ௗ
ௗ௧
ሺݔݔሶሻ〉 െ ሶݔ〉݉ ଶ〉 ൌ ݉ ௗ

ௗ௧
ሶݔݔ〉 〉 െ ሶݔ〉݉ ଶ〉 ൌ െݔݔ〉ߙሶ 〉  (3) 

Here, we can use the equipartition theorem result 
ଵ

ଶ
ሶݔ〉݉ ଶ〉 ൌ ଵ

ଶ
݇ܶ (where ݇ is the Boltzmann 

constant and ܶ the absolute temperature) to obtain, 

   ݉ ௗ

ௗ௧
ሶݔݔ〉 〉 ൌ ݇ܶ െ ሶݔݔ〉ߙ 〉    (4) 
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Equation (4) is a first order ordinary differential equation in the quantity 〈ݔݔሶ 〉, which has 

solutions 

ሶݔݔ〉     〉 ൌ ି݁ܥ
೟
ഓ ൅ ௞்

ఈ
    (5) 

where we have defined the characteristic time constant, ߬,  by the ratio ߬ ൌ ௠

ఈ
. We can solve for 

the constant of integration ܥ using the initial condition ݔ ൌ 0 at ݐ ൌ 0, to find ܥ ൌ െ௞்

ఈ
. Finally, 

we recall the fact that 〈ݔݔሶ 〉 ൌ ଵ

ଶ

ௗ

ௗ௧
 :to arrive at the new first order differential equation 〈ଶݔ〉

    
ଵ

ଶ

ௗ

ௗ௧
〈ଶݔ〉 ൌ ௞்

ఈ
ቀ1 െ ݁ି

೟
ഓቁ   (6) 

which we solve for 〈ݔଶ〉 to get, 

〈ଶݔ〉    ൌ ଶ௞்

ఈ
ቆݐ െ ߬ ቀ1 െ ݁ି

೟
ഓቁቇ   (7) 

In the limiting case that	ݐ is much larger than the characteristic time constant, ߬, we arrive at the 

relation,  

〈ଶݔ〉  ൌ ଶ௞்

ఈ
 (8)      ݐ

which resembles the familiar Brownian motion relation that the mean square displacement is 

proportional to time. 

Using hydrodynamic reasoning to the motion of a macroscopic spherical particle in a 

liquid and the Navier-Stokes equations to model the flow around the sphere, the friction constant 

of the solute, ߙ, is defined in the following way by the Stokes law, 
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ܨ     ൌ െ(9)     ݒߙ 

(where ܨ is the drag force on the particle) and is given by ߙ ൌ  The variable ݂ represents .ܽߟߨ݂

the degrees of freedom of the solution and is determined by the surface boundary conditions 

(݂ ൌ 4 or ݂ ൌ  is the solvent viscosity and ܽ is the solute particle radius (2). It is important ߟ ,(6

to keep in mind that frictional forces arise in the dynamic description of a system when the 

surroundings with which the system interacts come to internal equilibrium appreciably quickly 

compared to the smallest time scale used in the description of the system. That is, our analysis 

hinges on the fact that we look at specifically the limiting case where ݐ ≫ ߬. 

By comparing equation (8) with the random walk relation 〈ݔଶ〉 ൌ  we arrive at the ,ݐܦ2

Stokes-Einstein relation which accurately delineates the classical diffusion coefficient, ܦ: 

ܦ             ൌ ௞்

௙గఎ௔
      (10) 

Thus, for a macroscopic particle, we are able to determine its diffusion rate in solution by 

modeling the solution as an ensemble of a large number of systems consisting of just one solute 

particle surrounded by numerous solvent molecules and using Langevin analysis. The particle-

particle potential energy is ignored and the effect of individual solvent molecules on the solute 

particles is assumed to be sufficiently small as not to produce large changes in displacement of 

the solute particle upon collision, or, if they do, that these changes average out over long time 

scales.  

[3, 4, 5, 8] 
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III. The Mesoscopic Scale 

However, on the mesoscopic scale, the solvent molecules are comparable in size and 

mass to the solute molecules and therefore notably affect the solute molecules upon 

bombardment. Unlike the macroscopic scale, the rapidly varying random force due to the 

thermal fluctuations in the velocities of the solvent molecules now produces a more complex 

oscillatory motion of the solute molecules, along with its random walk motion [2, 10]. Therefore, 

the classical Stokes-Einstein relation breaks down, and experiments with molecular solutions 

often yield diffusion constants much different from expected results [10, 11, 12]. Due to the lack 

of a complete transport theory for mesoscopic diffusion, molecular dynamics is often used to 

simulate the conditions of such solutions, and their results used to determine diffusion 

coefficients [1, 2, 10, 11, 13]. Though molecular dynamics simulations rely on much of the 

physics described above, they utilize a force field (or potential) dependent topology for the 

molecules and rely on correlation functions for calculations of the diffusion constant.  

Unlike the case of pure Brownian motion, on the mesoscopic scale, a more detailed 

investigation of the drag on a spherical particle which is forced to oscillate in a fluid shows that 

the time dependent drag force ܨ′ሺݐሻ on a rapidly oscillating sphere requires a non-Markovian 

generalization of the Langevin equation [14, 15]. Under these conditions, the viscous drag force 

on the sphere is not simply linearly proportional to the instantaneous velocity of the sphere as in 

the macroscopic theory described previously (recall Stokes Law, equation (9)). Instead, the 



Santona Tuli.  Honors Thesis, Spring 2013. 
Trinity University Department of Physics and Astronomy. 

 
 

 

14 
 
 

 

viscous drag is linearly proportional to the velocity at all previous times. Thus, the fluctuating 

drag force for mesoscopic solutions must be evaluated using velocity autocorrelation, which is 

described in detail in Section a, below. Following this, the origin and nature of the forces on the 

solute particles in the mesoscopic scale is described in Section b. 

a. Velocity Autocorrelation  

The velocity autocorrelation function (VAF) is a time dependent correlation function 

which reveals the nature of the dynamical processes occurring in a molecular system. The VAF 

is reflective of the forces acting within the system as the nature of the interaction between 

particles in a system affects the motion of the particles [15, 16]. Consider a system of ܰ atoms, 

each of whom has some initial velocity, ݒ௜. The VAF is constructed in the following way. At a 

chosen origin in time, we store all three components of the velocity ݒ௜ of each particle (݅). That 

is, 

௜ሺ0ሻݒ ൌ ሺݒ௜,௫ሺ0ሻ, ,௜,௬ሺ0ሻݒ  ௜,௭ሺ0ሻሻ    (11)ݒ

We calculate the first contribution to the VAF, corresponding to time zero (i.e. ݐ ൌ 0). This is 

simply the average of the dot products ݒ௜ሺ0ሻ.  :௜ሺ0ሻ for all atomsݒ

௩ሺ0ሻܥ ൌ
ଵ

ே
∑ .	௜ሺ0ሻݒ〉 〈௜ሺ0ሻݒ
ே
௜ୀଵ    (12) 

At the next time step in the simulation, ݐ ൌ  and the corresponding velocity for each ,ݐ∆

atom (updated using the force due to the potential) is, 
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ሻݐ∆௜ሺݒ ൌ ሺݒ௜,௫ሺ∆ݐሻ, ,ሻݐ∆௜,௬ሺݒ  ሻሻ  (13)ݐ∆௜,௭ሺݒ

We now calculate the next point of the VAF as, 

ሻݐ∆௩ሺܥ ൌ
ଵ

ே
∑ .	௜ሺ0ሻݒ〉 〈ሻݐ∆௜ሺݒ
ே
௜ୀଵ    (14) 

We can repeat this procedure at each subsequent simulation (or time) step, thereby obtaining a 

sequence of points of the VAF, as follows: 

ሻݐ∆௩ሺ݊ܥ ൌ
ଵ

ே
∑ .	௜ሺ0ሻݒ〉 〈ሻݐ∆௜ሺ݊ݒ
ே
௜ୀଵ    (15) 

which we may write as, 

ሻݐ௩ሺܥ ൌ .ሺ0ሻݒ〉  ሻ〉    (16)ݐሺݒ

where the summation is assumed. We stop after a fixed value of ݊, that is, a fixed number of 

simulation steps and plot the VAF. We can determine the corresponding diffusion coefficient 

from the VAF using numerical integration. The relationship is stated in equation (17) below, but 

first we investigate what the properties of the VAF can tell us about the dynamical system it 

corresponds to. [16] 

Here, we describe three different cases that produce different types of velocity 

autocorrelation depending on the nature of interaction of particles. First, if the atoms do not 

interact with each other via a potential, Newton's Laws of motion tell us that the atoms retain 

their initial velocities for all time, excepted only by the occurrence of random collisions. On the 

event of these random collisions, the involved atoms receive a new velocity, and then maintain 
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these velocities until another collision, or for all time. Thus, if the atoms do not interact with 

each other via a potential, all our points in the autocorrelation function ܥ௩ሺݐሻ ൌ .ሺ0ሻݒ〉  〈ሻݐሺݒ

have similar values, and a plot of the velocity autocorrelation function is horizontal on zero after 

an initially rapid drop from its maximum value at time ݐ ൌ 0. Therefore, a VAF plot that is 

almost horizontal implies that very weak forces are acting in the system. For pure Brownian 

motion, velocity does not correlate with itself. We have already discussed the statistical analysis 

employed in the determination of the diffusion coefficient in this case. 

Second, if the forces are small but not negligible, the magnitude and direction of the 

velocities change gradually under the influence of these weak forces. In this case, we expect the 

dot product ݒ௜ሺݐ௢ሻ. ௢ݐ௜ሺݒ ൅  ሻ to decrease on average (for each particle ݅), as the velocityݐ∆݊

changes. That is, the velocity decorrelates with time, or, the atoms gradually ‘forget’ what their 

initial velocities were. Thus, consider a typical non-horizontal correlation function for random 

fluctuations in a variable. When it is evaluated at any specific value, ݐ ൌ  ᇱ, we obtain theݐ

maximum amplitude: the mean square value of the variable at that time, which is positive for an 

autocorrelation function and independent of time. For long time separations, the values of the 

velocity become uncorrelated. Therefore, ܥ௩ሺݐሻ acquires its greatest value at ݐ ൌ 0, and then 

tends to zero with time. For randomly fluctuating velocity, with weak net force of particle 

interaction, the decay of the VAF is exponential (less rapid than in the case of negligible forces), 

with no oscillations. This indicates the presence of collisions and weak forces slowly destroying 

the velocity correlation. Such a result is typical of the molecules in a gas, for instance.  
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Third, we have the case that the interactive forces between the particles are strong. 

Lennard-Jones potentials provide a good model for such strong interaction of particles in high 

density systems such as solids and liquids (and solutions) where atoms are packed closely 

together. Traditionally, Lennard-Jones potentials have been used as the interatomic interaction of 

molecules in solutions by many research groups simulating solution diffusivity [1, 2, 6, 7, 10, 

12]. Under the influence of such a potential, the atoms continually rearrange themselves to reach 

a state of balance between the repulsive forces and attractive forces acting on them, since this 

state of balance is the most energetically stable. However, due to their internal energy, and the 

fact that collisions between particles are a frequent occurrence, the particles cannot stabilize 

permanently, and therefore constantly move. (This is analogous to Brownian motion, but there 

are net forces acting on each particle.) In extremely dense systems, like solids, these atomic 

locations are extremely stable, and the atoms cannot escape easily from their positions. Their 

motion is therefore oscillatory; the atoms vibrate back and forth, reversing their velocities at the 

end of each oscillation. If we calculate the VAF of these atoms, we obtain a function that 

oscillates strongly from positive to negative values and back again. The oscillations will not be 

of equal magnitude however, but will decay in time, due to the extraneous (fluctuating) forces 

acting on the atoms which disrupt their oscillatory motion. A plot of such a VAF resembles 

damped harmonic motion.  

Liquids behave similarly to solids, but since the atoms do not have fixed regular positions 

(they only reach relatively less stable equilibria), they are free to undergo diffusion. The 
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diffusion destroys the oscillatory motion more rapidly than in the case of solids. The VAF in this 

case is likely to show one damped oscillation (one minimum) before decaying to zero. This may 

be thought of analogously as a collision between two atoms before they rebound from one 

another and diffuse away. However, the VAF is dependent on the density of the particles, and 

more oscillations can be seen for higher density fluids. 

As well as revealing the dynamical processes in a system, the VAF can also be used to 

produce the diffusion coefficient directly. Since the VAF decays to zero at long times (for all of 

the cases outlined above), the function may be integrated numerically to give the diffusion 

coefficient D as, 

ܦ ൌ ଵ

ଷ
׬ .ሺ0ሻݒ〉 ݐ݀	〈ሻݐሺݒ
ஶ
଴    (17) 

This is a special case of a more general relationship between the VAF and the mean square 

displacement, and is derived from the Green-Kubo relations, which relate correlation functions to 

transport coefficients.  

[15, 16] 

b. The Nature of Mescoscopic Diffusion  

The net force on the particle in a mesoscopic solution consists of three parts [18, 19, 20]. 

First, part of the force correlates with the position: this is the force due to potential arising from 

the force field (particle-particle interactions). A second part of the force is frictional, and 
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therefore correlates with velocity, as explained in section a. Finally, there exists a third part 

which is neither correlated with velocity nor position. This can be thought of as ‘noise’ and its 

source is the same sort of randomness or fluctuation which explicates random walk. The noise is 

characterized by stochastic properties, the most important of which is that it is self-correlated. 

The self-correlation function is expressed as 〈ܴሺ0ሻܴሺݐሻ〉, where ܴ is the noise component of the 

force on the particle. Thus, though on a macroscopic scale the fluctuations which we call noise 

become negligible and the Navier-Stokes equations of continuum fluid dynamics emerge, on a 

mesoscopic scale, these fluctuations remain important and Stokes Law is no longer adequate to 

define the friction constant ߙ we encountered before. [19, 20] 

In both the macro- and mesoscopic scales, the transport properties described are 

properties of systems at equilibrium. Both the Langevin equation for the irregular Brownian 

motion of macroscopic particles, and the generalized non-Markovian Langevin for the oscillatory 

motion of a mesoscopic particle describe systems at equilibrium. Recall that the Stokes Law for 

the viscous drag on a sphere which is forced to move with constant velocity through a fluid tells 

us that the friction coefficient ߙ ൌ  The Onsager regression hypothesis suggests that this .ܽߟߨ݂

implies that equilibrium fluctuations can be modeled by non-equilibrium transport coefficients, 

in this case the shear viscosity, ߟ, of the fluid. Therefore, the inverse of this hypothesis is also 

true: knowledge of the equilibrium fluctuations allows us to calculate transport coefficients. [3, 

4, 5, 19] 
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Keeping the three components of the force on a solute particle in a mesoscopic solution 

in mind, we propose the following. When taken over time scales which are large compared to the 

noise correlation time, the average total energy of the system must be conserved. This is because 

the systematic force arising due to the particle-particle potential is conservative. Now, since 

frictional force itself is dissipative and decreases kinetic energy, and the stochastic (or 

fluctuating) force in first order does not affect the total energy but in second order increases the 

kinetic energy, the cooling due to friction must cancel the heating by noise. This relationship 

between friction and noise is known as the fluctuation-dissipation theorem [17, 18, 20, 21]. Due 

to the fluctuation-dissipation theorem, we can use the noise self-correlation to determine the 

friction constant (instead of the Stokes-Einstein relation in the macroscopic scale), which we can 

then use to determine the diffusion constant. Using Green-Kubo formulas we arrive at the 

relation  

ܦ ൌ ሺ௞்ሻమ

׬ 〈ோሺ଴ሻோሺ௧ሻ〉ௗ௧
ಮ
బ

   (18) 

From our analysis of the fluctuation-dissipation theorem, this noise autocorrelation suggests that 

the velocity is also autocorrelated with time. The exact relationship between the velocity 

autocorrelation function (VAF), ܥ௩ ൌ .ሺ0ሻݒ〉   ,ሻ〉, and the diffusion coefficient is given byݐሺݒ

equation (17) (above). [3, 4, 5] 

Equation (17) is used to determine the diffusion coefficient in the all the simulations 

described below. In the simulations, a velocity autocorrelation function is generated by 
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determining the velocity correlation at each simulation step. The VAF is then numerically 

integrated and the result divided by 3 to obtain the diffusion coefficient, ܦ.  

IV. Simulations and their Results 

a. Discussion of GROMACS Simulation  

In Fall 2012, I used the molecular dynamics engine GROMACS (version 4.5.5) to 

simulate a solution of phenylalanine in methanol [24, 25]. GROMACS is a molecular 

dynamics simulation engine popularly used for building complex biological simulations (for 

example, protein-lipid systems). Molecular dynamics engines such as GROMACS can output 

diffusion constants of the particles involved based on statistical correlation of particle 

trajectory, velocity, acceleration etc. Below is a discussion of the simulation techniques used 

by GROMACS and a discussion of my results. Appendix A contains the details of the 

commands required to run the simulation. [21] 

The temperature, pressure and other deterministic parameters can be specified for the 

particular solution we want to simulate, and the GROMACS topologies (or protein data bank 

(pdb) files in the correct format) for the solute and solvent molecules have to be provided. 

Topologies take into account the particle-particle interactions and set up the relevant potential. 

The force field used to determine the particle-particle interactions must therefore be specified. 

The simulated solution is then allowed to progress in time. Simulation ‘frames’ yield 

mechanical observables, like atomic distances, velocities, energies, pressure etc. which are 
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immediately measurable in each configuration. By averaging over an ensemble of 

configurations, particle trajectories and certain thermodynamic properties like distribution 

functions and energy, temperature and pressure profiles are obtained [19, 20, 21, 22]. Finally, 

by observing the time dependence of equilibrium fluctuations, transport properties such as 

diffusion constant and viscosity can be calculated from the simulations (using the inverse of 

the Onsager regression hypothesis). [4, 5, 18, 21] 

The largest hindrance in using simulations of molecular dynamics to model the required 

diffusion conditions with atomic details is the available computational power and consequent 

limit to time scales over which the simulations can be designed [19, 20, 21, 22, 23]. (Currently, 

these time scales are in the order of 100 ns.) Thus, for simulations that are required to be in the 

micro- or millisecond range, as well as system sizes beyond 100,000 particles, it is necessary to 

find methods to simplify the system. The key is to reduce the number of degrees of freedom. 

Once we define important degrees of freedom, we can average out the ‘unimportant’ degrees of 

freedom in such a way that the thermodynamic and long time-scale properties are preserved. [18, 

21] 

The technique for reduction of degrees of freedom depends on the particularities of the 

system to be simulated. One approach is the use of superatoms (or pseudoparticles), which is the 

term used to describe the lumping together of several atoms into one interaction unit. The 

interactions change into potentials of mean force, and the omitted degrees of freedom are 
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replaced by noise and friction. The force due to quantum degrees of freedom on classical degrees 

of freedom determines the classical dynamics and thus the time-dependence of the field in which 

the quantum system evolves. The interaction units we use in our GROMACS simulation are the 

phenylalanine and methanol molecules. We chose Lennard-Jones potentials as the interaction 

between superatoms, and using the relevant force field we produce the topologies of the 

molecules. [20, 21] 

  By running the GROMACS simulation of phenylalanine in methanol at a temperature of 

500 K we determine ܦ ൌ 2.81 ൈ 10ିଵ଴݉ଶ/ݏ. The order of magnitude suggests that this result 

may be reasonable [26, 27]; however, we have reasons to suspect this result is not valid. The 

temperature for this simulation was chosen somewhat arbitrarily, and a more suitable 

temperature for the simulation may be room temperature (300 K) in order for the results to be 

comparable to the data from laboratory experiments. In fact, since methanol boils at 340 K, the 

system we simulated represents a physically unrealistic ‘solution’. There also remains some 

uncertainty regarding the charge balance of the simulation box which could invalidate our 

results. Since both phenylalanine and methanol are neutral, organic compounds, it is reasonable 

to expect the mixture to be neutral. However, if the solution is not neutral, the excess charges 

must be balanced before running the molecular dynamics in order for the model for our long 

range electrostatic interactions to be valid. [21, 24, 25] 

Finally, the actual chemical solution we were interested in in laboratory experiments is 

methyl red in butanol [28]. In Spring 2013, I attempted to set up a simulation of this solution 
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using GROMACS, but ran into some difficulties along the way. The commands I had run before 

to conduct the GROMACS simulation could not be executed on the new pre-configured 

computational system on which GROMACS was installed. When the system eventually crashed, 

I decided to create alternative MATLAB simulations for molecular dynamics involving Lennard-

Jones potential. MATLAB simulations are more operationally transparent and allow much more 

user control. Their disadvantage is that they are incapable of incorporating the structure of 

molecules, and as a result treat the molecules only as point particles. 

b. Discussion of MATLAB Simulation 

 The MATLAB code for a simulation using Lennard-Jones potentials for particle 

interaction representing mesoscopic diffusion can be found in Appendix B [23]. What follows is 

a description of the design of the code. A three-dimensional cubic simulation box consisting of 

125 identical particles is defined. Here, we consider these particles to be pseudoparticles 

representing molecules. The particles’ masses are scaled by their actual mass in kilograms. Thus, 

suppose we are simulating a small part of a sample of liquid methyl red (mass per molecule = 

4.47 ൈ 10ିଶହ	kg), then the mass of the simulation particles of 1 mass unit is equivalent to this 

kilogram value. Instead of defining the dimensions of the box, we say the density of the particles 

is 0.85 mass units/unit volume. The actual density of methyl red is 0.791 g/cm3 or 1.77 ൈ 10ଶଵ 

molecules/cm3. Therefore, the volume occupied by each molecule in our simulation is ሺ0.85 ൈ

4.47 ൈ 10ିଶହሻ/ሺ1.77 ൈ 10ଶଵሻ cm3. The total volume occupied by all 125 molecules (assuming 
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they are close to each other) is 125 ൈ 4.81 ൈ 10ିଶଶ cm3 = 6.00 ൈ 10ିଶ଴ cm3, and the length of 

the sides of our box is 3.92 ൈ 10ି଻cm (see function initialCubicConfiguration in Appendix B). 

We use integration time steps of 0.0001 seconds and 10,000 integration steps, which give 

us a total simulation time of 1 second. Since the characteristic time, ߬ ൌ ௠

ఈ
 , is on the order of 

pico- to micro-seconds, a simulation time of 1 second is sufficiently large to allow us to use the 

methods outlined above to determine diffusion coefficients. We keep track of the progress of the 

simulation by printing the number of integration steps performed in increments of 100 

integration steps. 

To generate the initial coordinates of all the particles, the code calls the function called 

initialCubicConfiguration (Appendix B), which ensures that the particles are distributed 

precisely in a cubic lattice. Next, three dimensional initial velocities for all the particles are 

randomly generated using the function randomGaussian (Appendix B). The velocities are 

generated about a mean of zero and a standard deviation, ܦܶܵݏ݈݁ݒ ൌ ට்௘௠௣

௠௔௦௦
, which represents 

the statistical standard deviation of velocity from the mean velocity of an ensemble of massive 

particles in a heat bath (a thermostat parameter). We implement an Andersen thermostat for the 

heat bath defining a frequency of collisions of particles with the heat bath. ܶ݁݉݌ is the 

simulation temperature, scaled by the Boltzmann constant times room temperature and ݉ܽݏݏ is 

the scaled mass (as above). Note that, therefore  ܶ݁݉݌ ൌ 2 corresponds to a ݇ܶ factor of 

݇ܶ ൌ 2 ൈ ݇ ௥ܶ௢௢௠ ൌ 8.28 ൈ 10ିଶଵ J. Thus, the scaling factor for ܦܶܵݏ݈݁ݒ is 
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ඨ
8.28 ൈ 10ିଶଵ	ܬ

4.47 ൈ 10ିଶହ݇݃൘
ିଵ

ൌ ሺ√18523	݉/ݏሻିଵ. Since we generated the velocities 

using ܦܶܵݏ݈݁ݒ, the velocities are also scaled by this factor. 

We then find the center of mass velocity of the particles, and subtract off this value from 

the particle velocities in order to eliminate center of mass drift. The next step is to set the initial 

kinetic energy to the internal energy of the system. We find the mean squared velocity of the 

particles by finding the norm squared of the (initial) velocity vector and dividing by the number 

of particles. Next we define the velocity scaling factor as the square root of the product of the 

number of dimensions, the temperature and the inverse mean squared velocity. This is essentially 

a proxy for the Boltzmann constant. We then scale the velocity in each dimension for each 

particle by the scaling factor. This is the appropriately scaled initial velocity matrix for the 

particles and we store it as velsInitial to use in determining the initial velocity autocorrelation. 

The method for finding the velocity autocorrelation is outlined in Section a Part III, above. We 

take the dot product of the initial velocities (in each dimension) to find the norm squared. Next, 

we sum the columns of this matrix over all the particles and then divide by the number of 

particles in order to obtain the initial velocity correlation in each dimension. 

  The next step is to calculate the initial forces on the particles. We do so using the function 

LennardJones_Force (Appendix B). For all particle pairs, we determine their separation and 

apply to it the periodic boundary conditions of the simulation box by calling the function 

PBC_3D (Appendix B), which simply adjusts the distance between any two points using the 
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half-length of the simulation box (in three dimensions). Next, the LennardJones_Force function 

uses the inverse square of the inter-particle separation for each particle pair, to find the 

appropriate Lennard-Jones force factor between the two particles. The Lennard-Jones potential is 

given by 

ܷሺݎሻ ൌ ߝ4 ൤ቀఙ
௥
ቁ
ଵଶ
െ ቀఙ

௥
ቁ
଺
൨    (19) 

where ݎ is the separation between the two particles, ߪ is the finite distance at which the inter-

particle potential is zero and ߝ is the depth of the potential well. We scale our parameters by 

these distance and energy units by setting  ߪ ൌ 1 and ߝ ൌ 1. This allows us to use the Lennard-

Jones potential to describe the forces in the model without initial knowledge of the specific 

details of the depth and width of the potential well. As more simulations are run in the future 

gearing towards better accuracy of results, these parameters can be assigned actual values whose 

knowledge can be derived from previous simulations or from viscosity calculations. Then the 

magnitude of the attractive force in each of the three dimensions, found by taking the derivative 

of the Lennard-Jones potential is given by 

ሻݎሺܨ ൌ 24 ൤2 ቀଵ
௥
ቁ
ଵଷ
െ ቀଵ

௥
ቁ
଻
൨    (20) 

We find the force on each particle due to all the other particles by looping over all particle pairs 

and multiplying this force factor by the separation distance and summing over these values. 

We are now ready to start the molecular dynamics. During the first integration step, we 

update the positions of all the particles using the equation of motion: 
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ݏ ൌ ௢ݏ ൅ ݐݑ ൅ ଵ

ଶ
 ଶ    (21)ݐܽ

where ݏ௢ is the initial position of a particle (‘coords’ in the code), ݑ is its instantaneous velocity 

(‘vels’ in the code), ܽ is its acceleration (for which ‘forces’ in the codes acts as a proxy, since it 

is scaled by the mass), and we use the integration time ‘dt’ as the time elapsed. After applying 

the periodic boundary conditions on the coordinates again and calculating the new forces on the 

particles using their new positions, we are ready for the second integration step. 

 We update the velocities using the new forces, implementing the Andersen’s thermostat 

to ensure that particles which collide with the heat bath receive a new randomly generated 

velocity. This concludes the relevant calculations for each integration step in the simulation. We 

find the correlation function for each integration step by finding the velocity norm squared in 

each dimension for each particle and finding the average of these values for all the particles. We 

record the velocity autocorrelation, and then move time forward. Looping these steps over all the 

10,000 integration steps allows us to conduct our simulation. Within this loop we also sample the 

velocities of the particles in the x direction in order to keep track of the nature of their 

distribution. This simulation takes roughly two hours and thirty minutes to complete running. 

The final part of the MATLAB code allows us to generate the results. The simulation 

outputs a plot of the velocity autocorrelation function. We ran the simulation five times to obtain 

the following results. Figure 1 shows the VAF from one of the runs; its corresponding velocity 

histogram and diffusion coefficient are discussed below. 
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Figure 1:   Velocity Autocorrelation Function for a Simulation Run 

The VAF resembles what we described as the third kind of the velocity autocorrelation 

function in Section a Part III. Since we used Lennard-Jones potentials to model the interaction of 

the particles in order to simulate a solution, the interactive forces between the particles are 

relatively strong. The oscillatory nature of the motion of the particles is represented by the 

oscillations of the VAF about zero. The oscillations decay gradually, due to the fluctuating forces 

acting on the atoms which disturb their oscillatory motion. In other words, since the particles in 

solution diffuse, the oscillatory motion of the particles and the oscillations of the VAF are 
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gradually destroyed. Nonetheless, we can tell that the VAF belongs to a high density solution 

because we can see several oscillations in the VAF.  

In addition, we sample the x components of the velocities of the particles for the same 

simulation run and record them in the following histogram (Figure 2).  

 

Figure 2:  Histogram of Velocities (x Component) for the same Simulation Run 

The velocities appear to be distributed over a range centered roughly about zero. By 

averaging over all the simulation runs, we notice that the (x components of the) velocities are 
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distributed roughly normally about zero, which is what we expect since we generate our initial 

velocities using a Gaussian distribution and because of the random nature of the fluctuating 

forces on which we base our predictions and analyses (recall the fluctuation-dissipation 

theorem).  

Next, we use the velocity autocorrelation functions generated by our simulations in order 

to find the diffusion coefficient of the solution as described in Section a and b Part III. In 

MATLAB, we use the command trapz to perform the numerical integration of the VAF. The 

VAF shown in Figure 1 and the velocity histogram shown in Figure 2 correspond to a diffusion 

coefficient of ܦ	 ൌ 1.26 ൈ 10ଷ in scaled units. Now we perform a quick rescaling to obtain the 

diffusion coefficient in S.I. units. From equation (17) we know that ܦ is proportional to the 

product of ሺݏ݈݁ݒሻଶ and time (in integration steps). Thus, the scaling factor for ܦ is ሼሺ√18523	݉/

ሻିଵሽଶݏ ൈ ଵିݏ10000 ൌ ሺ1.85 ൈ 10଼	݉ଶ/ݏሻିଵ. Therefore, the physical value of the diffusion 

coefficient from the simulation is ܦ	 ൌ ଵ.ଶ଺ൈଵ଴య

ଵ.଼ହൈଵ଴ఴ
௠మ

௦
ൌ 6.80 ൈ 10ି଺ ௠

మ

௦
. Table 1 below lists the 

diffusion coefficients obtained from running the MATLAB simulation five times after 

converting them to physical units. 
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Run Number 1 2 3 4 5 

Diffusion 

Coefficient in 
௠మ

௦
  

8.54 ൈ 10ି଺ 5.32 ൈ 10ି଺ 7.73 ൈ 10ି଺ 6.00 ൈ 10ି଺ 6.80 ൈ 10ି଺ 

Table 1:  Table of Diffusion Coefficients from Simulations. 

The average value for the diffusion coefficient obtained from these results is ܦ	 ൌ 6.88 ൈ

10ି଺ ௠
మ

௦
. The standard deviation of these diffusion coefficients is 1.29 ൈ 10ି଺ ௠

మ

௦
, and therefore, 

in standard form, ܦ ൌ ሺ7	 േ 1ሻ ൈ 10ି଺ ௠
మ

௦
. Previously documented values for the thermal 

diffusion coefficient of methyl red in experiments involving transient gratings include the 

following: ܦ	 ൌ 1.1 ൈ 10ି଻ ௠
మ

௦
 in benzene, ܦ	 ൌ 9.33 ൈ 10ି଼ ௠

మ

௦
 in ethanol and ܦ	 ൌ 7.81 ൈ

10ି଼ ௠
మ

௦
 in 2-propanol [25], and ܦ	 ൌ 2.10 ൈ 10ିଽ ௠

మ

௦
 in 2-propanol [26]. The value for the 

diffusion coefficient of methyl red from our simulation is roughly seven standard deviations 

away from each of these values. Our simulation is used to determine the self-diffusion rate of 

methyl red. The above mentioned solvent molecules are smaller and less massive than methyl 

red molecules. Moreover, in the simulation, the methyl red molecules are closely packed 

together, more so than they would be in a solution in another solvent. Thus, it is reasonable that 

the diffusion coefficient we found using simulations is higher than the experimentally 

determined diffusion coefficients in previous literature. Furthermore, the results of our 
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simulations can be enhanced by greater knowledge of the specific details of the Lennard-Jones 

potential between methyl red molecules. 

V. Conclusion 

Though the classical Stokes-Einstein relation appropriately describes diffusion on a 

macroscopic scale, on the mesoscopic scale we rely on the fluctuation-dissipation theorem 

and the autocorrelation of the equilibrium fluctuations to calculate diffusion constants. 

Molecular dynamics simulations are extremely useful tools for simulating solutions with 

atomic details and evaluating their diffusion constants using Green-Kubo formulae. Using the 

molecular dynamics engine GROMACS (version 4.5.5), we determine the diffusion constant 

of a phenylalanine in methanol solution at 500 K to be 2.81 ൈ 10ିଵ଴݉ଶ/ݏ. We also write a 

script for molecular dynamics simulations on MATLAB. This provides a more user friendly 

interface and allows greater user control over the parameters and potentials to be used. From 

the MATLAB simulations, we determine the diffusion coefficient of a solution of ܦ ൌ

ሺ7	 േ 1ሻ ൈ 10ି଺ ௠
మ

௦
, which is significantly different from values of the diffusion coefficient 

for methyl red in various organic solvents that appear in the literature. Nonetheless, the details 

of our simulation lead us to believe that the value for the diffusion coefficient we have 

obtained is reasonable for the specific condition we are simulating.  

The primary purpose of my research and documentation has been to make simulation 

tools readily available for associated research work. Forced Rayleigh Scattering experiments 
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in the laboratory can be used to make diffusion coefficient measurements over a temperature 

range [24] in order to compare with results produced from simulations as well as expected 

results from theory. Moreover, projects on biomixing can greatly facilitate from simulations 

that approximate mesoscopic diffusion. Finally, these simulations may also be used in the 

investigation of the relationship of viscosity to diffusion. An easy way to vary the viscosity of 

the simulation in simulations is to vary the temperature of the solution. Since the relationship 

between viscosity and diffusion coefficients diverges from expectations from classical 

transport theories, these simulations can promise an efficient way to investigate this 

divergence and to attempt to explicate them. Though some of these projects are more 

practically oriented than others, they all ultimately converge towards the goal of improving 

our understanding of mesoscopic diffusion. Research in this field promises the exciting 

prospect of developing transport theories for molecular solutions and proposing an analytic 

expression for the diffusion coefficient on this length scale.  
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Appendix A 

 

Commands for running GROMACS: 

After installation of GROMACS (version 4.5.5) with fftw support (fftw version 2.3.3), 

we obtain the protein data bank (pdb) files for the solute and solvent molecules. These can be 

obtained from the protein data bank website, but they need to be edited to the format required by 

GROMACS. Fortunately the phenylalanine pdb file is available in the GROMACS package and 

we use this directly. We use the command 

pdb2gmx –ignh –ff gromos43a1 –f phenylalanine.pdb –o phenylalanine.pdb –p 
phenylalanine.top –water space  

to process the phenylalanine pdb file. The –ff flag selects the force field (gromos43a1, an united 

atom force field), –f takes the input pdb, –o and –p produce the appropriate output files, and 

water lets us specify the water environment of the solution. In this manner, we obtain the 

topology for phenylalanine. The methanol topology file preexists within GROMACS as well and 

we use this directly as well. Now we are ready to set up the simulation box. 

The command: 

editconf -bt octahedron –f phenylalanine.pdb –o phenylalanine-b4sol.pdb –d 4.0 

lets us specify the details of the box. The flag –d 4.0 tells GROMACS to use sides of length 4 

nm. Next, we solvate the box using 

genbox –cp phenylalanine-b4sol.pdb –cs methanol.gro –o phenylalanine-b4ion.pdb –p 
phenylalanine.top 
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where the –cs flag allows us to select the solvent. (The command editconf –f methanol.pdb –o 

methanol.gro is used to convert the methanol pdb file to a file format suitable for using to solvate 

the box.) We are now ready to set up the run by performing energy minimization. We pre-

process the energy minimization using, 

grompp –f em.mdp –c phenylalanine-b4ion.pdb –p phenylalanine.top –o ion.tpr  

where the em.mdp file lets us specify various parameters such as: 

• constraints – sets any constraints used in the model. 

• integrator (steep) – tells grompp that this run is a steepest descents minimization.  

• dt – needed for molecular dynamics integrators. 

• nsteps – the maximum number of iterations in minimization runs. 

• nstlist – frequency to update the neighbor list. We use nstlist = 10. 

• rlist – cut-off distance for short-range neighbor list. 

• coulombtype – tells gromacs how to model electrostatics. We use PME. 

• rcoulomb – distance for the coulomb cut-off. 

• vdwtype – tells Gromacs how to treat van der Waals interactions. We use cut-off. 

• rvdw – distance for the LJ potential cut-off. 

• fourierspacing – Used to automate setup of the grid dimensions for PME. 

• emtol – the minimization converges when the max force is smaller than this value (in 

units of kJ mol-1 nm-1) 

• emstep – initial step size (in nm) for minimization.  

 Next, we run the energy minimization using, 

mdrun –v –deffnm em 
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We can monitor the progress of the minimization using the tail command to check on the 

progress of the minimization: 

tail –15 em.log 

Similarly, we pre-process and then run the pr.mdp (position-restrained) and md.mdp (molecular 

dynamics) files after editing them with the appropriate parameter values for our simulation. The 

run commands are 

nohup mdrun –deffnm pr &  

and  

nohup mdrun –deffnm md &  

respectively. The last statement is the true simulation run statement. The phenylalanine in 

methanol simulation took about 27 minutes. Though these steps did not involve calling an MPI 

engine explicitly, GROMACS may have used MPI support by calling an MPI engine within the 

software or on the computer. The simulation is likely to have used 1 core, but may have used 4 

cores instead. 

 We are now ready for analysis. To calculate the diffusion constant of the particle via the 

Green-Kubo equation we use the g_velacc command. This gives us the file ‘vac.xvg’ with a 

linear velocity autocorrelation function (VAF). Next, to obtain the diffusion constant we 

compute the integral of the VAF using: 

g_analyze -f vac.xvg -integrate  

The integral is equal to the diffusion constant in units of nm2/ps. 
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 If the solution is not neutral, the excess charges must be balanced before running the 

molecular dynamics in order for the model for our long range electrostatic interactions to be 

valid. For example, the command to add two chloride ions in order to balance two excessive 

positive charges is as follows: 

 genion –s ion.tpr –o fws-b4em.pdb –nname CL –nn 2 –p fws.top –g ion.log 

 

 

 

 

  

 

 

 

 

 

 

 

 



Santona Tuli.  Honors Thesis, Spring 2013. 
Trinity University Department of Physics and Astronomy. 

 
 

 

41 
 
 

 

Appendix B 

 

Primary MATLAB code: 

__________________________________________________________________________ 

clear all; close all; 
  
% Determining the Diffusion Coefficient of Particles in a 
Lenard-Jones 
% Potential using Molecular Dynamics Simulation. 
  
% Written by Santona Tuli, Spring 2013. 
     
     
    % =================== 
    %     Initialize 
    % =================== 
     
    % Set simulation box parameters 
    nPart = 125;        % Number of particles 
    density = 0.85;     % Density of particles 
    mass = 1;           % Particles' mass 
    nDim = 3;           % The dimensionality of the system (3D 
in our case) 
     
    % Set simulation parameters 
    dt = 0.0001;        % Integration time 
    dt2 = dt*dt;        % Integration time, squared 
    Temp = 2.0;         % Simulation temperature 
    nu = 0.1;           % Thermostat parameter - frequency of 
collisions with the heat bath 
    velSTD = sqrt(Temp/mass); % Thermostat parameter - standard 
deviation of the velocity 
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    nSteps = 10000;     % Total simulation time (in integration 
steps) 
    sampleFreq = 10;    % Sampling frequency 
    sampleCounter = 0;  % Sampling counter 
    printFreq = 100;    % Printing frequency 
    
    % Initialize matrices used for correlation   
    correlation = zeros(nSteps+1,1); % The Velocity 
Autocorrelation as a function of time, for the complete 
simulation 
    % The following are only for understanding their sizes 
    % velsInitial = zeros(nDim,nPart); 
    % velsInitialDot = zeros(1,nPart); 
    % sumInitial = 0; 
    % velsdtDot = zeros(nSteps,nPart); 
    % sumdt = zeros(nSteps,1); 
         
    % Set initial configuration 
    [coords L] = initialCubicConfiguration(nPart,density,mass);  
% See fuction initialCubicConfiguration 
     
    % Set initial velocities with random numbers 
    vels = zeros(nDim,nPart); 
    for part=1:nPart 
        vels(:,part) = randomGaussian(0,velSTD,nDim);  % See 
fuction randomGaussian 
    end 
         
    % Set initial momentum to zero 
    totV = sum(vels,2)/nPart;  % Center of mass velocity 
    for dim=1:nDim 
        vels(dim,:) = vels(dim,:) - totV(dim);   % Fix any 
center-of-mass drift 
    end 
     
    % Set initial kinetic energy to nDim*KbT/2 
    totV2 = sum(dot(vels,vels))/nPart;  % Mean-squared velocity 
    velScale = sqrt(nDim*Temp/totV2);   % Velocity scaling 
factor 
    for dim=1:nDim 
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        vels(dim,:) = vels(dim,:)*velScale;     
    end 
     
    % Store the initial velocities for corrrelation   
    velsInitial = vels; 
    
    % Find the initial contribution to the VAF (velocity 
autocorrelation 
    %function)   
    % Dot product of the x, y, z components of the velocity of 
each particle  
    velsInitialDot = dot(velsInitial,velsInitial,2); 
     
    % Sum of the velocity dot products over all the particles 
    sumInitial = sum(velsInitialDot); 
    
    % The initial correlation (average over all the particles) 
    cInitial = (1/nPart)*sumInitial; 
     
    correlation(1) = cInitial; 
     
     
    % Calculate initial forces 
    forces = LenardJones_Force(coords,L);  % See function 
LenardJones_Force 
     
  
     
    % =================== 
    % Molecular Dynamics 
    % =================== 
     
    time = 0; % Following simulation time 
     
    for step = 1:nSteps 
         
        % === First integration step === 
         
        % Update positions - All coordinates are updated at once 
        coords = coords + dt*vels + 0.5*dt2*forces;  
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        % Apply periodic boundary conditions 
        for part=1:nPart 
            coords(:,part) = PBC_3D(coords(:,part),L);  % See 
function PBC_3D 
        end 
         
        % Update velocities - All velocities are updated at once 
        vels = vels + 0.5*dt*forces; 
          
        % === Calculate new forces === 
        forces = LenardJones_Force(coords,L);   
         
        % === Second integration step === 
         
        % Update velocities - All velocities are updated at once 
        vels = vels + 0.5*dt*forces; 
         
        % Implement the Andersen thermostat 
        for part =1:nPart 
            % Test for collisions with the Andersen heat bath 
            if (rand < nu*dt) 
                % If the particle collided with the bath, draw a 
new velocity 
                % out of a normal distribution 
                vels(:,part) = randomGaussian(0,velSTD,nDim); 
            end 
        end 
                
        % === Move time forward === 
        time = time + dt; 
         
        % === Find contribution to the VAF === 
        velsdtDot = dot(velsInitial,vels,2); 
    
        sumdt = sum(transpose(velsdtDot)); 
            
        cdt = (1/nPart)*sumdt;  % Correlation at time dt, or at 
each simulation step 
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        correlation(step+1) = cdt;  % Velocity Correlation 
Function for each particle for entire simulation 
         
        % === Sample === 
        if mod(step,sampleFreq) == 0 
            sampleCounter = sampleCounter + 1; 
            % Sample x velocities for display 
            for part=1:nPart 
                v(sampleCounter) = vels(1, part); % Put all 
sampled velocities in a new vector (only x) 
            end 
        end 
         
        if mod(step,printFreq) == 0 
            step % Print the step  
        end 
         
    end 
     
    
     
    % =================== 
    % Simulation results 
    % =================== 
     
    % Velocity Autocorrelation 
    VAF = plot(correlation);  %  Plots the x, y and z velocity 
correlation functions against the simulation steps 
    title('Velocity Autocorrelation Function'); 
    xlabel('Time (in integration steps)'); 
    ylabel('Velocity Autocorrelation'); 
    saveas(VAF,'VAFn.fig') 
 
    % Display histogram of sampled x velocities  
    figure 
    hist(v)  % Draw the histogram of the sampled velocities (x 
only) 
    title('Histogram of Sampled Particle Velocities (x component 
only)'); 
    xlabel('Velocity'); 
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    ylabel('Frequency'); 
     
    % Diffusion Coefficient  
    D = (1/3)*trapz(correlation)  %Numerical integration 
     
 
______________________________________________________________________________ 

 

Function: initialCubicConfiguration 

______________________________________________________________________________ 

function [coords, L] = 
initialCubicConfiguration(nPart,density,mass) 
     
        % Initialize with zeroes 
        coords = zeros(3,nPart); 
     
        % Get the cooresponding box size 
        L = ((nPart*mass)/density)^(1.0/3); 
     
        % Find the lowest perfect cube greater than or equal to 
the number of 
        % particles 
        nCube = 2; 
         
        while (nCube^3 < nPart) 
            nCube = nCube + 1; 
        end 
         
         
        % Start positioning using a 3D index for counting the 
spots 
        index = [0,0,0]'; 
         
        % Assign particle positions 
        for part=1:nPart 
            % Set coordinate 
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            coords(:,part) = (index+[0.5,0.5,0.5]')*(L/nCube); 
             
            % Advance the index 
            index(1) = index(1) + 1; 
            if (index(1) == nCube)  
                index(1) = 0; 
                index(2) = index(2) + 1; 
                if (index(2) == nCube) 
                    index(2) = 0; 
                    index(3) = index(3) + 1; 
                end 
            end 
        end 
     
    end 
______________________________________________________________________________ 

 

Function: randomGaussian 

______________________________________________________________________________ 

function randNums = randomGaussian(mu,sigma,nDim) 
     
        % Generate normally distributed random numbers 
        randNums = randn(nDim,1); 
         
        % Shift to match given mean and std 
        randNums = mu + randNums * sigma; 
         
    end 
______________________________________________________________________________ 

 

Function: LenardJones_Force 

______________________________________________________________________________ 
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function forces = LenardJones_Force(coords,L) 
     
        % Initialize all forces to 0 
        forces = zeros(size(coords)); 
         
        % Get the number of particles 
        nPart = size(coords,2); 
         
        % Loop over all particle pairs 
        for partA = 1:nPart-1 
            for partB = (partA+1):nPart 
                 
                % Calculate particle-particle distance 
                dr = coords(:,partA) - coords(:,partB); 
                % Fix according to periodic boundary conditions 
                dr = PBC_3D(dr,L); 
                % Get the distance squared 
                dr2 = dot(dr,dr); 
     
                % Lennard-Jones potential: 
                % U(r) = 4*epsilon* [(sigma/r)^12 - (sigma/r)^6] 
                % 
                % Here, we set sigma = 1, epsilon = 1 (reduced 
distance and 
                % energy units). Therefore: 
                % 
                % U(r) = 4 * [(1/r)^12 - (1/r)^6] 
                %  
                % Fx(r) = 4 * (x/r) * [12*(1/r)^13 - 6*(1/r)^7] 
                % 
                %      = 48 * x * (1/r)^8 * [(1/r)^6 - 0.5] 
                % 
                % And same goes for the force in the y&z 
directions. 
                % 
                % For efficiency, we will multiply by 48 only 
after summing 
                % up all the forces. 
                     
                invDr2 = 1.0/dr2; % 1/r^2 
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                forceFact = invDr2^4 * (invDr2^3 - 0.5); 
                     
                % According to Newton's third law, we get action 
and 
                % reaction for the two particles. 
                forces(:,partA) = forces(:,partA) + 
dr*forceFact; 
                forces(:,partB) = forces(:,partB) - 
dr*forceFact; 
                
            end 
        end 
         
        % Multiply all forces by 48 
        forces = forces*48; 
     
    end  
______________________________________________________________________________ 
 
 

Function: PBC_3D 

______________________________________________________________________________ 

function vec = PBC_3D(vec,L) 
     
    % Calculate the half box size in each direction 
    hL = L/2.0; 
     
    % Distance vector should be in the range -hLx -> hLx, -hLy -
> hLy and 
    % -hLz -> hLz 
    % Therefore, we need to apply the following changes if it's 
not in this range:  
     
    for dim=1:3 
        if (vec(dim) > hL) 
            vec(dim) = vec(dim)-L; 
        elseif (vec(dim) < -hL) 
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            vec(dim) = vec(dim)+L; 
        end 
    end 
     
     
    end 
______________________________________________________________________________ 
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