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Approximately 25% of the differential motion between the Pacific and North American plates occurs in the
Walker Lane, a zone of dextral motion within the western margin of the Basin and Range province. At the
latitude of Lake Tahoe, the central Walker Lane has been considered a zone of transtension, with strain
accommodated by dip-slip, strike-slip, and oblique-slip faults. Geologic data indicate that extension and strike-
slipmotion are partitioned across the centralWalker Lane,with dip-slipmotion resulting in E–WtoESE–WNW
extension along the present-day western margin of the central Walker Lane since approximately 15 Ma, and
dextral strike-slip motion across a zone further east since as early as 24 Ma. GPS velocity data suggest that
present-day strain continues to be strongly partitioned and localized across the same regions established by
geologic data. Velocity data across the central Walker Lane suggest a minimum of 2 mm/yr extensional strain
focused along the western margin of the belt, with very little extension across either the central or eastern
portions of the Walker Lane. These data indicate very little dextral motion across the central and western
portions of the domain, with dextral motion of 3–5 mm/yr presently focused along a discrete zone of the
eastern part of the central Walker Lane, coincident with existing, mapped strike-slip faults. Historic seismic
data reveal little seismic activity in areas of Late Holocene dip-slip motion in the west or dextral motion in the
east, suggesting a period of quiescence in the earthquake cycle and the likelihood of future activity in both
areas. Based on this and previous studies, it is likely that a combination of pre-Cenozoic crustal structure, a
relatively weak lithosphere beneath the Walker Lane, and long-term low stress ratios in the crust have
permitted the long-term partitioning of dextral and extensional strain exhibited across the central Walker
Lane. The present-day location of dextral strain in the central Walker Lane is subparallel with dextral
deformation documented in the northernWalker Lane, suggesting that as strain continues to accumulate, these
two discrete zones could become a continuous strike-slip systemwhich will play a more important role in the
future accommodation of relative Pacific–North American plate motion.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

Relativemotion between the North American and Pacific plates has
resulted in a broad zone of distributed dextral shear on the western
margin of North America (e.g., Atwater,1970; Atwater and Stock,1998).
Whilemost of thismotion has been accommodated by the SanAndreas
strike-slip fault system (e.g., Bennett et al., 1999; DeMets and Dixon,
1999), GPS data indicate that faults in the western Basin and Range
province account for approximately 25% of the total strain between the
Pacific and North American plates (Minster and Jordan, 1987; Dixon
et al., 1995; Bennett et al., 1999). South of latitude 36°N, most of this
relative plate motion is accommodated within 100–200 km of the San
Andreas fault (Bennett et al., 1999), but further north, through-going
deformation associated with dextral motion also occurs to the east of
the Sierra Nevada, along the Walker Lane belt (Fig. 1), separated from

the San Andreas fault system by the Sierra Nevada–Great Valley
microplate (e.g., Argus and Gordon, 1991).

The central Walker Lane (Fig. 1) is the locus for both dextral motion
associated with the North American–Pacific plate boundary as well as
significant extension associated with classic Basin and Range
deformation. The pattern of faulting within the Walker Lane is more
complex than that associated with the San Andreas system and might
be the result of both the lower total cumulative dextral slip along the
Walker Lane relative to the San Andreas as well as the different
associated stress field of the Walker Lane (extensional) relative to the
San Andreas (contractional) (e.g., Wesnousky, 2005a). Numerous
geologic and geodetic studies of the Walker Lane reveal conflicting
interpretations of how strain is accommodated across the region.
Flesch et al. (2000) and Bennett et al. (2003) suggest distributed
dextral shear and extension across the Walker Lane at most latitudes,
while Oldow (2003) and Hammond and Thatcher (2004) hypothesize
a zone of dextral-dominated transtension in the east and a zone of
extension-dominated transtension in the west. Unruh et al. (2003)
suggest focused dextral deformation along the entire Sierra Nevada
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range front fault system, with extension proximal to the range front
related to northwestwardmigration of the Sierra Nevadanmicroplate,
rather than Basin and Range extension.

Integrating previous geologic and seismic studies with recently
published Global Positioning System (GPS) velocity data helps resolve
this controversy. These data show a clear partitioning of present-day
strain, with localization of most dextral deformation across a very nar-
row region in the eastern portion of the central Walker Lane and most
extensional deformation focused in the west, proximal to the present-
day Sierra Nevada range front fault system. These findings, combined
with recent data from the northern Walker Lane, have significant
implications for the evolution of intraplate deformation in transten-
sional settings and provide evidence for the future of theWalker Lane in
the context of Pacific–North American plate interactions.

2. Geologic setting of the central Walker Lane

2.1. Structural domains of the central and northern Walker Lane

The Walker Lane is a complex zone of dextral and extensional
deformation subdivided into structural domains based on the
dominant mode of faulting in each domain (Fig. 1; Stewart, 1988).
North of latitude 38°N, the domains are the Excelsior–Coaldale
domain, theWalker Lake domain, the Carson domain, and the Pyramid
Lake domain. Although dextral strike-slip faults have not been
documented in all domains (Fig. 1), models of deformation based on
geologic and geodetic data emphasize the importance of dextral

deformation across all domains (e.g., Cashman and Fontaine, 2000;
Oldow, 2003; Unruh et al., 2003; Hammond and Thatcher, 2004;
Faulds et al., 2005).

The Excelsior–Coaldale domain is not cut by any through-going
dextral faults (e.g., Stewart, 1993; Oldow, 1993) and is hypothesized to
have been the locus of north–south directed extension related to the
transfer of dextral displacement from the southernWalker Lane to the
central Walker Lane in the north (e.g., Oldow et al., 1994). This domain
is now thought to be the location where significant left-lateral strike-
slip faults accommodate clockwise rotation of fault blocks about a
vertical axis (e.g., Freund, 1974; Nur et al., 1986; Petronis et al., 2002;
Wesnousky, 2005b), consistent with dextral motion along the eastern
region of the Walker Lane belt (Fig. 1). The position of displacement
transfer structures in the Excelsior–Coaldale domain might be related
to the position of the continental edge during the Paleozoic, based on
isotopic studies across the region (e.g., Kistler,1991;Oldowet al.,1994).

The Walker Lake domain displays both well-defined northwest-
striking dextral strike-slip faults in the east and major subparallel
N–NNW-striking Basin-and-Range-style normal faults, in the western
part of the domain (Figs. 1 and 2A). The timing of initiation of exten-
sional faulting and associated deformation at this latitude becomes
younger to the west (e.g., Dilles and Gans, 1995; Schweickert et al.,
2000; Stockli et al., 2002; Surpless et al., 2002), so is relatively im-
mature relative to the onset of dextral faulting in the eastern part of
the domain or normal faulting in the Basin and Range further east.
This younger deformation in the west may explain some of the struc-
tural complexity across the region.

Fig. 1. Digital shaded reliefmap and locationmap of the central and northernWalker Lane showing the four structural domains of Stewart (1988), separated by dashedwhite lines, and
the major normal and strike-slip faults in each domain. Sense of motion is indicated on all faults. Block rotations discussed in text are indicated. The region shown in Figs. 2, 3, and 5 is
boxed inwhite. The bold, black, dashed lines indicate the boundaries of theWalker Lane as delineated by Stewart (1988). Abbreviations: EC— Excelsior— Coaldale; HL—Honey Lake;
PL — Pyramid Lake; LT — Lake Tahoe; WL — Walker Lake; ML —Mono Lake; CS — Carson Sink; and SAF — San Andreas fault (modified after Ichinose et al., 1998).
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The Carson domain is in part characterized by a lack of through-
going dextral deformation (e.g., Slemmons et al., 1979; Stewart, 1993),
but northeast-trending zones of sinistral faults are probably related to
significant clockwise block rotations about a vertical axis caused by
dextral motion associated with the Walker Lane (Cashman and
Fontaine, 2000). These 35–44° block rotations (Cashman and Fontaine,
2000) are consistent with dextral deformation in the Carson Sink area
to the east, where the gap exists between mapped dextral faults in
domains to the south and north (Fig. 1).

The Pyramid Lake domain, at the northern end of the Walker Lane
belt, displays fivemajor northwest-striking dextral faults, with normal
faults present in the western part of the domain (e.g., Bell and Slem-
mons, 1979; Bell, 1984; Faulds et al., 2005). The timing of initiation of
dextral faulting is more recent in the Pyramid Lake domain than in the
Walker Lake domain (e.g., Stewart, 1993), suggesting northward
growth of the dextral system with time (e.g., Faulds et al., 2005). The
pattern of faults and deformation at the northernmost extent of the
Walker Lane suggests incipient strike-slip faulting to the north of
mapped dextral faults, consistent with the hypothesized growth of the
dextral system (Faulds et al., 2005).

2.2. Detailed geology of the Walker Lake structural domain

Within the Walker Lake domain, previous geologic studies have
been able to constrain Miocene and younger normal and dextral
motion. In the western part of the Walker Lake domain, Miocene and
younger deformation has been accommodated by E–W directed
extension along major N–NNW-striking normal faults (e.g., Stewart

and Dohrenwend, 1984; Proffett and Dilles, 1984; Surpless, 1999;
Stockli et al., 2002; Schweickert et al., 2004). In the eastern zone of the
Walker Lake domain, dextral faults trend ∼N25–50°W (Fig. 2A),
subparallel to the overall trend of the Walker Lane, and there is little
evidence for significant extensional deformation (e.g., Ekren et al.,
1980; Ekren and Byers, 1984; John, 1992).

2.3. Western section of the Walker Lake domain

In the western section of the Walker Lake domain, the locus of
significant extensional deformation migrated to the west from the
Wassuk Range at ∼15 Ma to the Sierra Nevada frontal fault system at
∼3 Ma (Dilles and Gans, 1995; Henry and Perkins, 2001; Surpless
et al., 2002; Schweickert et al., 2004), although the timing of the
onset of faulting related to Sierra Nevadan uplift might be much
earlier than 3 Ma (e.g., DeOreo et al., 2005). The motion along a
series of N–NNW-striking, east-dipping normal faults is primarily
dip-slip (e.g., Proffett, 1977; Dilles, 1993; and Surpless et al., 2002),
resulting in a series of asymmetric half-grabens and mountain ranges
across the area (Fig. 2A).

In the Wassuk Range and the Singatse Range (Fig. 2A), the onset of
extension is closely linked to calc-alkaline volcanism associated with
the ancestral Cascade arc at ∼15 Ma and younger (e.g., Proffett, 1977;
Dilles, 1993; Surpless et al., 2002; Stockli et al., 2002). Thermochrono-
logic analysis suggests a major extensional event affected both ranges
between ∼15 and ∼12 Ma, with a later period of lower-magnitude
extension deforming the eastern flank of the Wassuk Range (Stockli
et al., 2002; Surpless et al., 2002).

Fig. 2. A: Digital topography and geographical features of the Walker Lake domain. Faults are displayed as white lines and sense of motion is indicated on all major faults. The
approximate location of the Walker Lane boundary is modified from Stewart (1988). Abbreviations: BM — Bald Mountain; BSF— Benton Spring Fault; CC — Carson City; CL— Carson
lineament; GHF — Gumdrop Hills fault; H — Hawthorne; IHF — Indian Hills fault; PSF — Petrified Springs fault; WL — Wabuska lineament; and Y — Yerington. B: Historical ruptures
and Holocene faults. Locations of historical ruptures and Holocene faults from Bell et al. (2004) and USGS and NBMG (2007).
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The impressive topographic relief, the development of well-
defined triangular facets, and numerous fault-slip indicators along
the range-bounding fault of the Wassuk Range suggest present-day
ESE–WNW to E–W directed extension and normal faulting, with no
evidence for dextral deformation (Zoback, 1989; Surpless, 1999).
Wesnousky (2005b) documents continued normal fault activity along
the east flank of the Wassuk Range, with evidence of significant dip-
slip displacement in the last 5000 years. Demsey (1987) suggests two
major earthquake events along theWassuk Range fault zone, with the
most recent occurring along the east flank of the northern Wassuk
Range at ∼2.5 ka (rupture length of 50 km andM 7.2–7.5), and an older
event along the east flank of the southern Wassuk Range at ∼4.5 ka
(rupture length of 30 km and M 7.0–7.1). Demsey (1987) calculated a
slip rate of 0.4–0.5 mm/yr for the northern portion of the Wassuk
Range fault system. Althoughmost of the range-bounding fault system
has been active in the recent past, there is no evidence for significant
Holocene displacement along a 10 kilometer fault segment to the
south of Walker Lake (Fig. 2B). Mountain-front morphometric and
stream-gradient analyses along the entire Wassuk Range imply that
the northern section has been more tectonically active, with a pre-
ferred slip rate of 0.4–0.5 mm/yr, than the southern section through-
out the Quaternary (Demsey, 1987; Demsey et al., 1988).

Further west, the range-bounding fault system of the Singatse
Range displays no evidence for geologically-recent significant dip-slip
displacement, with no part of the fault system displaying any move-
ment during the Holocene (Fig. 2B; Bell et al., 2004; USGS and NBMG,
2007). In the PineNutMountains, thermochronologic data suggest that
the onset of normal faulting ismore recent than∼10Ma (Surpless et al.,
2002), with discontinuous segments of the fault system displaying
Holocene motion (Fig. 2B; Bell et al., 2004; USGS and NBMG, 2007).
Gilbert and Reynolds (1973) hypothesize that a portion of extensional
strain has been accommodated by folding across the western section,
adjacent to the Pine Nut Mountains and the Singatse Range.

The principal faults of the Sierra Nevada range front fault system,
including the Genoa fault (Fig. 2A), display dominantly east-side-down
displacements that cut volcanic rocks as young as 3.6 Ma (Schweickert
et al., 2000). All segments of the Genoa fault have been active during
Holocene time (Fig. 2B; Bell et al., 2004; USGS and NBMG, 2007), and
Zoback (1989) used fault-slip and focalmechanismdata to suggest that
dip-slip motion along the Genoa fault accommodates present-day
east–west directed extension. Ramelli et al. (1999) document two
significant episodes of dip-slip motion (3.0–5.5 m slip per event)
during LateHolocene time,with the last event occurring between 1000
and 4000 yr B.P., indicating very recent and significant normal dip-slip
displacement of the fault. These data suggest an apparent late
Holocene slip rate of 2–3 mm/yr along the Genoa fault, one of the
highest slip rates in the Basin and Range province (Ramelli et al.,1999).

West of the Genoa fault, to the west of Lake Tahoe, normal faults
accommodate up to 72 m dip-slip displacement of Tahoe age (∼56–
118 ka) moraine crests (Schweickert et al., 2000). In addition, faults
within the lake itself display Holocene motion (Fig. 2B; USGS and
NBMG, 2007), and Wakabayashi and Sawyer (2001) document
incipient extensional deformation in the Sierra Nevada to the west
of the Lake Tahoe region. These studies indicate that Basin and Range
extension continues to migrate west into the relatively unextended
Sierra Nevada block (e.g., Surpless et al., 2002).

In the northern Wassuk Range, northwest-striking faults with
dextral motion were active during the peak of ancestral Cascades

volcanism, but geological evidence for modern Walker Lane dextral
deformation is limited to a northwest-striking zone northeast of the
northern Wassuk Range and to areas further east (Dilles, 1993). In the
central Wassuk Range, a poorly-exposed NW-striking dextral fault
with minor (b800 m) horizontal offset (Bingler, 1978; Surpless, 1999)
displaces syntectonic sediments of the Wassuk Group, deposited
between 10 and 8–7Ma (Dilles,1993), but the fault could not be traced
laterally and displays no evidence of recent movement (Surpless,
1999). There is sparse evidence for right-lateral motion along the
Sierra Nevada range front, but the magnitude and timing of this
motion is not constrained by geologic data (e.g., Wakabayashi and
Sawyer, 2001; Schweickert et al., 2004).

2.4. Eastern section of the Walker Lake domain

To the east of the Wassuk Range, the Gabbs Valley Range and the
Gillis Range exhibit lower topographic relief relative to ranges in the
western section, display little dip-slip deformation associated with
extension, and are cut by a through-going system of dextral faults
whichmay have been active as early as 24Ma (Fig. 2A; e.g., Ekren et al.,
1980; Ekren and Byers, 1984; John, 1992), with most motion taking
place since 15–10 Ma years (e.g., Hardyman and Oldow, 1991; Oldow
et al., 1994). These faults, including the Gumdrop Hills fault, the Indian
Head fault, the Benton Springs fault, and the Petrified Springs fault
(Fig. 2A), accommodated as much as 80 km of dextral displacement,
based on offsets of Tertiary tuffs and lavas as well as older granitic
rocks and volcaniclastics (e.g., Ekren et al., 1980; Ekren and Byers,
1984; John, 1992; Stewart, 1993; Wesnousky, 2005b).

Today, the Benton Springs and Petrified Springs faults are the most
important structures accommodating dextralmotion in theWalker Lane,
but all of these dextral faults remain active (e.g., Stewart, 1993; Wes-
nousky, 2005b) and display Holocene movement along portions of their
lengths (Fig. 2B; Bell et al., 2004; USGS and NBMG, 2007). This system of
dextral faults is linked with dextral motion of the southernWalker Lane
belt to the south (Fig.1) by a structurally complex system of both dip-slip
and oblique-slip faults in the Exelsior–Coaldale domain (Fig. 1) (Oldow,
1993; Oldow and Aiken, 1998; Oldow et al., 1998). Deformation in this
transfer zone has taken place almost entirely within the past 12–15 Ma
(e.g., Hardyman and Oldow, 1991; Dilles and Gans, 1995).

In the Carson domain to the northwest, no through-going dextral
faults occur along strike of the dextral faults of theWalker Lake domain
(Fig. 1). However, the clockwise fault-block rotations in the Carson
domain began by 9–13 Ma, with a sense of rotation compatible with
dextralmotion (Fig.1; CashmanandFontaine, 2000). Thesegeologic data
suggest that fault-block rotations in the Carson domain anddeformation
in the Excelsior–Coaldale domainwere synchronous with dextral defor-
mation within the eastern section of the Walker Lake domain.

2.5. Boundary between the eastern and western sections of the Walker
Lake domain

The timing of activity across both zones of theWalker Lake domain
implies that predominantly dip-slip extensional faulting in the
western section of the domain occurred concurrently with dextral
motion in the Gabbs Valley and Gillis Ranges of the eastern section of
the domain since the Miocene. Recent studies indicate that this east–
west partitioning of strain has continued to the present (e.g., Ramelli
et al., 1999;Wesnousky, 2005b), with the east-dipping normal fault on

Fig. 3. A: Global positioning system station sites and total velocity vectors from the Walker Lake domain. Velocities are in fixed North American reference frame. Ellipses shown
are either 95% confidence (Oldow, 2003) or +/−2σ (USGS Earthquake Hazards Program, 2006). From west to east, the zones are: Lake Tahoe (LT — white vectors), Wassuk Range
(WR — black vectors), Gabbs Valley Range (GVR — white vectors), and Basin and Range (BR — black vectors). Thick, white, dashed lines are the approximate locations of divisions
between velocity zones. Data are summarized in Table 2. B: Dextral components of velocity vectors (vdex), subparallel to the North American–Pacific plate boundary at this latitude
(∼N35° W). Details of the vector calculation are shown in Fig. 4. C: N35°W component of GPS velocities (vdex) with respect to stable North America as a function of distance from
Hawthorne, Nevada, measured in the direction N65°E (N25°W=approximate orientation of zone boundaries). Approximate position of dextral faults of the Gabbs Valley and Gillis
Ranges indicated by shaded grey box. D: Extensional components of velocity vectors (vext), based on the component of velocity that remains after the dextral component is removed.
Details of vector calculation are shown in Fig. 4.
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the east flank of the Wassuk Range marking the western boundary of
the active dextral motion of the Walker Lane at this latitude (e.g.,
Wesnousky, 2005b). The position of the boundary between dom-

inantly extensional and dominantly dextral strain fields in the Walker
Lake domain might be at least partly controlled by pre-Cenozoic
crustal structure, as suggested for the bend in late-Cenozoic structures
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in the Excelsior–Coaldale domain to the south (e.g., Wetterauer, 1977;
Cogbill, 1979; Oldow et al., 1994), which separates the southern and
central Walker Lane (e.g., Oldow et al., 1994). This hypothetical crustal
boundary is based primarily on the position of the 0.706 isotope line,
which is hypothesized to separate Paleozoic continental from non-
continental crust (e.g., Kistler, 1991).

3. Distribution of modern strain in the Walker Lake domain

Previous Very Long Baseline Interferometry (VLBI) and GPS studies
support the conclusion that contemporary Basin and Range deforma-
tion is concentrated along the western margin of the province (e.g.,
Argus and Gordon, 1991; Dixon et al., 1995; Bennett et al., 1998;
Thatcher et al., 1999). Although geodetic data are inherently limited by
the short timeframe for which velocities have been measured as well
as by the uneven distribution of GPS stations, Hammond and Thatcher
(2004) use GPS velocity data to subdivide deformation in the Walker
Lane into two general zones. One zone, within the central portion
of the Walker Lane, is dominated by right-lateral simple shear, and
the other zone, along the Sierra Nevada frontal fault system, is char-
acterized by shear with a component of extensional deformation.
Similarly, Oldow (2003) uses original and previously published GPS
data to subdivide the central Walker Lane into a zone of extension-
dominated transtension on the west and wrench-dominated trans-
tension on the east. Published GPS data across the Walker Lane now
permit a more detailed analysis of present-day deformation of the
Walker Lake domain in the context of the documented geology.

Velocity data presented here include two-dimensional GPS
velocity data from the USGS Earthquake Hazards Program (2006)
and GPS data graphically analyzed from Oldow (2003). These data are
geographically limited to the Walker Lake domain and areas imme-
diately adjacent to theWalker Lane belt, between latitudes 38.4°N and
39.4°N and longitudes 117.5°W and 120.2°W (Figs. 1 and 3A). GPS
velocity vectors displayed in Table 1 and on Fig. 3A were calculated in
the ITRF-96 (International Terrestrial Reference Frame) realization and
fixed in a North American reference frame. Although the definition of
stable North America differs between published results, including
references cited by Oldow (2003), velocity solutions for shared sites
are well within reported uncertainties and do not contribute
statistically significant variability to the velocity data. A GPS velocity
station located at ∼38.95°N and ∼118.15°W within the Gabbs Valley
Range zone (from Oldow, 2003) was removed from the data set due to
a strongly divergent orientation of the velocity vector relative to other
local vectors. This station appears to record very localized strain and is
in an area with a high enough density of GPS stations (Fig. 3A) that no
significant information is considered lost.

The GPS data across the Walker Lake domain are here subdivided
into four zones based on both station location and consistency of
vector orientation (Table 1; Fig. 3A): the Lake Tahoe zone (LT); the
Wassuk Range zone (WR); the Gabbs Valley Range zone (GVR); and
the Basin and Range zone (BR). The magnitude of both northward and
westward velocity components increases from east to west (Table 1;
Fig. 3A), as is expected on the western margin of the Basin and Range
province, where both dextral and extensional deformation have been
well-established in the geologic record. The velocity components
display abrupt changes in magnitude across relatively narrow regions,
which appear to coincide with styles of deformation established by
the earlier geologic history of the region.

The average northward velocity component (vn) values are low in
the Basin and Range zone (1.5 mm/yr) and increase slightly on the
eastern margin of the Walker Lane in the Gabbs Valley Range zone
(2.6 mm/yr). However, a significant and abrupt increase in the
magnitude of the average vn occurs between the Gabbs Valley Range
zone (2.6 mm/yr) and the Wassuk Range zone (7.2 mm/yr) (Tables 1

Table 1
GPS stations and velocity data from the Walker Lake domain

Station Lat. (N) Long. (W) Vn Vw Vdex Vext

Lake Tahoe Zone
H112 38.63339 120.1767 7.65 10.51 9.34 5.15
A300 38.77725 119.9241 7.48 11.89 9.13 6.65
P208 38.11082 119.9227 6.77 10.3 8.26 5.56
A250 39.10145 119.7742 5.65 9.96 6.90 6.00
V209 39.08299 119.5439 4.83 6.63 5.90 3.25
SWWS 38.53046 119.2174 7.1 9.47 8.67 4.50
Oldow (2003) 39.02 119.76 13.9 14.3 16.9 4.6
Oldow (2003) 38.77 119.44 8.1 12.2 9.9 6.5
Oldow (2003) 38.63 119.46 6.5 9.9 7.9 5.3

Average 7.6 10.6 9.2 5.3
Std. dev. 2.58 2.13 3.14 1.08
Variance 6.63 4.56 9.89 1.16

Wassuk Range Zone
B300 38.98812 119.2441 5.51 6.7 6.73 2.84
W078 38.60609 118.5769 6.5 5.45 7.94 0.90
Oldow (2003) 38.83 119.24 9.6 6.0 11.7 −0.7
Oldow (2003) 39.09 119.00 7.4 6.4 9.0 1.3
Oldow (2003) 38.57 118.80 9.0 3.9 11.0 −2.5
Oldow (2003) 39.13 118.78 7.1 7.3 8.7 2.3
Oldow (2003) 38.78 118.74 5.3 4.6 6.5 0.9
Oldow (2003) 38.57 118.64 9.3 8.1 11.3 1.6
Oldow (2003) 38.83 118.55 9.9 4.7 12.1 −2.2
Oldow (2003) 38.91 118.45 9.7 5.3 11.8 −1.4
Oldow (2003) 38.82 118.43 3.8 4.9 4.7 2.2
Oldow (2003) 38.55 118.34 3.6 4.9 4.3 2.4

Average 7.2 5.7 8.8 0.6
Std. dev. 2.31 1.2 2.82 1.88
Variance 5.32 1.53 7.93 3.54

Gabbs Valley Range Zone
SNDS 39.14751 118.4225 3.11 5.9 3.80 3.72
SHEL 39.04319 118.3245 1.99 3.94 2.43 2.55
SLR1 39.10917 118.2061 2.89 5.95 3.53 3.93
AGGI 39.0032 118.1264 2.33 3.76 2.84 2.13
FT73 38.73066 118.1039 1.73 5.29 2.11 4.08
POST 39.03592 118.0356 2.45 4.21 2.99 2.49
GABB 38.97033 117.9164 2.31 3.55 2.82 1.93
C300 38.75992 117.8839 2.11 3.32 2.58 1.84
CEDA 38.53124 117.8235 1.67 3.17 2.04 2.00
Oldow (2003) 39.16 118.59 3.8 6.9 4.7 4.2
Oldow (2003) 38.61 118.11 2.2 5.0 2.7 3.5
Oldow (2003) 38.46 117.94 4.1 5.5 5.1 2.6
Oldow (2003) 38.89 117.75 3.8 5.8 4.6 3.2
Oldow (2003) 38.59 117.56 1.5 6.7 1.8 5.6
Oldow (2003) 38.90 117.62 3.6 4.9 4.3 2.4

Average 2.6 4.9 3.2 3.1
Std. dev. 0.85 1.21 1.04 1.08
Variance 0.73 1.45 1.09 1.16

Basin and Range Zone
BUFF 39.14594 117.8068 0.91 4.25 1.11 3.61
MAHH 38.55247 117.1332 0.07 4.23 0.09 4.18
D300 39.05616 116.7457 −0.13 3.41 −0.16 3.50
MONI 39.14771 116.7156 1.20 3.01 1.46 2.17
Oldow (2003) 38.84 117.20 1.9 6.1 2.3 4.7

Average 1.5 4.5 1.9 3.5
Std. dev. 0.47 2.15 0.57 1.82
Variance 0.22 4.62 0.32 3.32

Sources of data:
All data were calculated in the ITRF96 (International Terrestrial Reference Frame)
realization and fixed in a North American Reference frame. All named GPS station data
(e.g., H112) are from the USGS Earthquake Hazards Program (2006). All other data are
estimated from Oldow (2003). Where duplicate stations exist, the USGS data were used.
See data sources for discussion of error.

Table 2
GPS velocity data summary, in mm/yr, from the Walker Lake domain
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and 2; Fig. 3B). This 4.6 mm/yr relative velocity difference is also
obvious in graphic form (Fig. 3A) and appears to coincide with the
mapped dextral faults of the Gillis and Gabbs Valley ranges. Further
west, the magnitude of northward velocity increases only slightly (an
average of 7.2 mm/yr in the Wassuk Range zone to an average of
7.6 mm/yr in the Lake Tahoe zone), suggesting little difference in
northward motion of the Lake Tahoe zone relative to the Wassuk
Range zone.

T-test analyses, which examine the statistical differences between
adjacent zones, support these results (Table 3). The T-test technique
permits evaluation of the mean velocity values for two zones (e.g.,
Lake Tahoe zone vs. Wassuk Range zone) relative to the variability
of the two zones' velocity populations. If the difference between the
means of two zones' sample populations is large relative to the
variability of the two velocity populations, then the calculated t-value
will exceed the 95% confidence t-value, suggesting that the means are
statistically different. In contrast, if the calculated t-value for the
statistical comparison of two velocity populations falls below the 95%
confidence t-value, the variability of the populations is too great to
demonstrate statistical difference between populations.

The northward velocity (vn) t-value for the Wassuk Range (WR)
and Gabbs Valley Range (GVR) confirms that the northward velocity
values (vn) for the two zones are very different statistically (Tables 2
and 3). The northward velocity t-value for the Gabbs Valley Range and
Basin and Range (BR) populations also suggests a lesser, but
statistically significant difference, but the northward velocity t-value
for the Wassuk Range and Lake Tahoe (LT) populations indicates no
statistical difference between northward velocity populations for
those western zones (Table 3).

As noted with the northward components of GPS velocities, the
relative differences in magnitudes of westward velocities (vw) do not
vary constantly across the Walker Lake domain (Table 1; Fig. 3A). In
the eastern zones, the westward components of velocity change from
an average of 4.5 mm/yr in the Basin and Range zone to an average of
4.9 mm/yr in the Gabbs Valley Range zone (Tables 1 and 2). T-test
analysis of these westward velocity (vw) populations suggests that
these zone velocity populations are not statistically different (Table 3).
A slight increase from an average of 4.9 mm/yr in the Gabbs Valley
Range zone to 5.7 mm/yr in the Wassuk Range zone yields a t-value
closer to the 95% confidence value than between the populations of
the easternmost zones (Table 3), but the difference between zone

populations is not statistically significant. The westernmost zones
display the most significant change in the westward components of
velocities. The nearly 5 mm/yr difference in average vw between the
Lake Tahoe (vw=10.6 mm/yr) and Wassuk Range (vw=5.7 mm/yr)
zones (Tables 1 and 2) suggests that differential westward velocity is
concentrated along the western margin of the Walker Lake domain,
proximal to the Sierra Nevada range front; this observation is sup-
ported by the strong statistical difference between the two zones'
westward velocity populations (Table 3).

While analyses of northward and westward components give a
general idea about the present-day strain field across the Walker Lake
domain, the established geologic structure of the region permits a
more revealing analysis ofmodern deformation. Geologic structures at
all scales (Figs.1 and 2) reveal a dominant trend of ∼N35°W. This trend
is based on the approximate orientation of the Pacific–North American
plate boundary at this latitude, the direction of motion of the Sierra
Nevada–Great Valley microplate relative to the Basin and Range
(Hammond and Thatcher, 2007), the trend of the central and northern
Walker Lane, and the average trend of mapped dextral faults in the
easternWalker Lake domain (Figs. 1 and 2). In addition, the N–S strike
of normal faults in the western Walker Lake domain (i.e., range -
bounding faults of the Carson Range, the Pine Nut Mountains, and the
Singatse Range) is consistent with an approximate E–Worientation of
themaximum extensional strain rate (Hammond and Thatcher, 2007).
Therefore, to better define the components of dextral and extensional
strain, the total velocity vectorswere split into two components (Figs. 3
and 4; Tables 1 and 2). The direction of the dextral component (vdex) is
parallel to N35°W, and the extensional velocity component (vext) is
what remainswhen the dextral velocity component is subtracted from
the total velocity vector (Figs. 3 and 4). Although other dextral and
extensional directions could be chosen for analysis, the long-term
structural evolution of the area suggests that the component directions
chosen here are perhaps less arbitrary. In the cases of vectors with
trends more northerly than N35°W, found in the Walker Lake zone,
the extensional vectors become negative, directed eastward (Table 1;
Fig. 3C). However, the extensional components of velocity still fall
within the error ellipses (as calculated by Oldow, 2003) for those vec-
tors (Fig. 3).

As suggested by the analysis of the northward components of
velocity vectors, the dextral velocity vectors of stations across the
Walker Lake domain (Fig. 3; Table 2) also indicate that present-day
dextral deformation is localized along a very narrow region, perhaps
15–20 kmacross, within the eastern section of theWalker Lake domain
and is virtually absent from the western section of the domain. The
average dextral GPS velocity components (vdex) of the Lake Tahoe zone
and the Wassuk Range zone (9.2 mm/yr and 8.8 mm/yr, respectively)
are nearly identical, within less than one standard deviation, sug-
gesting no statistically significant dextral motion across the western

Table 3
T-test results for comparison of GPS velocity data from zones listed in Tables 1 and 2

Zones
compared

t-value Degrees of
freedom
(n−2)

95% Confidence
exceedance value
(abs. value)

Vn Vw Vdex Vext

LT–WR 0.306 6.133 0.306 7.142 19 2.093
WR–GVR 6.532 1.636 6.532 −3.988 25 2.060
GVR–BR 3.650 0.387 3.650 −0.447 18 2.101

Zone abbreviations are the same as those shown in Table 2. All T-test analyses are based
solely on the component values given (vn and vw) or calculated (vdex and vext) and don't
integrate measurement errors/2σ ellipses from published data. In the table above,
n=total number of stations in both zones. Exceedance values (from a statistical t-value
table) are based on the number of degrees of freedom (n−2) and probability (P=0.05 or
95% confidence). A t-value (absolute value) that is greater than the 95% confidence
exceedance value indicates a statistical difference between sample populations (shown
in bold italics in the above table). A t-value that is below the exceedance value indicates
sample populations that are not statistically different. The t-value formula for the
comparison of two sample populations, A and B, is shown below. The denominator of
the formula is also known as the standard error of difference of means.

t ¼ XA−XBffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
varA
nA

þ varB
nB

q

X ̄A=mean of population A.
varA=variance of population (variance=square of S.D.).
nA=total samples in population A.

Fig. 4. Graphical representation of the calculation of the dextral (vdex) and extensional
(vext) components of the GPS velocity vectors of the Walker Lake domain. The
northward and westward components of reported GPS velocity vectors were used to
calculate the approximate component of plate–boundary parallel motion oriented
∼N35W (vdex) and the remaining component, assumed to be a component of extension
(vext). The resulting vectors are shown in Fig. 3. The calculated values for all GPS stations
across theWalker Lake domain are displayed in Table 1, and the data are summarized in
Table 2.

245B. Surpless / Tectonophysics 457 (2008) 239–253



Author's personal copy

section of the block (Table 3). In contrast, there is a statistically
significant difference in average vdex between the Wassuk Range zone
(WR) and the Gabbs Valley Range zone (GVR), from 8.8mm/yr (WR) to
3.2mm/yr (GVR) (Tables 2 and3). This indicates relative dextralmotion
on the order of more than 5 mm/yr (Table 2) accommodated across a
very narrow region about 15–20 kmwide, which coincideswith one or
more of the dextral faults mapped across the Gillis and Gabbs Valley
ranges (Figs. 2A and 3B). The relative difference in vdex between the
Gabbs Valley Range (GVR) zone and the Basin and Range (BR) zone,
from 3.2 mm/yr (GVR) to 1.9 mm/yr (BR), also indicates minor, statis-
tically significant, active dextral deformation on the eastern margin
of the Walker Lake domain (Tables 2 and 3), supporting possible
dextral deformation on the eastern margin of the Walker Lane at this
latitude.

To better characterize geographic changes in the dextral velocity
component, Fig. 3C displays dextral velocities (vdex) relative to
Hawthorne, Nevada (Fig. 3B), measured along the direction N65°E.
This direction is approximately perpendicular to the zone boundaries
(Fig. 3A and B), so is considered a good estimate of how vdex varies
with position across the central Walker Lane. The vdex gradient from
the easternmost station of the Basin and Range zone (BR) to the
westernmost station of the Gabbs Valley Range (GVR) zone is rela-
tively low, but does indicate a clear increase in vdex with decreasing
distance from Hawthorne (Fig. 3C), consistent with minor dextral
deformation on the eastern margin of the Walker Lane, discussed
above. The steepest velocity gradient across the Walker Lake domain
occurs across the mapped dextral faults of the central Walker Lane,
where station velocities jump from 2–4 mm/yr to the east of the faults
to 7–12 mm/yr west of these faults (Fig. 3C). Tremendous variability
exists within this zone of mapped faults (Fig. 3C), potentially caused
by local variations in the accommodation of strain. Further west, both
the Wassuk Range (WR) and Lake Tahoe (LT) zones display no con-
sistent change in velocity with distance from Hawthorne (Fig. 3C),
consistent with the statistical similarities between the stations of each
zone (Tables 2 and 3). Based on this analysis, the minimum shear
parallel to N35°W across the mapped dextral faults is ∼3 mm/yr,
slightly lower than the ∼5 mm/yr shear based on mean velocity
values. Further to the west, the Lake Tahoe (LT) zone displays no
increase in dextral velocity with increasing distance from Hawthorne
either between stations within the zone or relative to stations within
Wassuk zone to the east (WR), suggesting that most dextral defor-
mation is presently accommodated in the region proximal to the
mapped faults of the Gabbs Valley and Gillis Ranges (Fig. 3C), con-
sistent with comparison of zone means and variability discussed
above (Tables 1 and 2; Fig. 3B).

Present-day extensional strain is of smallermagnitude than dextral
deformation in the Walker Lake domain and appears to be concen-
trated within the western section of the domain. The 4.1 mm/yr
relative difference between the average extensional velocity compo-
nents (vext) of the Lake Tahoe (LT) and Wassuk Range (WR) zones
(Fig. 3D; Table 2) could suggest significant extension along the
western margin of the Walker Lane at this latitude. The anomalously
low average vext value of the Wassuk Range zone is caused primarily
by the negative vext values for 4 sites within the zone (Fig. 3A and D;
Table 1). Despite this low average value, the average vext values for the
Wassuk Range (WR), Gabbs Valley Range (GVR), and Basin and Range
(BR) zones are all within error, based on error ellipses (Oldow, 2003)
and 2σ ellipses (USGS Earthquake Hazards Program, 2006) shown in
Fig. 3A. If the true vext vectors of the Wassuk Range zone are similar to
those within zones to the east (3–3.5 mm/yr), the ∼2 mm/yr relative
strain rate across the entire Walker Lane at this latitude might be
entirely accommodated along the western margin of the Walker Lake
domain. T-test analyses between vext populations involving the
Wassuk Range zone are affected by an artifact of the vext calculation
(i.e., vext becomes negative for stations where the vdex vector is more
northerly than N35°W), so are not used in determining statistical

differences between most zones. However, t-test analysis of the
Gabbs Valley Range and Basin and Range zones is not affected by this
issue and demonstrates statistical similarity between vext populations
(Table 3).

Thus, geodetic data show a partitioning of strain similar to that
seen in the geologic record. Extensional strain of ∼2 mm/yr or more
might be focused in the western section of the Walker Lake domain,
proximal to the Sierra Nevada range front, and dextral strain is focused
in the eastern section of the domain. This dextral strain is largely
localized across a very narrow zone of perhaps 15–20 km in the east
that coincides with mapped dextral faults, with little dextral motion
occurring to the west of this localization and a minor component of
dextral deformation occurring to the east (Fig. 3; Table 2). These data
do not show a constant westward increase in extensional and dextral
velocities (Fig. 3).

4. Seismicity in the Walker Lake domain

Themost significant concentrations of seismicity across the central
Walker Lane at this latitude have been associated with either the
Central Nevada seismic belt (CNSB) or faults proximal to the Lake
Tahoe area (Fig. 5A; e.g., Rogers et al., 1991). In the western section of
the Walker Lake domain, fault-slip indicators (e.g., Zoback, 1989;
Surpless, 1999), well-preserved fault scarp morphology, and paleo-
seismic studies (e.g., Ramelli et al., 1999; Demsey, 1987) suggest that
the Genoa fault and the range-bounding fault on the east flank of the
Wassuk Range (Fig. 2A) are youthful, active normal faults with
significant dip-slip displacements. However, neither normal fault
displays significant historical seismicity (Fig. 5A). Further east, there is
little seismic activity associated with the central and northwestern
segments of most dextral faults of the Gillis and Gabbs Valley Ranges
(Figs. 2A and 5A), where geodetic data indicate significant modern
dextral strain (Fig. 3B).

Unraveling the complexities of ongoing fault processes utilizing
seismic activity across the Walker Lake domain is difficult due to
inherent limitations of seismic data including: 1) the relatively short
timeframe represented by the earthquake record (∼150 years) in the
context of earthquake cycles that can span thousands of years; 2) the
lack of focal mechanisms for older events due to lower quality of older
data and the initially small number of seismic stations; and 3) the
relatively uneven geographic distribution of seismic stations until the
past several decades. However, the distribution and style of earth-
quake activity do reveal several important features about the complex
pattern of faulting across the region.

4.1. Seismicity in the Western Section of the Walker Lake domain

The concentration of seismicity on thewestern margin of the Basin
and Range province has long been recognized (e.g., Eaton, 1982;
Eddington et al., 1987) and used as evidence of continued westward
expansion of the province (e.g., Dilles and Gans, 1995; Surpless et al.,
2002). Although the Lake Tahoe earthquake of 1977, the Virginia City
earthquake of 1981, and the Border Town earthquake of 1995 all
revealed motion compatible with dip-slip deformation of a normal
fault (Fig. 5B; Ichinose et al., 1997,1998), Schweickert et al. (2004) note
that the most significant normal fault zone in the Lake Tahoe area, the
Genoa fault, displays a very low rate of historic seismicity (Fig. 5A); the
highest rates of seismic activity in the area occur in three clusters,
named the Gardnerville, Carson, and Truckee transition zones (Fig. 5A;
Schweickert et al., 2004).

The seismic events in these transition zones are characterized by
low-magnitude slip on small, high angle, NNE- and NNW-striking
conjugate strike-slip faults that poorly correspond with mapped
surface faults (Ichinose et al., 1998; Schweickert et al., 2004). The
seismicity of the Truckee transition zone extends outside of the
Walker Lake domain to the north, so is not discussed here. The left-
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stepping en echelon arrangement of the Genoa fault relative to the
east-dipping normal fault system of the Sierra Nevadan range front,
which extends further south (Fig. 5A), suggests that the position of the
seismicity associated with the Gardnerville transition zone corre-
sponds to an accommodation zone between two overlapping,
synthetic major normal faults (e.g., Faulds and Varga, 1998). Similarly,
the position of the Carson transition zone seismicity near the northern
termination of the Genoa fault zone is near another left-step in the
range front fault system (Fig. 5A). Analysis of historical seismicity and
the geology of accommodation zones worldwide suggest that
deformation in accommodation zones occurs along diffuse systems
of small, discontinuous faults and fractures, as opposed to the rupture
of long, relatively continuous strike-slip systems (Roberts and Jackson,
1991; Faulds and Varga, 1998). This description is consistent with
observed data from the Gardnerville and Carson transition zones, but
two hypotheses explain the cause of these concentrations of seismic
activity located near the terminations of the Genoa normal fault.

Schweickert et al. (2004) suggest that these concentrations of
historical seismicity are the result of a recent change in the broader
stress field on the western margin of the central Walker Lane.
Schweickert et al. (2004) hypothesize that the strike-slip faults
defined by concentrations of seismicity and focal mechanism data
(see Double Springs Flat event, Fig. 5) accommodate present-day
north–south shortening (N–S oriented P axis), while the normal faults
in the area accommodate east–west extension during different time

periods (Schweickert et al., 2004). This spatial and temporal
partitioning of strain (E–W extension and N–S shortening) could be
related to two modes of seismic behavior that change depending on
the orientation of maximum and minimum stress directions across
the region (Schweickert et al., 2004).

Alternatively, the regional stress field may have remained rela-
tively constant throughout the Holocene to the present. Earthquakes
along major normal faults are often followed by concentrations of
seismic activity, with a wide range in focal mechanisms, near the
terminations of the faults (Roberts and Jackson, 1991; Faulds and
Varga, 1998 and references therein). Pre-historic earthquake activity
along the Genoa fault might have changed the local stress fields at the
tips of the normal fault system, thereby initiating seismic activity in
the Gardnerville and Carson transition zones. The diffuse concentra-
tion of seismicity in the Gardnerville transition zone is also consistent
with the diffuse patterns of seismicity and faulting observed in
accommodation zones elsewhere (Roberts and Jackson, 1991; Faulds
and Varga, 1998). Moreover, the Genoa normal fault has remained
active in the Holocene (Figs. 2A and 5B; e.g., Ramelli et al., 1999), so the
seismicity of the Gardnerville transition zone may be related to a
geologically-recent dip-slip earthquake along themain segment of the
now-quiescent Genoa normal fault. Although accommodation zones
are relatively low-risk regions for seismic hazard, significant earth-
quakes, such as the Double Springs Flat earthquake of 1996, do
occasionally occur in these areas (e.g., Aki, 1979; King, 1983).

Fig. 5. A: Earthquakes of magnitude 3.5 and greater from the late 18th century to 2007 in the centralWalker Lane region, based on the earthquake catalog of the University of Nevada,
Reno Seismological Laboratory, Bell et al. (1999), and Doser (1986, 1988). The Carson and Gardnerville transition zones, as named by Schweickert et al. (2004) are circled, and the
southern section of the Truckee transition zone is shown north of Lake Tahoe. The Central Nevada Seismic Belt (CNSB) is shaded (approximate boundaries from Rogers et al., 1991).
Significant seismic events are abbreviated as follows: CC — 1860's Carson City earthquakes; CM — 1932–1933 Cedar Mountain EQs; DSF — 1994 Double Springs Flat EQ; FP — 1954
Fairview Peak EQ; RM — 1954 Rainbow Mountain EQ; S — 1959 Schurz EQ; VC — 1869 Virginia City EQ; and Y — 1933 Yerington/Wabuska EQ. B: Earthquake focal mechanisms and
historical and Holocene fault ruptures. Locations of historical and Holocene fault ruptures from Bell et al. (1999) and United States Geological Survey and Nevada Bureau of Mines and
Geology (2007). Focal mechanism data fromDoser (1986,1988), Ichinose et al. (1997,1998), and Rogers et al. (1991 and the references therein). Focal mechanisms shown are from the
largest earthquake event in each earthquake sequence. The abbreviations in B are the same as those used in A. For the earthquakes of magnitude less than 5, the events are
abbreviated as follows: BT — Border Town; LT — Lake Tahoe; VC — Virginia City; and WL — Walker Lake.
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The two significant pre-historic earthquakes along the Genoa fault,
with 3.0–5.5m of dip-slipmotion per event, suggest that despite a low
level of historic seismicity, the Genoa fault remains active and has the
potential to generate large magnitude (N7.0) earthquakes (Ramelli
et al., 1999). Schweickert et al. (2004) hypothesize a period of relative
seismic quiescence for themajor normal faults of the Lake Tahoe region
on the order of 1500 years or greater based on data presented by
Ramelli et al. (1999), with the rate of accumulation of elastic strain
controlled primarily by the large-scale motion of the relatively rigid
Sierra Nevada–Great Valley microplate. Ichinose et al. (1998) suggest a
different recurrence behavior for major normal faults of the Sierra
Nevadan frontal system relative to the accommodation zones between
the normal faults, with longer periods of quiescence between main-
shock events along the normal faults, and shorter periods of quies-
cence between mainshock events along the strike-slip faults that link
the larger structures. This hypothesis is consistent with observed
patterns of seismicity, but cannot be evaluated because of the limited
timeframe of the earthquake record and the lack of geologic or paleo-
seismic evidence for pre-historic earthquakes in either the Carson or
Gardnerville transition zones.

Further east, the Pine Nut Mountains and the Singatse Range
display very little historic seismicity (Figs. 2A and 5A), whichmight be
due to significant accommodation of strain by folding instead of
faulting in the area (Gilbert and Reynolds,1973; VanWormer and Ryall,
1980). However, a significant 1933 earthquake of unknown displace-
ment affected the area adjacent to Yerington (Fig. 5A; e.g., Rogers et al.,
1991). Thus, despite no evidence for Holocene movement on the
Singatse range front fault (Fig. 5B) and low levels of historic seismicity
across both ranges, there is potential for significant earthquakes across
the area (Fig. 5B). The lack of geologic or paleoseismic evidence for
significant Holocene earthquakes across these ranges makes any
evaluation of seismic hazard based on recurrence interval difficult.

Seismic activity present along the central Wassuk Range (Fig. 5A),
combined with geologic evidence to the north and south, suggests
continued dip-slip normal fault motion alongmost of the eastern flank
of the range during Holocene time (Figs. 2A and 5B; e.g., Demsey,
1987; Surpless, 1999; Wesnousky, 2005b). The relative lack of
seismicity along the northern part of the Wassuk Range, north of
Bald Mountain (Figs. 2A and 5A), might be due to a long recurrence
interval along that segment of the fault, as the last major dip-slip
event in the northern Wassuk Range occurred at about 2.5 ka
(Demsey, 1987; Wesnousky, 2005b). The gap in seismicity along the
Wassuk Range frontal fault zone south of Walker Lake is coincident
with the 10 kilometer segment of the fault that displays no evidence
for Holocene movement (Fig. 5), and geomorphic evidence presented
by Demsey et al. (1988) implies a less active southern range front fault
system relative to the northern Wassuk Range.

The Schurz earthquake of 1959, the only significant historical seismic
event near the Wassuk Range, displayed oblique normal–dextral fault
motion (e.g., Rogers et al., 1991) and was located along strike of the
dextral strike-slip faults to the southeast (Fig. 5), in a position close to the
boundary between dextral-dominated and extension-dominated defor-
mation proposed by Wesnousky (2005b). Small concentrations of
seismicity are focused in the Garfield Hills and immediately north of
the cityofHawthorne (Figs. 2Aand5B), but these clusters are not located
alongor adjacent to any significantmapped structures (VanWormer and
Ryall, 1980), so are difficult to interpret or assess for seismic hazard.

Geologic evidence suggests that strain across the western section
of the Walker Lake domain has been dominated by ∼E–Wextensional
deformation accommodated by major normal faults with dip-slip
motion since 15 Ma. Geodetic data presented here indicate a relatively
low rate of extension across the entire central Walker Lane at present
(2–4 mm/yr), which is consistent with the observed lack of seismicity
on the normal faults that display the greatest Holocene displacements.
However, geologic and paleoseismic data suggest that both the Genoa
fault and theWassuk range fault have been active in the Holocene and

remain the most likely loci for major (MN7.0) earthquakes. In the case
of the Genoa fault, this is supported by the concentrations of seis-
micity proximal to the terminations of the normal fault, which is in en
echelon arrangement with the Sierra Nevadan frontal fault system to
the north and south. Significant changes in the stress field on the
western margin of the Walker Lane are not required to explain these
clusters of seismicity.

4.2. Seismicity across the eastern section of the Walker Lake domain

Within the eastern section of theWalker Lake domain, seismicity is
concentrated on the southern segments of the Indian Head, Gumdrop
Hills, and Benton Springs faults (Figs. 2A and 5A) and along the eastern
margin of the Walker Lane, proximal to and to the east of the Petrified
Springs fault (Figs. 2A and 5A). Significant portions of all dextral faults
in the domain display Holocene rupture (Fig. 5B) and modern dextral
strain indicated by geodetic data (Fig. 3B; Tables 1 and 2) is localized
across these faults, suggesting that dextral deformation will continue
to occur. In addition, geodetic data indicate a localization of modern
dextral strain accommodated proximal to the Petrified Springs fault,
and GPS stations across the northern Gabbs Valley Range zone suggest
no significant change in either dextral or extensional velocities (vdext
or vext) across the CNSB (Fig. 3).

However, the interpretation of seismic activity on the eastern
margin of the Walker Lake domain is complicated by the seismic
events of the Central Nevada seismic belt (CNSB), which extends to the
north, outside the boundaries of the Walker Lane (Fig. 5A). Major
events associated with the CNSB from the Walker Lake domain to
areas to the north include the 1932 Cedar Mountain earthquakes, the
1954 Rainbow Mountain earthquake, the 1954 Fairview Peak earth-
quake (Fig. 5), the 1915 Pleasant Valley earthquake, and the 1954 Dixie
Valley earthquake (epicenters to the north of the study area). Of these
events, only the Cedar Mountain earthquakes took place within the
boundaries of the Walker Lane.

Bell et al. (1999) constrain Quaternary dextral movement of the
Cedar Mountain fault zone to a preferred rate of 0.4–0.5 mm/yr, based
on paleoseismic data along the primary Cedar Mountain earthquake
rupture zone, just to the east of the Benton Springs and Petrified
Springs faults (Figs. 2A and 5A). Strike-slip motion within the Cedar
Mountain rupture zone occurred along faults that strike more
northerly than the well-established faults of the Walker Lake domain
(Gianella and Callaghan, 1934; Caskey et al., 1996; Bell et al., 1999;
Wesnousky, 2005b) but subparallel to existing mapped normal faults
in the CNSB to the north.

The 1954 RainbowMountain and 1954 Fairview Peak earthquakes,
produced normal–dextral oblique motion on east-dipping faults
(Fig. 5; Doser, 1986), and further to the north in the CNSB, the 1954
Dixie Valley and 1915 Pleasant Valley earthquakes produced primarily
normal, dip-slip fault motion along north to north–northeast striking
fault planes (e.g., Doser, 1986; Rogers et al., 1991; Caskey et al., 1996).
This transition from nearly pure strike-slip deformation within the
eastern section of the Walker Lane to pure normal deformation in the
northern CNSB might suggest that some component of dextral defor-
mation documented in the Walker Lane to the south is presently
transferred to steeply-dipping mapped normal faults of the central
Basin and Range (e.g., Wesnousky, 2005b), with dextral motion
decreasing with increasing distance from the Walker Lane. Based on
extensive evaluation of faulting and seismicity in the CNSB, Rogers
et al. (1991) suggest a mean recurrence interval for these recently
active segments of 300–1500 years.

Thus, while geologic and geodetic evidence suggest significant
dextral strain has been and will continue to be accommodated by
faults in the Gabbs Valley and Gillis Ranges during Cenozoic time up to
and including the Holocene, historic seismicity is virtually absent
along the central and northern sections of mapped dextral strike-slip
faults or in areas to the northwest (Figs. 1 and 5). Instead, seismic
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data indicate that most present-day earthquake activity is associated
with the north-trending CNSB, with dextral motion occurring along
faults that formerly accommodated dominantly dip-slip deformation
(Figs. 1 and 2).

5. Discussion

Clear evidence suggests that transtensional strain is strongly
partitioned across theWalker Lane, accommodated by low-magnitude
E–W extension in the western part of the Walker Lake domain and
plate-boundary parallel dextral motion in the east (Figs. 1, 2A, and 3;
Table 2). This interpretation is supported by the integrated analysis of
geodetic, seismic, and geologic data across the domain and differs
from existingmodels that require either a localization of dextral strain
along the Sierra Nevadan range front fault system (e.g., Unruh et al.,
2003) or a broad distribution of both extensional and dextral motion
across the entireWalker Lane at this latitude (e.g., Bennett et al., 1999;
Flesch et al., 2000). These data permit tentative predictions regarding
future local and regional deformation, and when combinedwith other
studies, provide potential explanations for the strong partitioning of
strain across the Walker Lake domain.

5.1. Future local and regional deformation

Geologic and geodetic data suggest that extension across the
western zone of the Walker Lake domain is accommodated proximal
to the Genoa fault, the present-day location of the Sierra Nevadan
range front fault system at this latitude (Table 2; Figs. 2A and 3C).
Although slip rate alone is not a reliable criterion for modeling seismic
hazard in the western Basin and Range (Bell et al., 1999), the youthful
fault scarp morphologies and evidence for recent, significant dip-slip
earthquakes are strong evidence for the likelihood of renewed normal
fault activity, especially along the Sierra Nevadan Range front fault
system. Although slip rates are of lower magnitude along the eastern
flank of theWassuk Range, geologic data indicate active Holocene dip-
slip motion and associated Holocene earthquake activity along the
fault system (Demsey, 1987).

The lack of seismicity along themost active normal fault systems in
the western section of the domain is consistent with both the
evidence for a quiescent period following recent earthquakes and the
relatively low present-day extensional strain rate across the western
Walker Lane at this latitude (∼2 mm/yr; Fig. 3C and Table 2). The most
significant clusters of earthquakes in the western section are likely
associated with the terminations of the Genoa normal fault system.

Although most present-day dextral motion in the Walker Lake
domain is localized across a narrow (15–20 kmwide) zone of mapped
dextral faults (Table 2; Fig. 3B), the focus of dextral strain displays a
relative paucity of significant historical seismicity. The only significant
historical earthquakes in the eastern section of the Walker Lake
domain have been associated with the Central Nevada seismic belt
(CNSB), which trends north to areas outside the boundaries of the
Walker Lane (Fig. 5A). Several hypotheses could resolve the apparent
discrepancy between seismic and other data from the eastern Walker
Lake domain:

Hypothesis 1. GPS data define only the present-day localization of
strain. This locus will soon shift to another longitudinal position
before significant differential motion and/or seismicity has occurred.
As the location of this differential motion continues to shift, the net
effect will be distributed dextral motion across a wider area.

Hypothesis 2. Fault-block rotations similar to those hypothesized in
the Carson domain to the north are distributing strain across a wider
area, negating the necessity for significant seismic events associated
with this modern dextral strain along strike of existing faults to the
southeast.

Hypothesis 3. GPS data define a long-lived localization of dextral
motion which has been and will continue to be accommodated by
aseismic slip. In some cases, geodetic and earthquake data suggest
that displacement accommodated by seismic activity is less than the
accumulated regional motion, requiring displacement to be accom-
modated elsewhere (e.g., the San Andreas fault system). In other cases,
this difference may be related to aseismic slip on a fault, and hence
there will be no near-future earthquake activity associated with that
fault (e.g., Stein and Wysession, 2003).

Hypothesis 4. GPSdata have been strongly influencedbypost-seismic
effects ofmajor earthquakes of the Central Nevada seismic belt (CNSB).

Hypothesis 5. The CNSB is now accommodating dextral strain
previously accommodated by the Walker Lane. Although the geology
of the region suggests dextral faulting in the eastern section of the
Walker Lake domain has been an important locus for accommodation
of shear through the Holocene, historical seismicity suggests the CNSB
has become the focus of dextral strain associated with plate-boundary
parallel motion.

Hypothesis 6. GPS data define the short-term elastic loading of the
crust, while the mapped northwest-striking dextral faults represent
the long-term plastic accommodation of strain. The lack of seismicity
across the eastern zone is the expected result of the pattern of seismic
activity associated with earthquake cycles.

Although the position of maximum strain may change over time in
some fault systems (e.g., Wallace,1984), the geologic record supports a
long-term (N24 Ma) focus of dextral deformation in the Gillis and
Gabbs Valley ranges of the Walker Lane, eliminating the hypothesis
that significant temporal longitudinal shifts in the position of greatest
right-lateral motion have occurred and will continue to occur in this
region (Hypothesis 1). In addition, presently active fault-block rota-
tions would require a relatively constant change in GPS dextral velo-
cities over a range of longitudes, which is not observed in the velocity
data (Fig. 3); the data instead show a very localized accommodation
of dextral strain. Also, no geologic evidence supports significant
rotation of fault blocks about vertical axes in the Walker Lake domain,
eliminating the fault-block rotation hypothesis from consideration
(Hypothesis 2).

The occurrence of significant historic earthquakes in regions south
and east of the focus of present-day dextral motion defined by
geodetic data and the relative homogeneity of the geology of the
region makes it unlikely that aseismic slip is accommodating a
significant component of this motion (Hypothesis 3). In fact, there is
no documented case of aseismic creep on faults in the Basin and Range
(Hammond and Thatcher, 2007).

Dixon et al. (2003) found that earthquake-cycle effects and the
viscoelastic rheology of the lower crust and upper mantle can affect
slip rate estimates determined from geodetic data. Their analysis
provides an explanation for discrepancies between geodetic and
geologic estimates of fault-slip rates. Wernicke et al. (2000) suggested
that velocity values associated with post-seismic relaxation were on
the same order as the background signal for most of the Basin and
Range. However, Hetland and Hager (2003) used a viscoelastic post-
seismic relaxationmodel of the four largest historic earthquakes of the
CNSB and found that 60–70 years after the 1932 Cedar Mountain
earthquakes (the approximate period overwhich GPS data analyzed in
this paper were collected), the velocities attributed to that event
account for less than 1 mm/yr shear in the area proximal to the fault
system (Fig. 4B in Hetland and Hager, 2003). In addition, although
Hammond et al. (in press) suggest that between 25 and 50% of the
shear strain between longitudes 117° and 118.5° can be explained by
transient, post-seismic deformation, their model's strain field has a
spatial wavelength on the order of hundreds of kilometers, so doesn't
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produce significant variation in a single site relative to geodetic
stations tens of kilometers away. These data indicate that post-seismic
effects from the last major earthquake in the area do not have an
appreciable effect on the localization of dextral strain delineated by
geodetic data (Hypothesis 4).

Based on her analyses of earthquakes of the CNSB, Doser (1988)
suggested that the Walker Lane does not represent an active tectonic
boundary. The similarity in both the rupture processes and the P and T
axes of focal mechanisms from the Cedar Mountain earthquake
sequence and earthquakes further north in the CNSB might indicate
that the CNSB should be considered the active intraplate boundary
(Doser, 1988). Hetland and Hager (2003) evaluated the geodetic data
from an area that includes the CNSB and discovered that very little
strain is accumulated across the CNSB, after removing the preferred
models of post-seismic relaxation from geodetic velocities. West of
the CNSB, modern shear strain increases approaching the Sierra
Nevada range front (Hetland and Hager, 2003), consistent withmodels
that suggest the Sierra Nevadan crustal block is moving to the NNW
(e.g., Dixon et al., 2000), with shear strain associated with plate-
boundary parallel motion accommodated proximal to the central and
northern Walker Lane. Although these studies do not eliminate the
CNSB as an important structural feature in the central and northern
Basin and Range, the consistent pattern of deformation and strain
recorded by geologic and geodetic data seems to suggest that the
Walker Lane remains the more important intraplate feature.

In addition, geodetic data presented here suggest that the
localization of dextral strain in the Walker Lake domain is not
coincident with the CNSB (Figs. 3B and 5A); in fact, geodetic data from
the Gabbs Valley Range zone show no appreciable change in dextral
strain across the entire CNSB (Figs. 3B and 5A). While seismic data do
indicate that the CNSB is an active feature, geologic and geodetic data
indicate that most past strain across the CNSB has been dominated by
extension (dip-slip normal faults), with the only significant structural
features accommodating dextral deformation present along the
Walker Lane, further weakening the CNSB hypothesis (Hypothesis 5).

It is difficult to infer ongoing seismic slip from historical seismicity,
due primarily to the relatively short time period for which data are
available (e.g., Stein and Wysession, 2003). However, the localization
of dextral strain across such a narrow region in the eastern section of
the Walker Lake domain might signal a significant, ongoing elastic
loading process. Although not all of the strain recorded by geodetic
means will necessarily be released in a future earthquake (e.g.,
Norabuena et al., 1998; Stein and Wysession, 2003), if even a fraction
of the ∼3–5 mm/yr dextral shear strain is accommodated by future
slip along dextral faults, this strain localization becomes significant.
The lack of seismicity associated with the region is an expected part of
the earthquake cycle, but the lack of paleoseismic data across the
central and northern portions of these faults prevents estimation of
earthquake recurrence interval for either individual faults or for the
system as a whole. If the localization of dextral strain delineated by
geodetic data is a long-term phenomenon, as geologic data suggest,
future seismic activity in presently-quiescent areas should be
expected (Hypothesis 6).

5.2. Crustal strength and the initiation of strain partitioning

The dextral shear observed along the Walker Lane is thought to be
caused primarily by shear stress applied to the margin of California by
Pacific–North American plate interactions, while extensional defor-
mation in the same region is considered primarily a consequence of
the large gravitational potential energies of the western U.S. (e.g.,
Humphreys and Coblentz, 2007). In the central Walker Lane, where
both dextral shear and extension are observed, it is clear that both
plate boundary and intraplate influences have helped shaped the
region's landscape. However, the initiation of long-term strain parti-
tioning requires further explanation.

Although the mapped dextral faults of the eastern Walker Lake
domain were active as early as 24 Ma (Ekren et al., 1980; Ekren and
Byers, 1984; John, 1992), most fault motion has taken place since 15–
10 Ma (e.g., Hardyman and Oldow, 1991; Oldow et al., 1994), which
coincides with the onset and migration of extensional deformation
of the western Walker Lake domain (Dilles and Gans, 1995; Henry
and Perkins, 2001; Surpless et al., 2002; Schweickert et al., 2004). To
explain the synchronous extensional and dextral fault motion in
close proximity, Ichinose et al. (1998) hypothesize a gravitational
collapse of the eastern central Sierra Nevadan block caused by the
initiation of the Walker Lane dextral shear system. This hypothesis is
consistent with a proposed magmatically-induced thermal weaken-
ing of the crust prior to the onset of significant normal faulting
across the western zone of the Walker Lake domain in Miocene time
(Surpless et al., 2002), which would aid the gravitational collapse
and the initiation of extension. While these studies help explain the
initiation of strain partitioning in the Walker Lake domain,
Hammond and Thatcher (2004) suggest that a rheologically weak
lithosphere beneath the Walker Lane continues to permit the
concentration of shear and extensional deformation in close
proximity.

5.3. Stress–strain relationships and long-term strain partitioning

In the central Walker Lane, it appears that modern wrench simple
shear is currently taken up along relatively long-lived dextral strike-
slip faults in the eastern Walker Lake domain while a residual
component of dip-slip extension is accommodated along the N–S
striking dip-slip faults of the western domain. This rapid spatial
transition in fault orientation and slip direction is too abrupt to be
associated with a similar spatial change in the stress state. Using the
Carboniferous Northumberland basin of the United Kingdom as an
example, De Paola et al. (2005) demonstrate that in oblique
extensional settings, fault localization and slip direction are strongly
influenced by pre-existing basement structure, so that components of
wrench simple shear could be taken up along pre-existing planar
structures or within narrow zones, leaving residual dip-slip exten-
sional components to be accommodated within adjacent domains.
These findings are consistent with hypothesized pre-Cenozoic crustal
structural control of the partitioning and localization of strain
observed in the central Walker Lane (e.g., Wetterauer, 1977; Cogbill,
1979; Oldow et al., 1994).

However, the present-day least principal stress direction (σ3) is
oriented approximately N70°W across the western margin of the
Basin and Range at this latitude (Humphreys and Coblentz, 2007),
which seems incompatible with the orientation of both extensional
and dextral strain suggested by both geologic and geodetic evidence.
Further, Kreemer and Hammond (2007) hypothesize that extension
directions in the Basin and Range have rotated through time in
response to the northwardmigration of the Mendicino triple junction,
so the long-lived partitioning of strain documented across the Walker
Lake domain has occurred in a rotating stress field with no evidence
for any significant change in slip direction accommodated by either
the eastern or western Walker Lake domains. The relatively static
nature of the partitioning of types of strain in the context of a rotating
regional stress field might be explained by relatively low stress ratios
in the region.

Based on 3D modeling of fault systems, Scotti and Nur (1990)
suggest that at low stress ratios (σ2 of similar magnitude to σ3), faults
in adjacent domains (as defined by fault orientation) can display
contrasting slip directions at the same point in time. In addition, the
angular relationship between principal stress directions and fault
orientations can change significantly and continue to permit motion
along the fault without requiring the initiation of new faults in
response to changes in the stress field–fault plane relationship (e.g.,
Scotti and Nur, 1990).
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In the central Walker Lane, the western Walker Lake domain and
the eastern Walker Lake domain display contrasting fault orientations
and slip directions, consistent with low stress ratios, and fault motion
has continued on systems in both domains throughout regional stress
field rotation. Therefore, it is likely that fault orientations and
accommodation of strain across the centralWalker Lane are controlled
by a combination of pre-Cenozoic crustal structure, a relatively weak
lithosphere beneath the Walker Lane, and long-term low stress ratios
in the crust.

5.4. Tectonic implications

Previous studies show that ongoing dextral strain across the
central and southern Walker Lane is significantly greater than dextral
strain across the northern Walker Lane (e.g., Thatcher et al., 1999;
Oldow, 2001; Wesnousky, 2005b), suggesting that there is a signifi-
cant change in the accommodation of strain north of the Walker Lake
domain. Hetland and Hager (2003) suggest that dextral strain is
similar to the north but distributed across a much wider zone that
includes areas to the east of the boundary of the northern Walker
Lane. If true, then the boundaries of the northernWalker Lanemay not
encompass all areas of the western margin of the Basin and Range
province undergoing intraplate dextral shear.

The complexity of faults throughout theWalker Lane, relative to the
San Andreas fault system, might be in part controlled by the lower
cumulative dextral slip accommodated by the Walker Lane (e.g.,
Wesnousky, 2005a). Laboratory studies byWilcox et al. (1973) suggest
that a zone of discrete fault segments taking up displacementwill later
become a single, through-going fault as the system matures. The
geographical distribution of dextral faults along the central (Walker
Lake domain) and northern (Pyramid Lake domain) portions of the
Walker Lane (Fig.1) and the lower total strain accumulation (relative to
the San Andreas fault system) suggest a relatively young fault system;
these now geographically distinct sets of dextral faults may become a
continuous, large-scale system as strain continues to accumulate
(Faulds et al., 2005). In the case of the dextral faults in the eastern zone
of the Walker Lake domain, the present-day rates of strain suggest
future seismic activity of one or more faults in the mapped dextral
system. As slip accumulates across these faults, the overall length of the
fault system should grow to the north, potentially connecting with the
dextral faults in the Pyramid Lake domain.

Faulds et al. (2005) suggest that theWalker Lane has grown toward
the northwest in Miocene time, possibly due to increasing contact
between the Pacific and North American plates (Atwater and Stock,
1998). Cashman and Fontaine (2000) show that large-scale clockwise
block rotations have been accommodated by a series of NE-striking
sinistral faults in the Carson domain (Fig. 1). These block rotations
(Cashman and Fontaine, 2000) are consistent with dextral deforma-
tion in the Carson Sink area to the east, where the gap in mapped
strike-slip faults exists, supporting Faulds et al. (2005) hypothesis that
a semi-continuous zone of localized dextral deformation has devel-
oped since Miocene time.

6. Conclusions

The clear partitioning of extensional and dextral deformation
across the Walker Lake domain indicated by both geologic and
geodetic data suggests that the central Walker Lane cannot be treated
as a broad zone of transtension in tectonic models. If the rates of
extensional strain indicated by geodetic data continue across the
western zone of the Walker Lake domain, and if the narrow
localization of dextral strain continues in the eastern zone of the
Walker Lake domain, both areas could become loci for significant
future earthquakes, despite a paucity of historic seismicity. This
partitioning of strain across the Walker Lake domain is likely
controlled by a combination of pre-Cenozoic crustal structure, a

rheologically weak lithosphere, and low stress ratios, permitting
contrasting modes of deformation to occur in close proximity from
Miocene time to the present. Moreover, the apparent localization of
dextral deformation along the central and northern Walker Lane and
the inland-stepping history of the San Andreas system (Atwater and
Stock, 1998) allow the possibility that the Walker Lane will become
increasingly important to North American–Pacific plate boundary
dynamics (Faulds et al., 2005). The now discrete, discontinuous
systems of dextral faults in the Pyramid Lake and Walker Lake
domains may one day become a continuous, major fault system,
accommodating an increasing percentage of the overall relative plate
motions.
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