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Abstract 

The problem-solving view of new product development sees the innovation process as a series of 

problem-solving loops broken down into three stages: problem detection, analysis and removal. We link 

this framework with lead user-driven innovation regarding software and show that effort by lead users 

(LUs) in each stage of the innovation problem solving process is, in varying degrees, associated with the 

source code’s quality, the productivity of the development process and the software’s popularity. We also 

test whether front loading the problem solving process is associated with development performance and 

we find that front loading is associated with increased code quality but decreased development 

productivity. Empirical tests are carried out with data from open source software projects. Findings 

potentially impact the design and management of online communities to help product development. 
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1 Introduction 

Despite the obvious economic importance of software projects, a great number of new software 

development projects cannot be considered successful, with end products plagued by quality issues, not to 

mention projects that are routinely late or extremely over budget. While estimates of failure rates range 

between 15% and 70% [36, 84] depending on the kind of software project and how success is measured, it 

is generally accepted that the economic and social consequences of unsuccessful software development 

projects warrant continued attention from practitioners and academia [44].   

 

Various development management methodologies have been advanced to alleviate new software 

development problems, for instance agile or lean development, with varying rates of success [25]. A 

relatively recent trend in innovation can, however, complement most project management techniques: the 

concept of user aided innovation. 

 

User-aided innovation –the development of new products with active help from users- was placed in the 

research agenda by Von Hippel [94], followed up by a relatively recent stream of studies [39, 50, 61, 97]. 

These works particularly highlight users who experience product related needs well ahead of the 

mainstream consumer and stand to benefit significantly from product modifications, so much that they 

often carry those modifications out themselves. These users are called "lead users" (LUs) [94].  

 

LU involvement in product development has been documented in areas as diverse as industrial equipment 

and extreme sports gear [77]. The software industry can be considered a pioneer in exploiting this 

resource. For instance, long ago before the concept of the LU was coined, it became standard practice in 

the software industry to get select user feedback by limitedly releasing “beta” versions. Software 

manufacturers, especially in the gaming industry, routinely facilitate tools that enable advanced users to 
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produce modifications or “mods”, some of which are eventually incorporated into the official version of a 

product [75]. Early studies on LU innovation were carried out looking at industrial control systems [92], 

and open source software has been repeatedly cited as a prototypical case of LU involvement [10, 43, 99]. 

Some proprietary software companies have experimented with the concept of LU involvement to aid their 

product development processes, like Microsoft did with its Most Valuable Professionals (MVP) program 

[70] or Dell with its Idea Storm community [24]. 

 

Through online communities, software LUs can provide ideas for features [99] or inform developers of 

defects in a product and discuss alternative strategies to solve these problems, even suggesting specific 

solutions. It is interesting to note that LU involvement in software development is related mainly to defect 

reporting, analysis and repair [18, 31, 56]. These activities closely match the three main stages in the 

innovation problem solving process: problem detection, analysis and removal [47, 49].  

 

User-aided innovation’s advantages and problems have mostly been studied in company-led settings [33, 

45, 63]. However, alongside potential benefits, involving LUs in the software development process 

through online LU communities poses several particular challenges. First, participation in online user 

communities is mostly voluntary, and motivating LUs to participate in the development process is a prime 

concern [7]. Second, user-aided problem solving activities can occur simultaneously; i.e. more than a 

single defect can be worked on by LUs at any given time, and LUs usually prioritize their work according 

to their own desires and abilities rather than by a formal development blueprint or management dictated 

priorities, requiring some degree of coordination. Furthermore, LUs can choose to participate in any one 

or more of the stages of the problem solving process with different intensities and timings.  

 

Project managers may need to spend substantial resources in order to coordinate and incorporate user 

input from the open source community [20]; contributions need to be screened for their value, feasibility 
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and appropriateness to the project’s technical and commercial objectives, and while part of this 

assessment can also be done with the LUs’ help, the management team eventually decides whether to 

consider a detected defect, accept the proposed avenue to arrive at a solution or accept a specific solution 

proposal. Given that resources are limited, a reasonable research question of practical importance is: What 

are the performance implications of encouraging LUs to work on problem detection, analysis or 

removal? The innovation literature consistently refers to problem solving with regard to the development 

of a new product as a one-step action, but informed by the problem solving literature we can separately 

test problem detection, analysis and removal to observe a more nuanced picture. 

 

Furthermore, managing LU contributions in the different stages of problem solving entails varying kinds 

of resources use as well as benefits, suggesting the potential existence of tradeoffs among the different 

dimensions of innovation success such as development productivity, code quality or development 

timeliness. For instance, while it is plausible to suggest that if the community has more LUs detecting 

defects we may eventually arrive at better code quality, the processing of LUs’ input can hinder the 

development team’s productivity. Another research question is: Are there any performance tradeoffs 

involved in different LU participation intensities along the stages of the problem solving process? Since 

innovation success is multidimensional, empirically testing several kinds of outcomes produces a more 

complete understanding of problem solving vs. innovation performance. 

 

Also, timing in problem solving is important: Thomke and Fujimoto [90] looked at a few projects in the 

automobile industry and observed improvements in some product development performance metrics 

when they attempted to front load their product development process; i.e. favored early (rather than late) 

identification and solution of problems. Their study relied on handpicked projects and anecdotal evidence, 

in an environment devoid of LU participation. To date, empirical studies based on large samples and hard 

metrics about of the potential benefits of front loading in the context of LU participation are lacking. We 
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attempt to fill such gap with this study. Our third research question is:  Is development performance 

associated with the relative promptness of LU participation in problem solving?  

 

Answering these questions is useful to design online communities and allocate resources to encourage or 

discourage user participation in the different stages of problem solving. For instance, a manager may wish 

to only get user feedback about defects but not engage LUs in problem resolution, while another may 

want to post in-house detected bugs for analysis by volunteers, depending on costs and desired outcomes.  

 

This study draws from the problem solving and LU innovation literature to devise hypotheses that are 

tested using ordinary least squares models built from data extracted from software development projects. 

After this Introduction, Section 2 of the paper includes a review of the literature, leading to the 

hypotheses to be empirically tested. Section 3 explains the research setting, while analytical methods are 

developed in Section 4. Section 5 presents the results of the analyses, while Section 6 offers a discussion 

of the findings and Section 7 reviews the limitations of this study and its implications for future research.   

2 Literature Review and Hypotheses 

Users have been purposely and routinely involved at the market research stage of new product 

development in order to identify their needs, and help design or refine product offerings. For example, the 

use of focus groups is a widely known such practice [85]. Lately, the involvement of users has shifted to a 

more active role.  

 

We know that innovations frequently originate from users’ initiatives [27]. More recently, [93, 94] it has 

been observed that a subgroup of users not only generates ideas for improvements to existing products but 

also they carry out modifications themselves, to address specific needs. These special users have been 

dubbed lead users or "LUs". Two independent dimensions  [33] are related to LUs: they 1) experience 
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product-related needs well ahead of the mainstream consumers and 2) stand to significantly benefit from 

product modifications. 

 

One stream of research focused on characteristics of LUs. They seem to have, compared to mainstream 

users, a longer use experience [78]. Many times, dissatisfaction with the current product features seems to 

trigger product modifications, and LUs possess some particular personality traits such as heightened locus 

of control and increased innovativeness [79]. LUs also display more willingness to collaborate, better 

product related functional knowledge and a high level of strategic alignment with a brand's identity [63, 

76]. They also tend to be opinion leaders rather than opinion seekers [77]. 

 

Another area of research looks at the consequences of LU innovation. LUs are sought not only because of 

the economic value of their suggestions, but because their needs predate those of the general market and 

solutions to problems they point out often can be transferred into other components of the development 

portfolio [94]. Innovations spawned by LUs are more likely to be breakthrough innovations and to 

produce relatively higher profit margins [26, 59]. Products based on LU-generated ideas are more likely 

to become commercially attractive [92], and they are more original,  but less feasible [55]. 

 

Though the performance of products under the LU innovation paradigm has been extensively researched, 

the performance of  LU-driven development processes has received relatively little attention [32]. 

Previous studies suggested that LU involvement in idea generation could impact productivity or quality 

[92, 94], but little empirical support is available, which this study intends to alleviate. 

 

LUs can offer their contributions at the sponsoring firm's premises, as it is done by 3M [60], but the 

Internet has given birth to firms’ use of online product user communities to generate LU ecosystems. In 

these virtual spaces, by means of e-mail list servers, Internet relay chat rooms and bulletin boards, LUs 
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can get in contact with each other and with personnel from the sponsoring firm. Product performance is 

discussed, defects reported, and modifications and solutions suggested to known problems. The relative 

lower cost of accessing LUs by this means vis-à-vis by face to face interaction allows online communities 

to be larger, remain active for longer proportions of the product development life cycle, and establish 

relatively stable memberships, which tends to be effective at preserving organizational learning [51]. 

 

Whether company sponsored or not, online product user communities exist for a wide range of products, 

from sporting equipment to music instruments to software [1, 45]. In the software area, giants of 

proprietary hardware and software such as Dell [24] and Microsoft [70] invested substantive resources to 

tap into communities of LUs.  

 

Outside of the proprietary software realm, open source software (OSS) projects have been repeatedly 

considered in studies about LU innovation [32, 57, 96]. OSS is software developed under licensing terms 

that make publicly available the complete source code of the product and allow the redistribution of 

modified versions. A prototype of the program is posted in a publicly viewable electronic repository and 

afterwards LUs contribute their work voluntarily, at varying skill levels, making intensive use of 

electronically mediated communication. OSS development is highly flexible and allows for the quick 

rearrangement of labor to adjust to changing priorities. The involvement of LUs in OSS development has 

been well documented and is considered key to its thriving [81, 95].  

 

The work carried out by LUs can be inscribed into the problem solving view of new product development 

[21, 30]. This paradigm considers innovation as a bundle of iterative problem solving activities [65, 89, 

90]. The activities involved in product design improvement can be described as following a three step 

cycle where the main stages are problem detection, analysis and removal [89]. With software, on line LU 

communities clearly engage in problem solving in those three stages. Bug reports signal the problem 



 

8 

 

detection stage; feedback generated by the developers’ mailing list reflects problem analysis; and the 

submission of patches represents the problem removal stage. 

 

The first set of hypotheses refers to problem detection vs. performance. Problem detection effort is the 

effort put in place by lead users when they come across a problem, realize it is a software bug and decide 

to report it. New product development (innovation) performance has been characterized in terms of both 

product success and development project success [54]. The former dimension can be measured by product 

quality, product market share (popularity, or user base), or product sales, and the latter by project cost, 

development speed, timeliness and development productivity [9, 46]. Productivity and time-based 

measures of project success were recommended for high-tech products, such as software [6]. We wanted 

to cover both dimensions of success (product and process) with the available data, and hence performance 

is going to be analyzed in terms of software quality and software popularity for the product-related 

dimension and software development productivity for the process-related dimension. Of several possible 

quality metrics for software, we are going to consider, due to the availability of data, the number of pre-

test defects expected in the software [69]. 

 

In the problem detection stage, a large group of lead users explore the product’s functionality in different 

ways, placing the product under working conditions that may not have been contemplated in the original 

test cases. There is a stark difference on how a proprietary software company tests for bugs and user 

testing. The former relies heavily on “test cases” [68] which are especially designed processing jobs that 

test known or highly impactful critical fail points looking for particular fail events that are normally 

linked to the formal design requirements. These test cases are very useful indeed, because they assure that 

the software will do what is supposed to do, not catastrophically failing in the attempt. We can say that 

formal testing is proactive and relatively limited, i.e. the software is proactively fed a pre-designed test 
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case and if software crashes, a bug is recorded and later investigated. Bugs that are not supposed to be 

caught with the formal test cases are of course not going to be detected.  

 

User testing, on the contrary, is reactive and relatively comprehensive. Users do not run formal test cases 

and do not look for specific fail modes. Most times they are not even trying to test the software, but rather 

they fortuitously run into a problem, prompting them to submit a bug report. User testing is arguably (or 

at least can potentially be) much more comprehensive than formal case tests because user testing will try 

every possible expected use and many unexpected or previously unconsidered functionalities of the 

software, which is particularly true of LUs, since they operate at the edge of the product’s possibilities. In 

brief, formal testing is limited, and strongly related to design requirements. User testing is (potentially) 

unlimited, and not as strongly linked to original design requirement. 

 

Then, H1a posits that the more the expected bugs the more detection effort will be observed, simply 

because when they are canvassing the software, users will run into more bugs (and report them) than 

otherwise if the software had fewer expected bugs. Along the reverse association path, the more effort is 

observed in bug detection (for instance more bug reports) then it will likely be in response to a higher 

level of expected defects. Then, there is a direct association between the number of expected bugs and 

bug reports, or an inverse relationship between expected quality and bug reporting activity.  

 

Although the detection of defects is largely an activity that LUs can undertake independently of the core 

developers, bug reports need to be studied and understood by those LUs who can code. Processing and 

analyzing defect reports takes considerable effort because one must match a problem with specific lines 

of code, rooting out the origin of the problem [24] before writing new lines of code. The time used to fix 

problems distracts from proper development activities that will grow the functionality of the code base. 

While fixing a defect can add or delete lines of code, adding functionality generally grows the code base 

https://www.google.com/search?safe=off&espv=2&biw=1280&bih=637&q=fortuitously&spell=1&sa=X&ei=Doj3U6jXJ-Od8QHlhoG4DA&ved=0CBoQvwUoAA
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significantly because new algorithms and control structures need to be put in place. Then we can expect a 

negative association between number of LUs that analyze problems and development productivity. 

Finally, a larger user base will include more LUs that may find problems, and we can expect that more 

popular products are going to have more defects detected. All in all: 

H1a: Problem detection effort by LUs is inversely related to expected code quality. 

H1b: Problem detection effort by LUs is inversely related to productivity.  

H1c: Problem detection effort by LUs is directly related to product popularity.  

Separate from the problem detection step, where LUs work primarily independently on testing the product 

and reporting defects, the analysis of alternatives may not only be individual but can be a group effort, 

with LUs interacting through ad-hoc mailing lists and chat rooms criticizing or supporting others’ 

suggestions, ideally arriving at one alternative that is sufficiently palatable for the community, feasible 

and in accordance with the project’s goals [101, 102].  

 

In particular, collaborative problem analysis is at the core of what defines the open source software 

development model, under the premise that “Given enough eyeballs, all bugs are shallow” [73], meaning 

that crowdsourcing bug analysis enables, by task partitioning and by including a broader set of skills, the 

efficient solution of even very complex defects, which for a single developer would be a daunting task. 

 

At the problem analysis stage, we define problem analysis effort as the effort put in place to understand 

and offer a potential solution for every bug detected. The first hypothesis in this set refers to the 

relationship between expected code quality and problem analysis effort.  

 

Since even in large LU communities resources such as time and access to technology are still limited, we 

can expect that the bigger the number of expected defects, a relative smaller portion of those resources 
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can be assigned to analyze each problem and the effort per problem is going to be smaller. On the reverse 

reasoning, the less effort spent in analyzing problems, the more defects will remain, and then: 

H2a: Problem analysis effort by LUs is directly related to expected code quality. 

Discussions to decide the best way to reach a solution require some degree of consensus building and the 

coordination of dissimilar points of view. The problem solving literature suggests that consensus takes 

more effort in larger groups than in smaller groups, which has been observed in online communities [35]. 

Effort in coordination is not value-added and does not contribute to core productivity; since resources are 

limited, the higher the degree of collaborative analysis the bigger the need for coordination and the 

proportion of value-added time for growing the code base will be smaller and net productivity will suffer.  

 

This effort to arrive at the best alternative for solving the problem through more intense analysis will also 

place an administrative overhead, potentially overloading the capacity of administrators to manage the 

size of the solution sample space. In other words, more analysis requires more coordination at both the 

LU level and the administrators’ level, with both effects detrimental to productivity, because they 

decrease the available time to grow the code base’s functionality, and then:  

H2b: Problem analysis effort by LUs is inversely related to development productivity. 

Relevant literature informs us that quality of problem solving generally has a direct association with the 

size of the group attempting its solution [100].  This is based on individuals having limited cognitive 

faculties, and selecting partially optimum solutions constrained by previous experience. Those partial 

solutions are augmented and improved by collaboration with members with different worldviews and skill 

sets [2]. The size of a group (in this case those who analyze problems) is also related to its diversity [2], 

and in turn diversity was found to be directly related to problem solving quality and creativity [34, 40]. 

Crowdsourcing for collaborative problem solving has been shown to generate significantly more creative 

solutions, with those solutions not posing additional problems from the feasibility point of view [71]. 
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Basically, the more different points of view are constructively brought into the debate, the more thorough 

the final solution can be, and also the fewer new defects will likely be introduced as part of the solution:  

H2c: Problem analysis effort by LUs is directly related to product popularity. 

Finally, in the problem removal stage once a course of action has been set and the best alternative solution 

chosen, the fix is implemented. Since solutions address found problems, it could be expected that the 

higher the number of expected bugs the more LUs will submit solutions. 

H3a: Problem removal effort by LUs is inversely related to expected code quality. 

Solutions suggested by LUs need to be scrutinized by core team members before incorporating them into 

product, and core team members will use their time to review contributions instead of progressing with 

the product’s functionality. Fixing an error does not necessarily involve a substantial growth of the code 

base; many times it requires deleting instructions. On the contrary, adding functionality or complexity to 

the program involves superlinear code base growth [37] whereas changes for fixes tend to be much 

smaller [72]. However, in terms of time invested, reviewing others’ solutions to a problem is often 

difficult, and the time demanded can be substantial [98]. Then, an inverse association will be 

hypothesized. 

H3b: Problem removal effort by LUs is inversely related to development productivity. 

LUs oftentimes act as evangelists for products, actively disseminating their qualities and causing other 

people to be aware of and use the product [87]. The more popular the product, the more LUs there will be, 

exerting stronger effort to remove defects while promoting it to the general public. Moreover, if there is a 

large group of LUs who solve quality problems, mainstream users also will be less frustrated by product 

glitches and will tend to use more of the product and recommend it to peers: 

H3c: Problem removal effort by LUs is directly related to product popularity. 

Front loading the development process seems to have originated formally in the automotive industry [90], 

where evidence from development projects supports that the earlier problems are fixed the higher the 

quality of the final product and the fewer post introduction defects. The Toyota Product Development 
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System [67], suggests that in innovation, most resources should be concentrated in the analysis of 

different points of views and in the careful convergence of those points of view prior to prototyping. This 

process includes working out potential pitfalls. Agile and lean software development methodologies, 

drawing from the lean manufacturing literature, encourage early and rapid feedback with clients and 

among developers, with the aim of reducing both defects and maintaining code down the way [62]. 

Although the effect of front loading the problem solving process has not to our knowledge been 

empirically tested on a large sample, it is common in software development to delay defect removal to the 

back end of development, generating increased instability as the defective part is interfaced with further 

functionality [3]. Similarly, defects left for late solution are more difficult to understand and their 

solutions more elaborate,  costlier and more exhaustive to fix, and requiring more hours’ work [91] . If 

not fixed early, software bugs can infect new code and create new bugs,  which are more difficult to find 

and fix since their fixing involves more time and even more lines of code [3]. Working on a more 

complex product is also more difficult and error prone. Then, assuming there is no uneven skills 

distribution along the development timeline, we can expect that if relatively more defects are fixed earlier, 

there will be fewer latent defects left in the code, and the additional burden of extra labor needed for late 

defect removal can be avoided: 

H4a: Front loading of problem removal by LUs is directly related to code quality 

H4b: Front loading of problem removal by LUs is directly related to productivity 

3 Research Setting 

A potential research setting for this empirical study should include a user community that has been 

identified as routinely taking advantage of active participation from LUs in problem solving activities. It 

also should yield such availability of data that can allow the calculation of the extent of LU involvement 

in each of the three different stages of the problem solving cycle (problem detection, analysis and 
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removal) separately, as well as suitable performance metrics. With these conditions in mind, the research 

setting chosen for this study comprised open source software development projects. 

 

OSS projects include the active participation of LUs. The general structure of OSS project teams has been 

described previously [17]. There is a subgroup or core that stands out from the rest in terms of intensity of 

work [58]. The core is made up of developers (“core developers”) who hold rights to review code 

submissions and write modifications into the Source Code Control System (SCCS) of the project, an 

online source code repository that prevents code conflicts and allows for coordinated collaboration. The 

core developers decide which contributions will be part of the source or be rejected or modified for 

acceptance. Core developers are “project owners” and they will not be considered part of the LU group.  

 

Outside the core there is a larger group, co-developers, who contribute to the project according to their 

skills. Some contribute with new source code while others contribute code reviews or bug fixes [17, 29, 

66] in the form of patches [66]  . The number of co-developers is generally larger (often in orders of 

magnitude) than the number of core developers.  

 

In addition to this generally accepted subdivision of developers into core and peripheral groups, a 

structural layer that is further removed from the main coding task is composed of users. Though most 

users are passive, just using the software without providing specific feedback, a subgroup of users is 

called “active users” and they submit bug reports, feature requests and software patches. These members 

normally do not have a level of technical expertise as high as those of the core and co-developers, but are 

able to test the product and report defects. Active users have the characteristics of LUs [33, 94] and their 

activity is evident in the project’s bug tracking system. 
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In brief, the OSS project communities are characterized by a tight, smaller group of core developers that 

have a final say in the acceptance of contributions from the user base. The different layers can be 

identified by looking at various community artifacts such as SCCS logs and bug trackers.  

 

The different artifacts visible in OSS development can be used to gather information about the three 

stages in the problem solving cycle.  Defects in software are identified by LUs, who submit a bug report 

with information that allows developers to reproduce the problem in order to find the cause and devise 

solutions. Once a bug is discovered, its description is posted to the public and developers discuss possible 

courses of action through the developers’ mailing list. Eventually, they select one course of action that 

will be coded into a patch, which is sent to the core group for addition to the source code base.  

 

Although software defects can be found and fixed at the design stage, we are concerned in this paper with 

those defects found and fixed after the first working prototype is released. Since it can be argued that that 

software is in a constant product development process and we only have access to substantial information 

once a product is released, we believe the approach is valid and practical. Further, most available data 

refers to coding activity and bug fixing after there is a working version of the product. 

4 Methods 

This section describes sampling, data collection, measurement and analysis. The hypotheses are tested 

using ordinary least squares (OLS) regression. 

4.1 Sampling 

The population of interest is those OSS projects of medium to large developer membership. A majority of 

OSS projects are individual and many never progressed to the coding stage [53]. In empirical OSS studies 

we need to both consider projects of practical interest and cull an appropriate sample size.  For instance, a 
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study on OSS social structure [16] selected projects with a minimum of seven core developers to strike 

that balance. Because we have the additional constraint of needing projects that use an e-mail listserv for 

developers and our OSS sample sizes shrink as core developer membership grows, we were slightly more 

inclusive and considered a minimum team size of six core developers.  

 

The sampling frame for this study was defined as those projects in the population of interest that were 

hosted in the Source Forge repository at the time of data collection and that were developed in the 

programming language “C”. Static metrics such as those used in this paper are not well suited for cross 

language comparisons [8], and the choice of the “C” programming language is natural for three main 

reasons: First, “C” is one of the most popular programming languages. Second, code static metrics for 

“C” are well known and have been widely used in previous literature, and their interpretation and internal 

validity are generally agreed upon. Third, many tools for “C” code analysis are widely available and 

hence allow cross confirmation of the static code measures. Source Forge has been used as a data source 

in several empirical OSS studies [11-15, 52, 66]. Five hundred and eighty seven projects were included in 

the sampling frame. The final sample was determined by the number of projects that had active trackers 

for bugs and patches. The final number of projects in the sample was 29, and the data was collected in 

quarterly snapshots following the first modification to the SCCS, which produced 429 maximum data 

points. Missing data was deleted list wise for specific tests if needed.  

4.2 Measurement 

Source Lines of Code (SLOC) per developer, per unit of time [28] is an established metric for software 

development productivity. A SCCS client program was used to download the source code files for each 

project, obtaining snapshots of the source code base for dates corresponding to quarterly periods from the 

project’s registration date until February 2013. Total SLOC for each project, at each of the defined points 

in time, were collected using a custom made script and confirmed using an off-the-shelf analyzer [80].  
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LOC with comments or white space were not considered in the count. The number of core developers for 

each instance was calculated from the SCCS log files.  

 

The use of static code metrics can provide a way to measure code quality, which was measured by the 

“number of delivered bugs” per thousand lines of code [69], which is based on Halstead’s “software 

science” metrics [41]. This metric was repeatedly empirically validated [38] and measures the expected 

number of pre-test defects latent in the source code. A higher defect count corresponds to lower quality. 

 

Product popularity was determined by the number of downloads of the software for each period [86].  

 

Effort in problem detection is measured by the number of bug reports standardized per Thousand (Kilo) 

Source Lines of Code (KSLOC) to compensate for bigger products naturally exhibiting more defects. 

Once the bug reports are in, they are assigned (or self assigned) for analysis. Most times LUs rely on 

fellow LUs to post questions about potential solutions before producing a patch, and it stands to reason 

that the more messages in the code development mailing list about a specific bug, the more effort has 

been spent in analyzing it (note that we control for code complexity separately). Then effort in problem 

analysis was measured by the number of messages in the development mailing list per bug reported. 

Defects are removed after a suitable patch comes in. Effort in problem removal was measured by the 

number of patches submitted that were obtained from the patch tracker systems’ per KSLOC.  

 

For the analysis of front loading we considered only those projects with at least two major releases (at 

least showing an evolution from version 0.x.x to version 2.x.x) and counted the total patches submitted 

until the second major release. We calculated the proportion of those patches that were submitted until the 

first major release (from version 0.x.x to version 1.x.x), and split the subsample by project at the median 

percentage. In this way, we obtained two groups; one of the projects that sent most (more than 50% of) 
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patches early and another which sent them in later. We ran an independent samples test between those 

groups with popularity, defects and productivity as dependent variables.  

 

Team size was introduced as a control variable in the form of the number of core team members. Project 

tenure was also considered an additional control, measured by the number of days since the first recorded 

activity in the project's source code repository. The use of the type of license as control is based on 

previous work that found that restrictive (copyleft based) licenses were associated with increased core 

developer productivity in OSS [15]. The classification of OSS licenses is discussed in several resources 

[e.g. 82, 83]. A dummy variable was introduced with the value of 1 if the license was restrictive and zero 

otherwise. Code complexity can also impact new product development success [22, 88]. In the case of 

software, complexity is related to the intricateness of the logic design of the program flow, and this was 

captured by measuring average file level cyclomatic complexity [64]. All measures were log transformed 

to improve linearity, except for project tenure, which was inverse transformed. 

5 Analysis and Results 

Descriptive statistics and bivariate correlations are shown in Tables 1 and 2. The hypotheses were tested 

using Ordinary Least Squares (OLS) regression models. Results are shown in Table 3. 

Insert Table 1, 2 and 3 here 

H1a was supported. Effort in problem detection was directly associated with the number of expected 

defects (p < 0.001); i.e. inversely associated with quality. H1b and H1c were supported as well. Effort in 

problem detection was inversely associated with development productivity (p < 0.05) and directly 

associated with product popularity (p < 0.001). 

 

H2a was supported, since effort in problem analysis was significantly (p < 0.001) directly associated with 

quality (inversely associated with number of expected defects). H2b and H2c were also supported (, p< 
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0.05 and p < 0.05 respectively); the same independent variable is inversely associated with productivity, 

and directly related to popularity. 

 

H3a was supported: effort in problem removal was inversely associated with quality (p < 0.01). H3b was 

also supported, since effort in problem removal was inversely associated with productivity (p < 0.01). 

H3c was not supported, since effort in problem removal was not associated with product popularity. 

 

As hypothesized in H4a and seen in Table 4, front loading of the problem solving stage is directly 

associated with quality, since those projects that solve most problems earlier in the development process 

have significantly fewer defects (p < 0.01). H4b was not supported, since there is a significant but inverse 

association of front loading with productivity (p < 0.01). A summary of all the results is in Table 5. 

Insert Tables 4 and 5 here 

The panel nature of the data raised the concern of error term clustering, but to test the robustness of 

results, they were confirmed using a non-parametric (Huber-White) regression and an AR (1) time series 

model. Also, results hold for teams of seven or more members. 

6 Conclusions 

The first goal of this study was to ascertain whether different emphases in the problem solving stages are 

related with product development performance outcomes, and if so, which tradeoffs are involved. The 

second goal was to explore whether front loading problem solving impacts performance.  

 

Focusing on the first goal, a general finding from the results is that tapping into the LU base for any stage 

of problem solving always takes a toll on productivity, regardless of the problem solving stage. Although 

LU involvement might result in a more desirable product, processing and implementing user input is not 
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“free” and creates coordination unproductive inefficiencies, indicating that reducing coordination 

inefficiencies is a path to increase productivity.  

 

Several avenues seem possible: for instance, in the sample used no projects had a skills matching system, 

and only six of them had a form of defect prioritization, but in all cases it was not consistently followed. It 

has been observed that in OSS the bug fixing process is highly informal and in general lacks basic 

controls such as an efficient bug assignment and the identification of the best match between the problem 

to be fixed and the developer who has the matching skills set [18], resulting in delays and confusion. To 

reduce the impact on productivity project leaders could implement a system with a form or system to 

standardize problem reports, which would make bug reports more understandable [24] and hence require 

less effort to be decoded into useful information. Standardizing reports would presumably reduce 

coordination effort by shortening the time taken to understand bugs and how/where to find them, and then 

reducing part of the non-value added time that would otherwise be available for new coding. Though the 

cited reference does not elaborate on how such a system should be set up, it mentions that it should be 

designed not to be a barrier to participation since in OSS, voluntary participation is critical. Bug reporting 

standardization should be extended to the several different channels used to report defects; for instance 

through the project’s home page, the bug tracker, and from the application itself, which in general show 

different information requirements or no other instructions than to make the report as complete as 

possible. While maintaining several channels makes participation easier, all channels should specify what 

the desired information is and offer a consistent categorization of defects.  

 

Another idea is a flagging system that classifies defects according to the skills required, as well as 

assigning a composite score including bug severity and priority. It has been suggested by previous work 

that prioritization and flagging of defects is related to the length of discussions about such problems [23], 

possibly due to a self-selection effect from LUs who will tend to shy away from dealing with bugs clearly 
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outside of their main area of expertise. Appropriately flagging defect reports would require a shorter 

analysis time and be more productive. When the bug report is originated LUs would assign a value for 

two dimensions: priority and severity, for a sort of triage that would encourage a faster resolution. 

 

Yet another approach could be selecting which problems should be solved in house rather than opening 

all defect reports to user input. For some kinds of defects [5], it oftentimes is more efficient to rely on in 

house solutions than users’. This approach runs the risk of alienating the LU community, and care should 

be taken in its communication. Presumably, in house solved bugs should be those that closely match skills 

of the development team members or are located in code developed by them rather than in code 

developed by the external community. Bugs related to core functions of the software would be candidates 

for in house fixing. For instance, Linus Torvalds or one of his trusted “lieutenants” used to personally 

take care of problems in the Linux kernel in the early days of Linux’s development [74]. Building up on 

the latter, bug solving could be segmented by having different groups of LUs treating bugs with different 

complexities, in a similar way as in supermarkets’ service times are segmented by means of “express 

lanes” for customers with low average service times, which increases output. 

 

The design of the online user community and the kinds of tools available to LUs to report and fix 

problems could alter this impact on productivity. Depending on the degree of two way communication 

between the project’s management and the user base, and the kinds of user tools available to the 

community, different costs are associated with setting up these online communities [19].  Setting up a 

more coordinated community with tools that allow for bug classification, assignment, reassignment and 

providing multiple discussion channels demands a higher upfront investment but arguably will diminish 

inefficiencies once the development process starts.  
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Problem detection, analysis and removal are tasks that pose increasing demands on LU skills as well as 

the company trying to implement LU problem solving. It would be easier and cheaper to emphasize user 

involvement mostly in problem detection, spending less in enticing LUs for analysis and removal. 

 

Higher problem detection effort is observed for software expected to be buggier, in line with a reactive 

nature of problem reporting. Presumably, not only the number of developers is important, but also the 

varied viewpoints they bring to the table, giving credence to Stallman’s adage that “given enough eyeballs 

all bugs are shallow” [83], meaning that the bigger the user base, the more varied are test cases that run 

through the software, exposing more defects. The degree of analysis, however, decreases with the number 

of expected bugs. 

 

Popularity is directly related with user participation in all stages of problem solving but not with the effort 

in the problem removal stage. We can also observe that there are decreasing significance levels of 

association between popularity and the effort spent in the three stages of the problem solving process. 

Popularity is more significantly associated with problem detection and less so with problem analysis and 

even less with problem removal. A skill-related effect cannot be ruled out, where LUs have sufficient 

skills to detect and report problems, but their skill set shrinks for problem analysis and removal.  

 

User membership and hence the relative balance of skills among detection, analysis and removal could be 

manipulated, for instance by allowing membership by invitation [42], trying to bend the skills distribution 

towards more technically savvy LUs. However, attracting LUs who also have development skills is 

difficult, and previous research suggested the project should emphasize a social positioning in alignment 

with developers’ motivations [13] and create opportunities that look “fun” and “challenging” to 

developers to enhance their inclination to participate [19].  Depending on the emphasis on problem 

detection or problem analysis or removal needed, the project’s management could “market” the 
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opportunities at the different stages, by itself or for instance with the help of a community management 

third party, or “innovation intermediaries” [48]. Running contests to incentivize participation in specific 

activities has been shown as effective and could also be tried [4].  

 

Profiling LUs can be another interesting way of making the process more effective. LU theory [32] 

explains “lead userness” along two dimensions: Higher expected benefits from participation and trending 

ahead in the use of the product. These dimensions can be measured directly or predicted from personality 

traits [79], and while the first dimension correlates with the likelihood of innovation, the second does with 

the commercial attractiveness of the innovation. Project managers could arguably measure these traits by 

means of a questionnaire and build LU profiles that can be useful, for instance to steer problems that need 

more innovative solutions toward LUs that score highly in the first dimension.  Also, the positioning of 

LUs in those dimensions can be influenced. For instance the “higher expected benefits” dimension can be 

increased (as well as the LUs available), by providing information on how a product may fulfill the needs 

of a user in a specific environment [33]. 

 

The second goal of this study is assessing the effects of front loading on development performance. 

Looking at the results, front loading helps with overall expected quality but again requires a processing 

effort that hinders productivity. Besides being a direct empirical confirmation of the efficacy of front 

loading as suggested by previous work [90], this finding also has implications in project design.  

 

For instance, attempting to front load the problem solving process would take active manipulation of the 

timing for bug fixing. This could be attempted by means of the product release policy. It has been 

observed empirically that relatively more bugs are fixed just before the planned release dates [31]. A 

more frequent planned release policy in the beginnings of the project could spur activity toward the front 

of the development process. Also, it becomes critically important to actively build a substantial user base 
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early in the project rather than have the user base grow passively as the product matures, which could be 

promoted through the early distribution of beta or demo versions.  

7 Limitations and future research 

One limitation of this study is that the sample is non probabilistic, which limits generalizability. However, 

the sample is biased toward the bigger, more active projects available in Source Forge, which better 

represent those projects of interest for the business community.  Other limitations from the sampling 

design relate to the sample including only projects written in pure “C”, which is a procedural language. 

More work is needed to confirm if the results hold for object-oriented languages such as Java.   

 

Not supported by available data, we would have liked to measure the productivity of the problem solving 

process itself rather than code base growth, which could be attempted in future work. Also, the OLS 

models do not capture complex variable interactions, and prompt the need for structural models to be tried 

in future research. These results should also be replicated in the context of proprietary code development. 

Research on mechanisms for front loading problem solving that are actionable for project managers and 

their relative efficacy would be warranted, too. 
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Table 1: Descriptives 

Construct Units Min Mean Max SD 

Popularity Downloads 0 10,212 1,380,846 77,908 

Productivity LOC per dev 0 648 112,841 80 

Quality Bugs/KSLOC 0 46 122 1.5 

Problem detection effort Bug reports per KSLOC 0 1.03 3.5 0.7 

Problem analysis effort Messages per bug report 0 6.25 35 1.1 

Problem removal effort Patches per KSLOC 0 1.01 5.75 1.2 

Complexity McCabe's complexity 1 13.29 169 17 

Team size # of developers 6 9.44 13 2.2 

Project tenure Months 3 27.87 135 6.6 

 

Table 2: Bivariate Correlations 

Downloads 1 
 

.350 *** .488 *** .307 *** .361 *** .189 *** .145 *** .292 *** .118 *** .332 *** 

LOC per dev .350 *** 1 
 

.363 *** .141 *** .152 ** .063 
 

.089 ** .304 *** .008 
 

.124 *** 

B/KSLOC .488 *** .363 *** 1 
 

.219 *** .155 *** .246 *** .221 *** .273 *** .070 ** .241 *** 

Bug reports per KSLOC .307 *** .141 *** .219 *** 1 
 

-.296 *** .431 *** -.038 
 

.262 *** -.070 * .017 
 

Messages per bug report .361 *** .152 ** .155 *** -.296 *** 1 
 

-.059 
 

.058 
 

.305 *** .138 *** .127 ** 

Patches per KSLOC .189 *** .063 
 

.246 *** .431 *** -.059 
 

1 
 

-.051 
 

.104 ** .068 * .003 
 

Complexity .145 *** .089 ** .221 *** -.038 
 

.058 
 

-.051 
 

1 
 

-.020 
 

-.066 * -.021 
 

Core developers .292 *** .304 *** .273 *** .262 *** .305 *** .104 ** -.020 
 

1 
 

-.062 * -.142 *** 

License .118 *** .008 
 

.070 ** -.070 * .138 *** .068 * -.066 * -.062 * 1 
 

.027 
 

Tenure .332 *** .124 *** .241 *** .017 
 

.127 ** .003 
 

-.021 
 

-.142 *** .027 
 

1 
 

Mean 2.457 
 

2.812 
 

1.662 
 

.014 
 

.796 
 

.005 
 

.975 
 

.423 
 

.815 
 

-.221 
 

SD 1.462 
 

1.133 
 

.504 
 

.045 
 

.773 
 

.020 
 

.317 
 

.270 
 

.389 
 

.247 
 

*** p < 0.001 
                  

** p< 0.01 
                  

* p < 0.05 
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Table 3: Regressions 

  Popularity Productivity Expected defects 

Intercept 2.977 *** 2.085 *** 1.758 *** 

Log, bug reports per KSLOC 5.960 *** -.767 * .658 *** 

Log, messages per bug report .213 * -.021 * -.045 ** 

Log, patches per KSLOC -.841 
 

-.821 ** 1.294 ** 

Log, cyclomatic complexity -.049 
 

.031 
 

.045 * 

Log, core developers .379 * 1.440 *** .006 
 

License type .192 * .111 * .050 * 

Tenure 1.695 *** .133   -.008   

N 429 

 

381 

 

429 

 F 25.1 *** 7.8 *** 11.4 *** 

R
2
 .300 

 

.120 

 

.160 

 *** p < .001 

     ** p< 0.01 

     * p < 0.05 

      

Table 4: T-tests 

   Means t 

 
Early Late 

  
Productivity 2.34 2.74 -6.8 *** 

Defects per KSLOC 0.87 2.66 -12.4 *** 

    
 

N = 215 

   
 

All variables transformed 

   
 

Equal variances not assumed 

  
 

 

Table 5: Tests Summary 

 

Association with: 

  Quality Productivity Popularity 

Problem detection inverse inverse direct 

Problem analysis direct inverse direct 

Problem removal inverse inverse Not sig. 

Front Loading direct inverse Not tested 
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