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D.R. Smitha,*, W.P. Leemanb 

 
aDepartment of Geosciences, Trinity University, One Trinity Place, San Antonio, TX 78212-7200, USA 
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Abstract 

 

Geochemically diverse basalts occur in an ~160-km-wide transect that stretches across the Quaternary 

southern Washington Cascades (SWC) volcanic arc.  Two fundamental groups of SWC basalts can be 

identified on the basis of major and trace element chemistry.  On primitive mantle-normalized 

“spidergrams”, Group I lavas resemble within-plate basalts, whereas Group II lavas exhibit chemical 

characteristics (e.g., Nb, Ta, and Ti depletions) typical of subduction-related magmas.  The primitive 

nature of many SWC basalts is indicated by their high MgO (>6.5 wt.%, up to 9.5 wt.%), Ni (>85 ppm) 

and Cr (>180 ppm) contents.  Electron microprobe analyses of olivine–spinel pairs in a diverse suite of 

SWC basalts are used to further evaluate the primitive nature of these magmas.  Some of the observed 

variations in olivine–spinel compositions can be attributed to oxidation, fractionation, mixing, and/or 

pressure variations during magma evolution.  To minimize these effects, we focus on olivine-hosted 

spinels in samples for which olivine-host rock equilibrium can be demonstrated.  Spinels in such rocks 

have Fe2O3<16.5 wt.%, 100 Fe3+/(Fe3++Cr+Al)<22, and exhibit high Mg# [=100 Mg/(Mg+Fe2+)>44] and 

low Cr# [=100 Cr/(Cr+Al) <58].  For the most primitive spinel–olivine pairs: (1) spinel Cr# ranges from 

20 to 57; (2) spinel Cr# for Group I lavas are distinctly lower (< 41) than those (> 45) for Group II lavas; 

(3) spinel Mg# ranges from 45 to 71, and overlaps for Groups I and II.  However, each group defines 

distinct trends on Mg# vs. Cr# and other variation diagrams, with Group II having more refractory 

characteristics.  This observation is consistent with higher whole-rock Mg# and Fo contents of olivines 

for Group II lavas, and suggests that sources for those magmas are more refractory (i.e., more melt-

depleted) than sources for Group I lavas.  The “within-plate”-like chemistry of Group I lavas precludes 

significant slab-derived contributions and is consistent with their derivation by decompression melting of 

little modified and relatively fertile mantle wedge material upwelling beneath the arc.  The fluid-mobile 

element-enriched nature of Group II lavas is consistent with melting of a mantle source(s) that has been 

modified by slab-derived fluids.  However, the standard “flux melting” process invoked to explain 

formation of many arc magmas is problematic for the Cascades because (a) high temperatures inferred for 
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the Cascadia subduction zone imply that the slab may be extensively dehydrated, in which case the 

inventory of volatiles and fluid-mobile elements is likely to be strongly depleted; and (b) Group I lavas 

occur at the volcanic front and appear to originate at depths proximal to the subducting slab.  These 

geochemical and geometric constraints seem inconsistent with formation of Group II magmas by flux 

melting of the mantle wedge as commonly proposed for arcs.  An alternative source for Group II lavas is 

chemically refractory lithospheric mantle that was previously metasomatized by earlier (40 Ma to present) 

Cascadia subduction and associated magmatism.  Reheating and melting of such fluid-enriched domains 

could result from influx of hot decompression melts (Group I magmas).  In either case, chemical and 

mineralogical evidence implicates two (or more) distinct processes of melt production and at least two 

distinct types of mantle source. 

 

Keywords: subduction; basalt; chromian spinel; olivine; petrogenesis; Cascades 

 

1.  Introduction 

 

The chemistry of chromian spinel inclusions and coexisting host olivine phenocrysts has been used in 

interpreting the partial melting and crystallization history of basaltic magmas from a variety of tectonic 

settings (Roeder, 1994; Arai, 1994; Clynne and Borg, 1997; Kamenetsky et al., 2001).  Chromian spinels 

occurring as inclusions in olivine phenocrysts from mafic magmas show a wide range of compositions 

(e.g., Allan et al., 1988) resulting from many factors, including crystallization temperature (e.g., Thy, 

1995), pressure (e.g., Sigurdsson and Schilling, 1976; Roeder and Reynolds, 1991), oxygen fugacity (e.g., 

Roeder and Reynolds, 1991; Ballhaus et al., 1991), melt differentiation (e.g., Arai, 1994; Clynne and 

Borg, 1997) and/or magma mixing/mingling (e.g., Thy, 1983; Natland et al., 1983).  However, when 

carefully screened to minimize these effects, compositions of spinel inclusions and host olivine 

phenocrysts have proved to be useful indicators of the most primitive aspects of melt composition 

(Clynne and Borg, 1997), and thus the nature of partial melting processes and mantle sources (Dick and 

Bullen, 1984; Dick, 1989; Fujii, 1989). 

 

We present here new microprobe analyses of chromian spinels and contiguous host olivines occurring in 

primitive basalts from a SWC transect across the southern Washington Cascades (SWC) volcanic arc (Fig. 

1).  Our goals are: (1) to utilize these data, in combination with whole-rock major and trace element 

geochemistry, to constrain the nature of the mantle source(s) for these magmas; (2) to determine if 

mineral compositions are consistent with phase equilibria; and (3) to evaluate existing petrologic models 

for the origin of Cascades basaltic magmas in the context of our results. 
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2.  Tectonic and geological setting 

 

Cascadia subduction in the Pacific Northwest dates back to ~35–40 Ma (cf. Sherrod and Smith, 2000), 

and comprises older (40–10 Ma) Western Cascades and younger (<10 Ma) High Cascades age groups 

(Verplanck and Duncan, 1987).  Quaternary (<2 Ma) High Cascades volcanism extends from southern 

British Columbia to northern California (Fig. 1) and is the result of slow (<4 cm/year) subduction of the 

young (<10 Ma) Juan de Fuca and Gorda oceanic plates beneath North America (Riddihough, 1984; 

Wang et al., 2003).  Due to its young age, the subducted slab is relatively warm, as confirmed by 

geophysical and petrologic thermal models (e.g., Hyndman and Wang, 1993; Peacock and Leeman, 1994; 

Green and Harry, 1999; Currie et al., 2003; Leeman et al., 2004).  The dip of the subducting Juan de Fuca 

plate varies along the arc (~25–40°; Romanyuk et al., 1998) but is defined by Benioff zone seismicity 

only to depths of about 100 km (Weaver and Michaelson, 1985; Michaelson and Weaver, 1986; Fig. 1), 

presumably because the slab is unusually warm.  In southern Washington, the sub-arc crust is about 35-40 

km thick (Mooney and Weaver, 1989; Chulick et al., 2001) and is composed of Tertiary arc igneous rocks 

(Bacon et al., 1997).  Near the SWC transect, owing to oblique convergence (Wells et al., 1999), the 

greatest principal stress is north–south compression and the least principal stress corresponds to east–west 

extension (Zoback and Zoback, 1980; McCrory, 1996; Wang et al., 2003).  Many volcanic vents in the 

Oregon and northern California High Cascades are localized along NNW oriented trends or structures 

(e.g., grabens and normal faults); this observation and an abundance of basaltic lavas suggest an important 

component of intra-arc extension (Conrey and Sherrod, 2003). 

 

In southern Washington, the High Cascades arc forms a ~160-km-wide belt, which includes two major 

composite volcanoes (Mount St. Helens and Mount Adams) and numerous smaller lava fields, shields, 

and cinder cones (Hammond and Korosec, 1983; Leeman et al., 1990; Bacon et al., 1997).  Geological 

mapping and dating show that Quaternary (<1 Ma) mafic volcanism occurs in the frontal arc as much as 

30 km west of Mount St. Helens (Fleck et al., 2002).  Mount St. Helens has been active for at least 

~40,000 years (Mullineaux, 1996) and nearby volcanism extends back to ~300,000 years (Evarts et al., 

2003).  Magmas erupted from Mount St. Helens range in composition from basalt to dacite, but basaltic 

lavas apparently extruded only during the Castle Creek eruptive period (1500–2500 years B.P.; Hoblitt et 

al., 1980; Mullineaux, 1996).  The Indian Heaven volcanic field, located between and a little south of 

Mount St. Helens and Mount Adams, is dominated by basaltic lavas with minor andesite (Hammond and 

Korosec, 1983; Swanson et al., 1989; Leeman et al., 1990).  All eruptive units are younger than the last 

magnetic reversal (0.78 Ma), and at least one (Big Lava Bed) is <10,000 years B.P. Mount Adams, one of 

the largest Cascade volcanoes, is located about 50 km due east of Mount St. Helens.  Most of the main 
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cone is younger than 220,000 years B.P. and comprises lava flows and pyroclastic materials of andesitic 

to dacitic composition (Hoblitt et al., 1987; Hildreth and Fierstein, 1997); flank vents produced basaltic 

and andesitic lavas as recently as 3500 B.P. (Hoblitt et al., 1987).  Farthest from the trench, the Pliocene 

(<2 to 4 Ma) Simcoe lava field produced basaltic lavas from dispersed monogenetic vents (cf. Leeman et 

al., 1990). 

 

3.  Sampling and methods 

 

For this study, we consider only Quaternary (<ca. 1 Ma) basalt and basaltic andesite samples that are 

compositionally primitive (see below).  These samples span all but the easternmost part of the transect 

(i.e., they exclude the Simcoe field), and represent all known compositional variants (cf. Leeman et al., 

2004).  The samples studied are only moderately porphyritic (<5–10% phenocrysts; most <5%) with 

olivine as the dominant phase; many lack phenocrystic plagioclase and appear to have ascended directly 

from mantle depths.  The olivine phenocrysts typically contain subrounded to euhedral spinel inclusions 

(~20 up to 100 µm in diameter).  Some Group II frontal arc basalts contain clinopyroxene phenocrysts, 

but these are generally subordinate to olivine in volume and size.  Trace or microphenocrystic 

clinopyroxene occurs in other Group II basaltic lavas, but has not been observed in most Group I basalts.  

As notable exceptions, basalts from Mount St. Helens are relatively evolved and contain conspicuous 

plagioclase phenocrysts; they are included in this study for comparative purposes as they represent the 

most primitive lavas available from this volcano. 

 

Electron microprobe methods were used to analyze olivine phenocrysts and coexisting spinel inclusions 

in 28 selected samples of SWC lavas, including: eleven from Indian Heaven, seven from the frontal arc, 

five from Mount St. Helens, and five from vents peripheral to Mount Adams (Tables 1 and 2).  

Microprobe analyses were obtained on polished thin sections of the host rocks or, in some cases, grain 

mounts of separated olivines, using natural and synthetic minerals as standards.  In all cases, accelerating 

voltage of 15 kV and specimen beam current of 30 nA were used.  Because we used instruments at several 

institutions (Rensselaer Polytechnic Institute, University of Texas at Austin, University of Tasmania), 

replicate analyses were made for selected samples in at least two laboratories to evaluate analytical 

reproducibility; in all cases, olivine and spinel data agree within expected analytical uncertainties (e.g., 

better than 0.5 mol% forsterite in olivine).  Proportions of Fe3+ and end member components in spinel 

were calculated assuming stoichiometry via the method of Stormer (1983). 

 

Whole-rock analyses of the selected samples were determined using a combination of X-ray fluorescence, 
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instrumental neutron activation, and inductively coupled plasma spectrometric methods, as described in 

Smith and Leeman (1987), Leeman et al. (1990), and Smith and Leeman (1993).  Replicate analyses of 

standards indicate typical accuracy and precision for major (1–5%) and trace elements (2–10%). 

 

4.  Geochemistry of SWC basalts 

 

Major and trace element compositions for SWC basalts studied here are given in Table 1 and a more 

extensive compilation of analyses is presented by Leeman et al. (2005).  Major elements are normalized 

to 100% on an anhydrous basis and all iron is reported as FeO*.  Selected geochemical characteristics of 

SWC basalts are illustrated in Fig. 2 and incompatible trace element compositions, normalized to 

primitive mantle (Sun and McDonough, 1989), are shown in Fig. 3. 

 

Two fundamental groups of SWC basalts can be identified on the basis of major and trace element 

chemistry (Lewis et al., 2001; Leeman et al., 2004).  Group I includes lavas with trace element 

geochemistry similar to so-called intraplate (e.g., OIB) basalts, whereas Group II includes lavas with 

compositional similarities to more typical calcalkalic volcanic arc basalts.  Based on K2O and 

incompatible trace element abundances (cf. Figs. 2 and 3), Groups I and II can each be subdivided into 

three sub-types (cf. Leeman et al., 2004).  Group I includes: (1) low-potassium tholeiites (LKT); (2) hy-

normative basalts with trace element patterns similar to ocean island basalts (OIB); and (3) basalts that are 

geochemically similar to OIB, but are ne-normative (ALK).  Group II includes: (1) calcalkaline basalts 

(CA); (2) basaltic andesites (BA); and (3) shoshonites (SHOS).  As discussed elsewhere (Leeman et al., 

1990, 2004; Lewis et al., 2001), the observed diversity of SWC basalts must reflect variability in mantle 

sources, differences in melting processes or both.  The little-evolved nature of many SWC basalts studied 

here is indicated by their high abundances of MgO (up to 9.5 wt.%), Ni, and Cr (cf. Table 1).  As noted in 

Section 3, basalts from Mount St. Helens are the least primitive of the samples considered here (e.g., 

wt.% MgO=~5.9 to 6.8; cf. Table 1).  Based on extensive chemical analyses, these lavas are interpreted as 

the products of “cryptic” magma mixing, involving at least two distinct mafic magma end members 

(Leeman et al., manuscript in preparation).  Diverse and/or primitive basalts similar to those in the SWC 

have been found elsewhere in the Canadian (Green and Harry, 1999), central Washington (Reiners et al., 

2000), Oregon (Bacon et al., 1997; Conrey et al., 1997), and especially in the northern California (Borg et 

al., 1997; Elkins-Tanton et al., 2001) High Cascades. 
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5.  Phase chemistry 

 

Table 2 gives representative analyses of the most magnesian olivine phenocrysts and spinel inclusions 

occurring in our samples. 

 

5.1.  Selecting primitive compositions 

 

The olivine and spinel compositions provide a means, beyond bulk-rock chemistry, to evaluate the 

primitive nature of SWC basalts.  Before attempting to interpret the phase chemistry in terms of magma 

source characteristics, it is important to establish the extent to which (1) our samples represent truly 

primitive liquids and (2) the analyzed olivine–spinel pairs represent the earliest crystallized phases. 

 

The composition of olivine in equilibrium with melt is controlled by the melt Mg# [=100 Mg/ (Mg+Fe2+)] 

and KD value for olivine-melt Fe–Mg equilibrium (e.g., Roeder and Emslie, 1970).  To compute Mg#, it is 

necessary to know the redox conditions and, specifically, the appropriate Fe3+/∑Fe ratio.  This parameter 

was estimated from the Fe2+/Fe3+ ratio for the most magnesian spinel inclusions analyzed in each sample 

and the experimentally determined relationship between Fe2+/Fe3+ in spinel and coexisting melt (cf. 

Maurel and Maurel, 1983; Larsen and Pedersen, 2000).  It is noteworthy that Fe3+/∑Fe exhibits a small 

range (~0.1 to 0.2;average: 0.15) for most samples, with Group II samples being only slightly higher, on 

average, than Group I.  A similar range in values is obtained from data for other Cascades basalts (Clynne 

and Borg, 1997; Conrey et al., 1997).  Collectively, these data suggest that Cascades basaltic magmas 

formed under relatively reduced conditions.  Comparison of Mg# with maximum Fo content in olivine 

phenocryst cores (Fig. 4) suggests that olivine compositions are near Fe–Mg equilibrium with liquids 

represented by the whole-rock compositions for the majority (18 of 28) of our samples.  Group II lavas 

have generally higher whole-rock Mg# and contain more Fo-rich olivines than Group I lavas. 

 

Ten of the SWC samples examined here fail the above test for equilibrium.  Five samples—DS-69A-80, 

L00-6, L01-5, DS-46-80, and DS-20-80—contain olivines that plot above the experimentally predicted 

envelope (Fig. 4) for olivine-melt equilibria (i.e., above the contour for KD=0.34).  An especially 

enigmatic sample is DS-69A-80, which has such Fe-rich olivines (Fo69–73) that it plots off-scale in Fig. 4.  

Except for DS-20-80, these samples contain spinel inclusions with anomalously high Fe3+# (=100 Fe3+/ 

(Fe3++Cr+Al); 18 to 82) compared to most SWC samples (cf. Table 2).  To evaluate possible oxidation of 

these spinels by post-eruptive processes, bulk rock Mg# was recalculated using the typical Fe3+/∑Fe ratio 

(0.15).  With this correction, one sample (DS-46-80) becomes consistent with olivine-melt equilibria; 
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however, the remaining anomalous samples do not, and we conclude that the original magmas were 

unusually oxidized or that they reflect a more complicated evolutionary history (e.g., involving open 

system processes).  Further work is required to resolve their petrogenesis. 

 

Another sample (DS-23B-81; SHOS-type) contains spinels with high Fe3+# as well as high Fe2O3 contents 

(cf. Table 2).  This rock has relatively low Ni (64 ppm) and Cr (134 ppm) contents and the phenocryst 

assemblage is complex (cf. Table 1), suggesting an evolved or hybrid nature.  In addition, microprobe 

analyses of clinopyroxene phenocrysts in this rock show evidence (e.g., oscillatory and reverse zoning) 

for magma mixing and/or assimilation processes.  Lastly, when the whole-rock Mg# is recalculated using 

Fe3+/∑Fe =0.15, this sample plots below the KD=0.26 contour, suggesting oxidation. 

 

Four other samples contain olivines with higher Fo contents than expected for their Mg#.  These include 

three from Mount St.  Helens (DS-7-, DS-9-, and DS-78-MSH) and one from the frontal arc (L01-11) (cf. 

Fig.  4).  These samples are among the most evolved ones considered here (SiO2=50.0–54.1 wt.%, MgO= 

5.89–6.84 wt.%).  As noted above, many Mount St. Helens basalts are considered to be hybrid magmas; 

their Fo-rich phenocrysts likely are relict crystals formed in a more primitive mixing end member.  

Sample L01-11 might also be a hybrid magma; it is the only sample analyzed here that contains two 

populations of core compositions (Fo74–78 and Fo88–89), which are separated by a gap of ~10 mol% Fo.  

Neither population plots within the equilibrium KD contours in Fig.  4. 

 

In subsequent discussions of primitive magmatic features, we focus attention on the remaining 18 samples 

that most closely reflect equilibrium conditions between phenocrysts and bulk lava composition.  

Although these samples span much of the observed range in bulk composition, they are sparsely 

porphyritic, show little evidence for shallow storage and cooling, have olivine core compositions (Fo82–88) 

within experimental limits of equilibrium with the bulk rock composition, have high whole-rock Mg# 

(molar MgO/(MgO+FeO* >0.56, up to 0.67), are characterized by relatively reduced oxidation state (near 

QFM-NNO redox buffers), and exhibit internally consistent olivine-melt temperatures.  As such, we 

consider these samples to be among the most primitive known lavas from the SWC region. 

 

5.2.  Significance of spinel compositional variations 

 

To evaluate the effects of magmatic fractionation on spinel–olivine chemistry, we examined 

compositional trends of adjacent olivine–spinel pairs occurring within individual phenocrysts (Figs. 5 and 

6).  Fig. 5 illustrates variations in spinel Mg# [=100 Mg/ (Mg+Fe2+)] and TiO2 with Fo content, from 
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cores to rims of single olivine phenocrysts.  The observed decrease in Mg# (increase in Fe2+) and increase 

in TiO2 in spinel as Fo contents decrease are consistent with solid solution towards magnetite and 

ülvospinel due to olivine-dominated fractionation.  These trends are most likely controlled by spinel-

liquid equilibria as the spinels are sequentially trapped by the growing olivine host (cf. Luhr and 

Carmichael, 1985; Clynne, 1993). 

 

Fig. 6 illustrates all available olivine–spinel analyses for seven different samples that were examined in 

detail.  Best-fit lines exhibit trends with positive slopes.  Although such trends could be produced by 

cotectic crystallization of plagioclase plus olivine, this interpretation can be ruled out because 

phenocrystic plagioclase is lacking in all Group II samples illustrated and in most Group I samples.  

These trends more likely reflect crystallization of spinel at progressively decreasing pressure during 

ascent.  Experimental data (Roeder and Reynolds, 1991; Jaques and Green, 1980) show that an increase in 

spinel Cr# similar to that shown by most of our samples can be produced by a pressure drop from 15 to 2 

kbar.  In other words, much of the compositional variation seen in spinels from individual samples can be 

attributed to polybaric crystallization during magma ascent.  More importantly, the large differences seen 

in spinels from the respective Groups I and II are inconsistent with crystallization from a common magma 

type.  Rather, the observed range in spinel composition likely reflects differences in magma chemistry 

inherited from distinct sources and is partly a consequence of degree of partial melting.  These contrasts 

are amplified by comparing those spinels that have the highest Mg# and lowest Cr#. 

 

To summarize, some of the observed variations in the olivine–spinel pairs in SWC basalts can be 

attributed to compositional changes due to oxidation, fractionation, mixing, and/or pressure changes 

during magma evolution.  To see through these effects, we consider only olivine-hosted spinels in samples 

for which olivine-host rock equilibrium can be demonstrated, and for which Fe2O3 <16.5 wt.%, Fe3+# 

<22, and Mg# is maximal and Cr# is minimal (cf. Clynne and Borg, 1997).  Only the 18 samples for 

which these criteria are met are plotted in subsequent diagrams (Figs. 7–10) and considered during further 

discussion of basalt petrogenesis. 

 

5.3.  Magmatic temperatures 

 

Two methods were used to estimate eruptive temperatures for SWC lavas: (1) thermometry based on 

MgO-partitioning between olivine cores and silicate melt (Sugawara, 2000); and (2) thermometry based 

on CaO/MgO equilibrium between olivine and melt (Jurewicz and Watson, 1988; cf. Clynne and Borg, 

1997).  The Sugawara method results in temperatures ranging from 1168 to 1263 °C assuming anhydrous 
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conditions (Table 1).  A pressure (~10 kbar) near the Moho is assumed for these calculations, but the 

method is fairly insensitive (<5 °C/kbar) to the value assumed.  The calculated temperatures also may be 

overestimates if the magmas contained significant water; however, actual temperatures will be lower by 

only ~20 °C for each wt.% H2O (Ulmer, 2001; Leeman et al., 2004).  Considering estimated water 

contents in comparable lavas from the Northern California Cascades (Sisson and Layne, 1994), 

corrections (decreases) to the ‘anhydrous temperatures’ are likely to be small for the relatively dry Group 

I basalts, but could range up to ~100 °C for some Group II lavas.  Nevertheless, exact corrections for our 

samples await measurement of H2O contents in the respective magmas.  Temperatures based on Jurewicz 

and Watson’s work closely mirror the Sugawara temperatures (Table 1), although they are lower by 

~20°C; this difference is well within calibration errors for the two methods.  No obvious relationship is 

observed between temperature and magma type.  However, if the geochemistry of Group II lavas (cf. 

Figs. 2 and 3) correlates with increased H2O, then actual temperatures for some Group II lavas could be 

significantly lower than our estimates.  Nearly all Group I lavas have estimated eruptive temperatures in 

excess of ~1200 °C, implying very warm conditions in the underlying mantle.  The companion paper by 

Leeman et al. (2005) in this volume addresses this issue in more detail. 

 

5.4.  Pressure estimates 

 

Primitive spinel and host rock compositions were used in equilibria calculations via the method of Allan 

et al. (1988; cf. Clynne and Borg, 1997) to constrain pressures of crystallization.  Although these 

determinations are imprecise, SWC spinels contain excess Al relative to low-pressure spinels from other 

localities and are similar to those in mantle xenoliths and lavas interpreted to have crystallized at 

relatively high pressure (>5 kbar; cf. Fig. 8 in Clynne and Borg, 1997); this result is consistent with our 

interpretation of polybaric crystallization (cf. Section 5.2).  Leeman et al. (2005) estimate and discuss 

mantle segregation depths for calculated parental magmas; Group I lavas (and particularly the LKT 

variants) appear to segregate from higher pressures (14.6 ± 3.7 kb) than Group II lavas (10.2 ± 2.5 kb).  

Elkins-Tanton et al. (2001) derive similar estimates for LKT basalts from northern California. 

 

5.5.  Compositional characteristics of SWC primitive spinels 

 

Based on data for the most primitive spinels and olivines in the 18 selected samples, several important 

relationships are evident: 

 

(1) Fo contents of the olivine hosts immediately adjacent to analyzed spinel inclusions range from 82 to 
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88 (Fig. 7); olivines in Group II lavas are somewhat more Mg-rich than those in Group I lavas. 

(2) Spinel inclusions encapsulated within olivine hosts exhibit a wide range of Cr# (from 20 to 57; Figs. 

7A and 8B) and Al2O3 contents (from16.6 to 46.3 wt.%). 

(3) Spinel Cr# for Group I lavas are systematically lower (<41) than those (>45) for Group II lavas (Figs. 

7A and 8B) 

(4) Spinel Mg# ranges from 45 to 71 (Figs. 7C–D and 8A).  Although these values overlap for Group I 

and II, each group defines distinct clusters on plots of Mg# against spinel Cr# or olivine Fo (Figs. 7B and 

8A). 

(5) Although no clear trend is observed in Fe2+/∑Fe vs. Mg# in Group I spinels, Group II lavas have 

generally lower Fe2+/∑Fe (i.e., higher Fe3+) than most Group I lavas (Fig. 7D). 

(6) It is not possible to distinguish among spinels in lava subtypes (e.g., ALK vs. OIB vs. LKT) within 

either Group I or II. 

 

Our results are similar to what has been observed in lavas of the Lassen region (northern California).  

Although more primitive (in accord with generally higher whole-rock Mg#s), spinels in Lassen basalts are 

compositionally similar to those in SWC basalts.  Spinels in basalts from the Oregon High Cascades 

(Conrey et al., 1997) and additional samples from the vicinity of Mt. Adams (Hildreth and Fierstein, 

1997) are likewise similar to the results reported here. 

 

Fig.  8B compares Al2O3 and TiO2 contents for spinels in SWC basalts with those for spinels occurring in 

a variety of tectonic environments (cf. Kamenetsky et al., 2001).  Groups I and II define distinct fields in 

this diagram.  Interestingly, all available SWC spinel data plot in the field for mid-ocean ridge basalts 

rather than that for typical arc lavas.  As the diagram depends heavily on data for western Pacific volcanic 

arcs, this apparent anomaly may reflect differences in the sub-arc mantle possibly due to different melting 

histories. 

 

6.  Discussion and conclusions 

 

The mineral and whole-rock chemical data reported here suggest an origin for SWC basalts via melting of 

heterogeneous domains in the sub-arc mantle.  Albeit some variations within the general population of 

olivine–spinel pairs of SWC basalts can be attributed to variations in ƒO2, fractionation, mixing, and/or 

pressure changes during magma evolution (cf. Section 5.2), the impact of these parameters on spinel Cr# 

are relatively small (Clynne and Borg, 1997) and cannot account for variations between primitive spinels 
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in Groups I and II. 

 

The mantle array for coexisting olivine and spinel (Arai, 1994, cf. Figs. 6 and 7B) illustrates that spinel 

Cr# and olivine Fo contents increase as peridotite sources become more refractory.  For example, depleted 

harzburgites contain spinels with higher Cr# than fertile spinel lherzolites and pyroxenites (Dick and 

Fisher, 1984).  Minor variations (~5% to 10%) in degree of partial melting of either fertile or depleted 

sources can explain the small ranges in spinel Cr# within either Group I or Group II.  However, distinctly 

higher spinel Cr# for Group II lavas (Fig. 7A) require unrealistically large degrees of partial melting if 

they are to be derived from the same source generating Group I lavas.  We suggest instead higher Cr# for 

Group II spinels indicate derivation of Group II magmas from more refractory sources than Group I.  The 

somewhat higher average Fo (87 vs. 84 wt.%) and NiO (0.33 vs. 0.23 wt.%) contents of olivines in Group 

II vs. Group I lavas provide further evidence for this view, as do whole-rock geochemical features for 

Group II, e.g., generally higher Mg# (Fig. 4), and lower FeO* and Al2O3 (Fig. 9E–F). 

 

The “within-plate”-like chemistry of most Group I lavas (cf. Fig. 3A) precludes significant slab-derived 

contributions and is consistent with upwelling and decompression melting of little modified and relatively 

fertile mantle wedge material, as originally suggested by Leeman et al. (1990).  Large ion lithophile and 

fluid-mobile element enrichments in Group II lavas (e.g., Fig. 9A–B) are, in principle, related to influx of 

slab fluids that enrich these elements in portions of the mantle wedge proximal to the subducting slab (cf. 

Pearce and Peate, 1995), and melting may be triggered by influx of such fluids (cf.  Reiners et al., 2000).  

Lower Fe2+/∑Fe ratios in Group II compared to Group I spinels (cf. Fig. 7D) are consistent with 

crystallization from slightly more oxidized magmas derived from a fluid-metasomatized mantle source.  

However, beryllium isotopic and trace element data for Quaternary SWC basalts (Morris and Tera, 1989; 

Leeman et al., 1990) imply that the slab may have been largely dehydrated by the time it reached sub-arc 

mantle depths.  Only basalts from the frontal part of the arc exhibit elevated concentrations of fluid-

mobile elements indicative of significant slab contributions to the overlying mantle and, compared to 

most other arcs, the observed enrichments are weak (cf. Ryan et al., 1995, 1996).  Given this apparent 

lack of modern fluid fluxing, an alternative interpretation for Group II magmas is that they represent 

melts of “fossil” metasomatized source domains within the sub-arc lithospheric mantle.  Fluid fluxing and 

mobile element enrichment could have occurred anytime in the 40 Myr duration of Cascadia subduction.  

The influx of hot, decompression magmas (Group I) could cause reheating and anatexis of these 

metasomatized domains.  This scenario involves two (or more) distinct processes of melt production and 

at least two mantle sources, each of which may be internally heterogeneous. 
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A noteworthy feature is the close temporal and spatial occurrence of SWC primitive basalts.  All of the 

lavas studied here are young (~1 Ma).  At Mount St. Helens and within the Indian Heaven lava field, lavas 

from both Groups I and II issued from either the same or proximal vents.  Given this observation and the 

whole-rock and mineral chemistry, we infer that mantle sources beneath the SWC arc are heterogeneous 

on the scale of local plumbing systems.  Fig. 10 illustrates that there is no clear relationship between the 

phase chemistry of primitive SWC basalts and their location across the arc.  Additional studies are 

required to address (1) the spatial distribution of magma sources (e.g., is the mantle heterogeneous on a 

small scale or is it stratified/layered on a large scale?), and (2) the viability of re-melting fossil 

metasomatized domains within either shallow mantle wedges or lithospheric mantle. 

 

If real, the distinction of two ‘flavors’ of mantle source, with different degrees of fertility and broad 

distribution beneath the arc, suggests the need for a different perspective on arc magmatism.  Clynne and 

Borg (1997) and Borg et al. (1997) also observed differences in degree of mantle fertility beneath the 

northern California Cascades.  However, they inferred the presence of more depleted sources nearer the 

frontal arc region and proposed that the observed spatial variation resulted from progressive melt- 

depletion of convecting wedge mantle.  We also observe lavas indicative of depleted sources near the arc 

front, but additionally find some frontal arc lavas to be derived from relatively fertile (OIB-like) 

sources—implying that depleted sources cannot simply reflect a progressive depletion process.  Our 

results also preclude a simple flux melting model (e.g., Reiners et al., 2000) to produce the observed 

compositional spectrum from an initially homogeneous mantle source. 

 

The unusually warm nature of the Cascadia subduction zone may be an important factor in showcasing 

diversity in mantle wedge composition.  Perhaps the absence of a strong slab-flux signature prevents 

ubiquitous overprinting of the wedge mantle chemistry, such that inherent heterogeneities can be 

preserved during melting processes.  In contrast, elevated flux levels in cooler subduction zones may 

cause flux melting processes to dominate and generate the geochemical characteristics widely considered 

‘typical’ for volcanic arcs. 
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