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a
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b
Keith-Wiess Geological Laboratories, Rice University, Houston, TX 77251, USA 

 

ABSTRACT 

Smith, D. R. and Leeman, W. P., 1993.  The origin of Mount St. Helens andesites.  J. Volcanol. Geotherm.  

Res., 55: 271-303.   

 

Mount St. Helens volcano has intermittently produced mainly dacitic products but occasionally erupted a 

more diverse suite of lavas including basalts and andesites.  Petrogenetic relations between these magmas 

provide insight into the dynamics of the subjacent magma system.  Mineralogical and geochemical 

features of representative lavas erupted during the past 2200 years can distinguish three basaltic and three 

andesitic variants.  The mafic lavas include: (a) transitional, olivine + plagioclase basalts with low K2O 

and incompatible trace-element abundances: (b) calc-alkaline, olivine + plagioclase ± clinopyroxene 

basalts enriched in K 2O, TiO2, and incompatible trace elements: and (c) calc-alkaline, olivine + 

plagioclase basaltic andesites with incompatible trace-element contents transitional between the two 

basalt types.  Intermediate lavas include (a) tholeiitic, two-pyroxene andesites, (b) calc-alkaline, 

plagioclase + two-pyroxenes ± olivine ± amphibole mafic andesites (56-59% wt.% SiO2), and (c) calc-

alkaline, plagioclase + two-pyroxenes + amphibole high-silica andesites (61-62 wt.% SiO2). 

 

Eruption of these magmatic variants within the same eruptive phase implies the existence of different 

petrogenetic lineages, and that the plumbing system is sufficiently complex to simultaneously isolate and 

preserve numerous magma batches.  It is unlikely that any of the andesites (or dacites) are derived by 

fractional crystallization of the recognized basaltic variants. Formation of the andesites simply by 

contamination (or assimilation-fractional crystallization) of basaltic magma is also improbable.  More 

plausibly, the andesites represent mixing between basaltic and dacitic end-member magmas, each of 

which may be somewhat heterogeneous or vary in composition with time.  In this model, efficient mixing 

must occur in some parts of the magma plumbing system, while some conduits or storage reservoirs must 

be effectively isolated. 
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Introduction 

The Cascade volcanic arc of the northwestern United States has long been attributed to subduction of the 

Juan de Fuca plate beneath the North American plate.  The large Quaternary to Recent volcanic centers of 

the arc, including Mount St. Helens, are complex systems that have erupted a wide range of magma types.  

The details of the volcanic stratigraphy at Mount St. Helens have been well documented (Hoblitt et al., 

1980; Mullineaux and Crandell, 1981) and provide a framework in which to address the temporal 

evolution of the volcano. 

 

In this paper, we present the details of the petrology and geochemistry of the youngest Mount St. Helens 

basaltic and andesitic eruptive products.  We focus our discussion on the origin of the andesites and their 

relationship to other coeval magma types erupted at Mount St. Helens.  Our major objectives are to 

evaluate the relative importance of such processes as fractional crystallization, assimilation, and magma 

mixing in producing the andesitic magmas, and to elucidate the nature of the magma system as a whole. 

 

Geologic setting and eruptive history of Mount St. Helens 

The Pacific Northwest has been a zone of convergence between North America and oceanic plates of the 

Pacific basin throughout much of Cenozoic time (Atwater, 1970; Lipman et al., 1972).  In southern 

Washington, the Quaternary Cascade arc lies 250-300 km east of the convergent margin (Sherrod and 

Smith, 1990).  Crustal thickness has been estimated as approximately 40-46 km everywhere beneath the 

Cascade Range (Mooney and Weaver, 1989) and the dip of the subducted slab is relatively steep ( > 45º)  

(Michaelson and Weaver, 1986; Weaver and Michaelson, 1985). 

 

Guffanti and Weaver (1988) subdivided the Cascade volcanic arc into five segments (Fig. 1) based on the 

distribution and composition of rocks erupted from Cenozoic volcanic vents less than 5 Ma in age.  

Mount St.  Helens is situated within Guffanti and Weaver's Segment 2 which extends from Mount Rainier 

to Mount Hood.  This 150-km-wide zone of vents is broader but has lower vent density than does the 

Oregon Cascades segment immediately to the south (between Mount Hood and Mount Shasta).  To the 

north, Quaternary volcanism is limited to the stratovolcanoes of Glacier Peak and Mount Baker.  Segment 

2 is also the most seismically active portion of the Cascade Range (Weaver, 1989).   These features and 

limited basaltic volcanism north of this segment were suggested by Weaver (1989) to be the result of the 

presence of a major crustal block in the southern Washington Cascades.  On the basis of magnetotelluric 

data, this crustal block has been designated as the southern Washington Cascades conductor (Stanley et 

al., 1987), the western edge of which is coincident with the St. Helens seismic zone (Weaver, 1989).  

Mount St. Helens lies where structural trends intersect the St. Helens seismic zone (Weaver and Smith, 
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1983) and where small dextral offset on the seismic zone favors local crustal extension (Weaver, 1989).   

 

Subduction-related magmatism in the vicinity of Mount St. Helens (MSH) dates back to Oligocene/early 

Miocene times, and the volcano was built during the past 40,000 years upon an eroded terrane of gently 

folded and altered volcanic and plutonic rocks (Evarts et al., 1987).  The eruptive history of MSH has 

been divided into four eruptive stages (Crandell et al., 1975; Hoblitt et al., 1980; Mullineaux and 

Crandell, 1981).  The most recent, the Spirit Lake stage, is subdivided as summarized in Table 1.  The 

volcano has erupted a wide variety of magma types, ranging from basalt to rhyodacite.  Dacitic (to 

rhyodacitic) magmas were erupted during each eruptive period within the Spirit Lake stage, but andesites 

were produced only during the Castle Creek, Kalama and Goat Rocks periods (andesite was also erupted 

in the Cougar stage, ~ 21 to 18 ka ago).  Basaltic lavas and tephras were erupted only during the Castle 

Creek sequence.  Detailed petrogenetic studies have been reported by Smith and Leeman (1987) for MSH 

dacites, and by Leeman et al. (1990) for Recent-Pliocene volcanic rocks from an E-W transect across the 

southern Washington Cascades.  A recent synthesis of data concerning the magma reservoir beneath 

MSH, new chemical data that record mixing of basalt and dacite during the last 500 years, and 

implications of these data for volcanic hazards were reported by Pallister et al. (1992). 

 

Sampling and analytical methods 

The samples described in this study were collected both prior to (1978-79) and following (1982) the 1980 

eruptive activity that destroyed much of the north flank of the volcano (see Appendix 1 for sample 

locations).  Samples of Castle Creek products include basaltic to andesitic lavas from the now obliterated 

north flank of the volcano and from the south flank.  The so-called 'cave' basalt (Verhoogen, 1937; 

Greeley and Hyde, 1972) found on the southwest side of the volcano and one andesitic scoria tephra 

(layer "Bh", Mullineaux, 1986) are also included.  Kalama eruptive products include andesitic flows 

located on the south side of the volcano (Mullineaux and Crandell, 1981) and one scoria tephra (layer 

"Xb", Mullineaux, 1986).  The single andesite lava flow (located on the northwest side of the volcano) 

produced during the Goat Rocks period is included (Lawrence, 1941).  Two samples of Kalama andesite 

(MSH-484-1 and MSH-486-1) and one of Goat Rocks andesite (MSH-260-1) were provided by W.  

Melson and C.  Hopson. 

 

Minerals in selected samples were analyzed with a 3-channel ETEC microprobe as discussed in Smith 

(1984).  Bulk-rock analyses were obtained by inductively-coupled plasma spectrometry (Rice Univ.) for 

major elements and V, Cu, Be, Ba, Sr, Zr, and Zn; by X-ray fluorescence (Open Univ. and Edinburgh 

Univ.) for Rb, Sr, Ba, Zr, Nb, Y, Pb, V, Cr, Co, Ni, and Cu; and by neutron activation (Radiation Center, 



4 

Oregon State Univ. and NASA-JSC) for Sc, Cr, Co, Ni, Cs, Sr, Ba, Rb, Zn, Hf, Ta, Th, U, and the rare 

earth elements (REE).  Analytical errors are typically ± 1-3% for major elements and ± 2-10% for trace 

elements, except for Cr and Ni for which errors may be as high as 15%.  For elements determined by 

more than one method, either averages or results by the most accurate method are reported.  Most of the 

Sr isotopic data used in this paper are from Leeman et al. (in prep.); the 
87

Sr/
86

Sr ratios cited are precise to 

within ± 0.00003 or better. 

 

Classification of lavas  

We have subdivided MSH basalts and andesites into six groups mainly on the basis of SiO2 contents and 

FeO*/MgO ratios (Table 2 and Fig. 2).  The basaltic lavas include three variants, I-B, II-B, and III-BA, all 

of which were erupted during the Castle Creek period.  Group I-B includes samples of the 'cave' basalt 

(cf. Verhoogen, 1937), which straddles the boundary between tholeiitic and calc-alkaline suites using the 

criteria of Irvine and Baragar (1971).  Group II-B comprises superposed lava flows from the north flank.  

II-B lavas fall in the tholeiitic field of Figure 2, but their high K2O content (~1.3 wt.%) defines them as 

calc-alkaline according to Irvine and Baragar's (1971) scheme.  These lavas are also richer in TiO2 than 

are other MSH basaltic lavas (cf. Table 2).  Group III-BA includes superposed lava flows located on the 

north flank and other flows found on the south flank.  These lavas are basalts and basaltic andesites 

having SiO2 contents between ~51 and 54 wt.%; they straddle the boundary between tholeiitic and calc-

alkaline types in Figure 2, but all samples fit Irvine and Baragar's (1971) definition of calc-alkaline rocks.  

Two samples fall within Gill's (1981) field for basic andesites, but the compositional gap between these 

rocks and other MSH andesites and their geochemical and mineralogical similarity to other III-BA 

samples suggest that the two samples belong to Group III-BA. 

 

Andesitic lavas fall into three groups designated as I-A, II-A, and TH-A.  Group I-A includes lavas and 

scoria of Kalama and Castle Creek age with SiO2 contents ranging from ~56 to 59 wt.%.  Group II-A 

andesites include lavas of Goat Rocks, Castle Creek, and Kalama age with higher SiO2 contents (~61-62 

wt.%) compared to I-A lavas.  Both I-A and II-A andesites are calc-alkaline; tholeiitic andesites (TH-A) 

include two samples of lava and scoria of Castle Creek age. 

 

Although II-A andesites have SiO2 contents (61-62 wt.%) that overlap with some MSH dacites erupted 

during pre-Spirit Lake eruptive stages and the current eruptive period, these rock types are 

petrographically distinct.  The low-silica dacites have field and petrographic features similar to dacites 

with SiO2 contents >63 wt.%, i.e., they are light-colored, pumiceous tephras with phenocrysts of 

plagioclase, unreacted hornblende, and orthopyroxene, with or without cummingtonite (Smith and 
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Leeman, 1987).  In contrast, the II-A andesites form blocky, thick, dark-colored lava flows with 

phenocrysts of plagioclase, clinopyroxene, orthopyroxene, and resorbed hornblende. 

 

Petrography and mineral chemistry 

Table 2 includes modal mineral proportions for MSH mafic to intermediate eruptive products.  

Representative analyses of minerals and compositional ranges of plagioclases from selected samples of 

each basaltic and andesitic compositional group are given in Table 3. 

 

Basalts and basaltic andesites 

 

The mafic rocks contain 11-23 vol.% phenocrysts (defined here as >0.3 mm) of olivine and plagioclase 

embedded in cryptocrystalline, intergranular or subophitic groundmasses consisting of plagioclase, Fe-Ti 

oxides, augite, olivine, and sparse pools of brown glass.  Trace phenocrysts (up to 0.5 mm) and/or 

microphenocrysts of augite are found in a few samples of type II-B and III-BA lavas.  I-B lavas are 

slightly coarser than are II-B and III-BA lavas.  Glomerocrysts of olivine and/or plagioclase are present in 

all mafic lavas. 

 

The phenocryst assemblage is dominated by subhedral to euhedral plagioclase grains (up to 2-3 mm) with 

clear to partially resorbed cores.  Most phenocrysts are normally zoned (cores ≤ An85, rims ≤ An72); 

oscillatory zoning is infrequent.  Groundmass grains are variable in composition (typical range being ~15 

mole% An); their compositions are similar to or slightly more sodic than phenocryst rim compositions. 

 

Most olivine phenocrysts (up to l-2 mm) are normally zoned (cores ≤ Fo84, rims ≤ F82), but some are 

homogeneous in composition.  Core compositions in II-B and III-BA lavas tend to be more magnesian 

than those in the I-B lava, with the exception of the III-BA sample DS-74, which also has the lowest bulk-  

rock Mg-number [ = 100 X molar Mg/ (Mg + Fe
2+

)] of the analyzed mafic rocks.  Groundmass and 

microphenocryst grain compositions are within the range defined by phenocryst rims or are more Fe-rich.  

Olivine in a plagioclase +olivine clot in one of the III-BA samples (DS-4) has an anomalous composition 

(Fo66-67) compared to olivine phenocrysts in the rock (Fo78-84 cores, Fo71-79 rims); the clot is probably 

xenocrystic.  Spinel inclusions are present in olivine phenocrysts in II-B and III-BA mafic lavas, but 

appear to be lacking in the more Fe-rich olivine phenocrysts in I-B rocks. 

 

A few of the basaltic andesites have distinctive groundmass textures.   For example, basaltic andesite 

sample DS-4 contains roundish to feathery patches that are glassier than the surrounding material.  A thin 
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section of this lava reveals a small (2-3 mm) “blob” of glassy material that appears to be dacitic; the 

groundmass of this inclusion consists of light brown glass (vs. black in the host rock) that is similar in 

composition (~73 wt.% SiO2) to glasses in MSH pumiceous dacites (Fig. 3).  The "blob" is also 

distinctive in that it lacks olivine but contains the only orthopyroxene microphenocrysts found in any of 

the mafic rocks.  Orthopyroxene and plagioclase within the light brown glass have compositions similar 

to those found in MSH andesites and dacites. 

 

Andesites 

 

The andesites contain between 12 and 40 vol.% phenocrysts of plagioclase + orthopyroxene + 

clinopyroxene ± olivine ± hornblende ± Fe-Ti oxides (these minerals also form microphenocrysts).  

Glomerocrysts composed of various proportions of those minerals are found in nearly all samples.   

Abundant brown glass and plagioclase microlites are in the groundmasses in all but two I-A lavas, 

whereas groundmasses in II-A or TH-A lavas consist of fine, anhedral patches of plagioclase and 

cryptocrystalline material.  Other differences among the andesite types include the absence of olivine in 

TH-A and II-A lavas and the absence of amphibole (or pseudomorphs after amphibole) in the TH-A lava.  

One sample (L82-48) has banding that is due to variable degrees of groundmass crystallinity; the bands 

contain the same mineral assemblage (e.g., olivine rimmed by pyroxene and amphibole pseudomorphs are 

found in all bands) in approximately the same proportions. 

 

As in the mafic rocks, plagioclase is the dominant phenocryst (up to 2-3 mm) and generally makes up 80-

90% of all phenocrysts by volume.  These crystals exhibit various textures, including clear phenocrysts 

and phenocrysts with "sieve" textures.  Although "sieve" implies that the growing crystal engulfed melt 

during growth (e.g., Glazner, 1990), we use this term to describe cores that appear to have undergone 

resorption or partial dissolution; some, in fact, may have formed by inclusion of melt during 

crystallization.  We note that plagioclase textures which Kawamoto (1992) described as "dusty" and 

"honeycomb" both occur in individual MSH andesite samples.  In most andesites, clear phenocryst cores 

have generally lower anorthite contents (An51-65) than do those in the mafic lavas, the exception being a 

relatively plagioclase-poor II-A andesite (DS-2) where core compositions range from An61 to An75.  

Phenocrysts with "sieve" textures in DS-70 (type II-A) have core compositions as calcic as An75-85 and 

rims of ~An50 (note that Table 3 does not include compositions for sieve-texture plagioclases in 

andesites).  Oscillatory and reverse zoning also occur and are more common in the andesites than in the 

mafic lavas.  Rim and groundmass grain compositions range from An49 to An69 in DS-2 and from An39 to 

An58 in the other analyzed andesites. 
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Olivine phenocrysts (< 2 vol.%; up to 1-2 mm) are present in type I-A andesites, usually as subhedral 

phenocrysts surrounded by thin (10-100 microns) reaction rims of pyroxene; unrimmed grains have 

embayed margins.  Olivine also occurs in glomerocrystic clusters with pyroxene ± plagioclase ± Fe-Ti 

oxides.  Sample DS-2 contains strongly zoned and Mg-rich olivine phenocrysts (Fo85 cores and Fo71 

rims); this range exceeds that (5-10 mole%) typical of olivine phenocrysts in the mafic lavas.  After 

Roeder and Emslie (1970), olivine core compositions in DS-2 suggest a coexisting melt composition with 

Mg-number (62) significantly higher than that observed (46) for the bulk lava; rim compositions, 

however, are consistent with equilibrium with the host melt. 

 

Modal pyroxene contents range from < 0.5 to ~5 vol.%.  Subhedral to euhedral orthopyroxene 

phenocrysts (up to 1 mm) have small compositional ranges (< 4 mole%) and most are either 

homogeneous or normally zoned.  Some phenocrysts in sample DS-2 show small Mg-enrichment towards 

the rims.  Alumina contents are variable, but rarely exceed 1.8 wt.%.  Subhedral to euhedral 

clinopyroxene phenocrysts (up to 1-2 mm) show small compositional variations (< 5 mole%) and, of the 

grains analyzed, about half showed Fe-enrichment towards the rims and the others, Mg-enrichments.   

Al2O3 contents are variable and range from 1.2 to 3.6 wt.%, except for phenocrysts in sample DS-2 in 

which Al2O3 ranges from 1.8 up to 4.5 wt.% and Cr2O3 ranges up to 0.6 wt.% (the highest Cr2O3 in grains 

with the highest alumina contents). 

 

In I-A lavas, the previous existence of small amounts (< 1 vol.%) of amphibole is inferred from 

pseudomorphs (up to 1 mm) of very fine opaque material, some of which have distinct prismatic or 

hexagonal shapes.  In II-A lavas, the amphibole (tschermakitic to magnesiohastingsitic hornblende; cf. 

Leake, 1978) is partially to completely converted to granular oxides and silicates. 

 

Trace amounts of magnetite and ilmenite form anhedral phenocrysts, microphenocrysts, and inclusions 

within silicate grains.  Microprobe analyses show a large range in composition for oxide grains in lavas 

(e.g., TiO2 contents vary from ~4 to 22 wt.% in a single titanomagnetite grain in sample DS-70), whereas 

a smaller range is observed for oxides in scoria (e.g., TiO2 contents vary from ~12 to 15 wt.% in 

titanomagnetites in sample SH-3). 
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Bulk-rock geochemistry 

 

Major elements 

 

Excluding the tholeiitic andesites (TH-A), Harker diagrams (Fig. 4) reveal linear and negative 

correlations between SiO2 (49-70 wt.%) and FeO, MgO, MnO (not shown), and CaO; a weaker trend is 

observed between SiO2 and TiO2.  No obvious relationship exists between between Al2O3 and SiO2; fairly 

wide ranges in alumina content exist for the basaltic andesites, andesites, and dacites.  A roughly positive 

correlation exists between Na2O and SiO2. K2O and P2O5 contents differ among the three mafic lava 

groups; the andesites have intermediate (to overlapping) K2O and P2O5 contents between the 

basalts/basaltic andesites and the dacites. 

 

Mg-numbers for the basalts and basaltic andesites range from 48 to 57.  Calc-alkaline andesites (types I-A 

and II-A) have Mg-numbers (46 to 56) similar to those for the basalts and basaltic andesites, even though 

their MgO contents are lower.  The tholeiitic andesites are distinct in having the lowest MgO contents 

(1.0-2.2) and Mg-numbers (29) of all MSH mafic rocks.  Most MSH dacites have higher Mg-numbers 

than the tholeiitic andesites (as is evident from the FeO*/MgO ratios in Fig. 2). 

 

Eruptive products of the Castle Creek period include all of the mafic and intermediate rock groups 

described here, as well as dacites (Fig. 2).  Rhyodacite was extruded during the succeeding Sugar Bowl 

eruptive period.  Kalama period volcanic rocks include mafic and silicic (types I-A and II-A) andesites 

and dacites and the Goat Rocks eruptive products consist of dacites and a silicic andesite (type II-A) lava 

flow.  It appears that during the past 2200 years, the compositional range of magma erupted during a 

given eruptive period has become more restricted towards dacite with time (cf. Pallister et al., 1992).  The 

volume of mafic and intermediate rocks also appears to decrease with time from the Castle Creek to the 

Goat Rocks eruptive period, although quantitative estimates are not available.  However, the volumes of 

Kalama-age Plinian dacitic eruptive products (up to 2 km
3
) are greater than those produced during the 

Goat Rocks (0.5 km
3
) and current (<0.5 km

3
) eruptive periods (Carey et al., 1989; Criswell, 1989). 

 

Trace elements 

 

Basalts and basaltic andesites 

I-B and II-B basalt types have similar contents of Cr, V, Co, Sc and Ni, but are readily distinguished by 

relatively higher abundances of incompatible trace elements (K2O, Sr, Rb, Ba, Zr, Nb, Hf, Ta, Th and light 
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REE) in II-B lavas (Table 4; Figs. 5 and 6a).  Light REE abundances are higher in II-B ((La/Yb)N = 

5.9-6.8) compared to I-B lavas ((La/Yb)N ~2.5), whereas heavy REE abundances are similar (10-12 times 

chondrites) in the two basalt types (Fig.  6). 

 

Compared to I-B and II-B lavas, the basaltic andesites (III-BA) have wider abundance ranges for LILE, 

HFSE, and light REE that overlap with or are intermediate between the ranges for I-B and II-B lavas 

(Figs. 5 and 6a).  The basaltic andesites have slightly lower or similar HREE contents (7.7-10.7 X 

chondrites) and intermediate (La/Yb)N ratios (3.9-4.6) compared to the basalts (Fig. 6b).  None of the 

basalts have significant europium anomalies whereas a few basaltic andesites have slight positive 

anomalies (Eu/Eu* = ~1.1-1.2, as interpolated from Sm and Tb data). 

 

Primordial mantle-normalized incompatible trace-element patterns (cf. Leeman et al., 1990) are similar 

for all three mafic magma types; they are fairly smooth, convex upward patterns typical of ocean island 

basalts (OIB).  Unlike typical arc magmas, they do not display relative depletions in Nb and Ta.  These 

patterns are typical of most basaltic rocks from the southern Washington Cascades (Leeman et al., 1990) 

and from the central Oregon Cascades (e.g., Hughes and Taylor, 1986; Hughes, 1990).  In various 

incompatible-element ratio-ratio diagrams (e.g., Ba/Zr vs. Ta/Zr; Fig. 7), MSH mafic rocks plot along 

"mantle arrays" defined by mid-ocean ridge basalts (MORB) and OIB and lack the characteristic 

enrichments in LILE seen in most subduction-related magmas. 

 

Andesites and dacites 

In general, it is difficult to distinguish the andesite types based on their trace-element abundances.  

Although types I-A and II-A calc-alkaline andesites have overlapping trace-element abundances, the 

tholeiitic andesites are distinctive in having relatively higher HREE, Hf, Zr, and lower Ni, Sr, and 

(La/Yb)N (Figs. 5 and 6).  SiO2 is negatively correlated with V, Co, Sc, Ni, and Cr (not shown) in the more 

evolved MSH lavas (Fig. 5).  The andesites are compositionally intermediate between the basalts and 

dacites.  For elements with similar abundances among all basalt types (e.g., V, Co, Sc, Ni, Fe, Mg, Ca, Ti), 

near-linear variations with SiO2 (correlation coefficients ~0.9 or higher for well determined elements) are 

observed for the basalt-andesite-dacite suite.  Where the mafic rocks are compositionally diverse with 

regards to a particular element (e.g., K2O, Al2O3, P2O5, Rb, Ba, Th, Sr, Zr, Hf, Ta), the andesites likewise 

display relatively wide variations of the element with SiO2.  Although Rb, Ba, Th, and Cs abundances 

generally increase with SiO2, some dacites have similar or even lower abundances than do more mafic 

rocks; the andesites have similar to slightly higher abundances of these elements compared to the mafic 

rocks (Fig. 5).  Sr, Zr, and Hf abundances are wide-ranging and nearly overlapping for the basalts/basaltic 
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andesites, andesites, and dacites (Fig. 5).  Incompatible element ratio diagrams (Fig. 7) show that the 

andesites are intermediate between the mafic rocks and the dacites.  Europium anomalies are lacking or 

small (Eu/Eu*= ~0.8-1.2) andesites. 

 

Isotopes 

 

Sr, Nd, Pb, and O isotope variations among southern Washington Cascades volcanic rocks have been 

summarized by Leeman et al. (1990).  Halliday et al. (1983) and Leeman et al. (in prep.) present more 

detailed isotopic studies of MSH.  The MSH basalt-andesite-dacite suite has small but significant ranges 

in 
87

Sr/
86

Sr (0.70301-0.70394), 
143

Nd/
144

Nd (0.512872-0.513012), and δ
18

O (+5.7 to +7.6).  Sr-Nd isotopic 

ratios for the basalts and basaltic andesites are similar to those for oceanic island basalts, whereas the 

andesites and dacites plot within or slightly to the right of the so-called "mantle array".  For the purposes 

of this paper we emphasize that 
87

Sr/
86

Sr is strongly correlated with SiO2 (Fig. 9). 

 

Petrogenesis of MSH magmas 

 

The following discussion summarizes the character and possible origins of MSH dacitic and basaltic 

rocks.  We then focus on petrogenetic models for the andesites. 

 

Dacitic rocks 

 

Smith and Leeman (1987) observed that MSH dacites commonly are depleted in many incompatible 

elements (HREE, Be, U, HFSE) compared to basalts and andesites erupted from the volcano.  Thus, the 

dacites are unlikely to be related to the associated mafic or intermediate magmas via fractional 

crystallization.  They can be modeled as partial melts of an amphibolite source (hydrated MORB or 

primitive arc basalt) containing a small proportion of sediment to account for relative enrichment of LILE 

(Ba, Rb, Th, Cs, Sr) in the source (e.g., Fig. 7).  We proposed that the dacites represent melts of sub-arc 

crust in response to intrusion of hot basaltic magma.  Similar models have been suggested for silicic 

magmas elsewhere in the Cascades (e.g., Medicine Lake - Condie and Hayslip, 1975; Lassen volcanic 

center - Bullen and Clynne, 1990), in other volcanic arcs (e.g., Usu volcano, Japan - Fujimaki, 1986; 

Taupo volcanic zone, New Zealand - Cole, 1981), and in some ophiolite complexes (e.g., Canyon 

Mountain Complex, Oregon - Gerlach et al., 1981).  Alternatively, Drummond and Defant (1990) have 

suggested that where young (<20-30 Ma) oceanic crust is being subducted, high-alumina dacite can be 

generated directly by slab melting involving garnet-bearing restite.  The main difference between our 
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model and that of Drummond and Defant (1990) is the depth of the mafic source for high-alumina dacitic 

magmas.  From observations of seismicity and eruptive behavior during the current eruptive period 

(Scandone and Malone, 1985; Barker and Malone, 1991) and from experimental studies (Merzbacher and 

Eggler, 1984; Rutherford et al., 1985), it is clear that dacitic magma was supplied from a mid-crustal (7-1l 

km) chamber, but the depth of the original source of dacite melts remains a debatable point.  However, 

there is little doubt that basaltic and dacitic magmas coexisted during eruptive activity beginning with the 

Castle Creek period (Table 1).  Smith and Leeman (1987) and Pallister et al. (1992) noted xenocrystic 

olivine and clinopyroxene in Goat Rocks and Kalama dacitic tephras.  Other evidence of mingling 

between mafic and felsic magmas is found in Kalama-age banded scoria that contains basaltic bands with 

olivine and 58% SiO2 glass in an andesitic matrix with 66% SiO2 glass (Pallister et al., 1992).  Heliker 

(1984) interpreted gabbroic nodules in MSH dacite dome rocks as representing crystallization of basaltic 

magma at depth, rather than crystal cumulates from the current eruptive period dacite, and Pallister et al.  

(1991) interpreted gabbroic xenoliths in older dome rocks as being scavenged from an active mafic pluton 

(vs. Tertiary basement) underlying MSH.  The dacites thus tapped or traversed a region that had recently 

contained mafic magma (Pallister et al., 1992). 

 

Basaltic rocks 

 

We define three distinct mafic magma types at MSH which have fairly wide ranges in trace-element 

abundances and ratios.  In addition, Leeman et al. (1990) documented other alkalic and tholeiitic variants 

in the nearby Mt. Adams, Indian Heaven, and Simcoe eruptive centers.  The somewhat evolved nature of 

MSH basaltic rocks (e.g., Mg-number <57, Ni < 110 ppm, Cr <200 ppm, Co <42 ppm) suggests that they 

have experienced fractionation of small amounts of olivine ± plagioclase ± clinopyroxene, and some of 

the basaltic andesites (e.g., sample DS-4) may have experienced small degrees of mixing with silicic 

magmas.  Nevertheless, these basalt types cannot be related to any single parental magma in light of the 

large differences in incompatible element contents and ratios among them (Figs. 7 and 8).  There is no 

systematic inverse relation between compatible and incompatible element contents; Mg, Ni, Co, Cr, and V 

contents overlap for all basaltic variants despite large differences in Sr, Ba, and other incompatible 

elements (Figs. 4 and 5). 

 

The observation that the mafic lavas lie within the "mantle array" defined by MORB and OIB for some 

incompatible element ratios (cf. Fig. 7) suggests that the basaltic magmas may be generated via melting of 

a heterogeneous reservoir composed of MORB and OIB mantle sources.  Leeman et al. (1990) further 

discussed this variable mantle source model for the petrogenesis of southern Washington Cascades basalts 
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in general and noted that it is consistent with the tectonic and geologic history of the Pacific Northwest 

margin.  An important observation made in that study was that most southern Washington Cascade 

basalts, including all MSH mafic rocks, lack compositional features (LILE enrichment and HFSE 

depletion) generally attributed to a subduction component (i.e., fluids released by dehydrating subduction 

lithosphere, subducted sediments). 

 

MSH andesite petrogenesis 

 

We consider MSH andesites to be either derivative or hybrid magmas as they have few of the expected 

properties for direct mantle melts or partial melts of subducted altered oceanic crust (Gill, 1981).  Specific 

hypotheses considered here include crystal fractionation of basaltic magmas (e.g., Gill, 1981; Brophy, 

1990), assimilation of crust by mafic magmas accompanied by fractional crystallization (AFC) (e.g., 

Grove et al., 1982; DePaolo, 1981; Davidson et al., 1987; Patterson and Graham, 1988), and mixing of 

mafic with felsic magmas (e.g., Eichelberger, 1975; Grove et al., 1982; Hickey-Vargas et al., 1989). 

 

The role of crystal fractionation at MSH 

 

Fractional crystallization (FC) is probably responsible for some of the compositional variations within 

MSH rock types, as demonstrated for the dacites (Smith and Leeman, 1987) and as suggested above for 

the basalts.  However, this process cannot account for generation of the andesites from any of the mafic 

magma types.  Removal of any feasible mineral assemblages from basaltic magmas fails to reproduce the 

trace-element characteristics of MSH andesites (Figs. 6 and 8).  The only way to generate the basalt-

andesite trend in Figure 6b via FC is to involve an amphibole- or garnet-rich assemblage, but this cannot 

explain the variations in incompatible trace-element ratios illustrated in Figure 8.  Even considering 

analytical errors, the observed differences in these ratios within the MSH basalt-andesite-dacite suite are 

too large to be attributed to effects of crystal fractionation. 

 

Isotopic data also preclude a closed-system genetic relationship between MSH basalts and andesites.  The 

andesites have elevated 
87

Sr/
86

Sr compared to the basalts (Fig. 9; Halliday et al., 1983; Leeman et al., in 

prep.), and their formation clearly involves addition of isotopically distinct material during open system 

magmatic processes.  Recent studies of radioactive (
226

Ra/
230

Th) disequilibrium between minerals and 

groundmass or bulk-rock samples provide further evidence for open-system magmatic processes (Volpe 

and Hammond, 1991). 
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The role of assimilation at MSH 

 

We quantitatively modeled assimilation-fractional crystallization (AFC) processes to investigate the 

possibility that this process generates andesitic liquids from basaltic parents.  The assimilants considered 

include upper crust (Taylor and McLennan, 1985), Tyee sediments (cf. table 8, Smith and Leeman, 1987) 

and selected MSH dacites.  These lithologies were chosen to reflect representative continent-derived 

sediment and, in the case of the dacites, solidified magmas (or re-melts thereof) which may be present in 

the MSH sub-volcanic complex.  Distribution coefficients used in the calculations are given in Table 5, 

and representative models are shown in Figures 8 and 10.  These results reveal the following: 

 

(1) Regardless of assimilant composition, type II-B basalts are not suitable mafic end members.  Their La 

and Ba (and other incompatible element) contents are too high and alkalis/LREE ratios too low to produce 

the compositional characteristics of MSH andesites via AFC. 

 

(2) The other two mafic end members (I-B and III-BA) produce observed characteristics of some MSH 

calc-alkaline andesites and one of the tholeiitic andesites, but only if large (0.5 or higher) rates of 

assimilation vs.  crystallization operate and if large amounts of material (20-40%) are assimilated.  Grove 

et al. (1989) found that such large amounts of assimilation are inconsistent with thermal models for 

melting of crust due to crystallization of basalt at shallow crustal levels.  If mafic magmas are emplaced at 

shallow levels, it is more likely they will heat and cause the surrounding crust to melt (and possibly mix 

with those liquids) rather than crystallize and simultaneously assimilate solid crustal material (Grove et 

al., 1989). 

 

(3) The models that appear to fit the observed trends for andesites in Figure 8 predict 
87

Sr/
86

Sr ratios 

which are within the range observed for some calc-alkaline and sites, to predict Sr contents of those 

andesites (filled triangles, Fig. l0).  It is possible to generate MSH calc-alkaline andesites by AFC only if 

the parental magma contains more Sr than observed in MSH basalts.  One of the tholeiitic andesites (DS-

73) cannot be generated by any reasonable AFC models; its K/La, Ba/La, and 
87

Sr/
86

Sr ratios are too high 

compared to the calculated values (Figs. 8 and 10). 

 

The role of magma mixing at MSH 

 

Petrographic evidence in some of the MSH andesites studied supports magma mixing.  Mineral-melt 

disequilibrium is indicated by resorption of olivine and pyroxene jackets on olivine phenocrysts (cf. 
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Tsuchiyama, 1986) in the mafic andesites (type I-A), and by the occurrence of plagioclase resorption 

textures in most andesites.  The presence of olivine with cores of Fo85 in type I-A andesite suggests 

precipitation from a more mafic magma prior to mixing with dacitic magma.  The calcic cores in some 

"sieve" textured plagioclases also indicate an origin from basaltic magma.  Reverse zoning observed in 

some pyroxene and plagioclase phenocrysts is consistent with magma mixing, but other processes (e.g., 

changing water pressure, decreasing load pressure) could also produce these features.  The phenocrysts 

could have re-equilibrated after mixing, causing many to become normally zoned. 

 

An important aspect of MSH calc-alkaline andesites is that virtually all elemental/isotopic ratios and 

major/trace-element abundances are intermediate between the basaltic and dacitic rocks.  This 

relationship is consistent with some form of mixing of dacitic and basaltic magmas.  Furthermore, strong 

linear correlations exist between SiO2 and some major and trace elements (e.g., MgO, CaO, V, Co; cf. 

Figs. 4 and 5), and between strontium and oxygen isotopic ratios (Smith et al., 1983).  For these 

components, the basaltic and dacitic end members are relatively uniform.  The lack of strong linear 

correlations between SiO2 and other major and trace elements (e.g., P2O5, Al2O3, Sr, Zr, Hf; cf. Figs. 4 and 

5) does not necessarily rule out mixing as the scatter may be attributed to variable end-member 

compositions coupled with some fractional crystallization subsequent to mixing. 

 

Although probably oversimplistic, binary mixing models were calculated to test whether mixing between 

MSH basaltic and dacitic magmas can account for the major- and trace-element compositions of the 

andesites, and to constrain end-member compositions and relative proportions necessary to generate the 

andesitic magmas.  Table 6 shows the results of the most successful models.  The best fits are obtained 

when andesites and dacites of the same eruptive period are used in a given model (e.g., models M-1 and 

M-11).  However, because basalts were erupted only during Castle Creek time, it was necessary to use 

compositions of those lavas in modeling andesites of other eruptive periods.  It is possible that mafic 

magmas present in the magma system at other times could have had compositions slightly different from 

those used in the models. 

 

Rather than rely on elemental abundances, which are sensitive to crystal removal and/or accumulation, we 

instead used incompatible trace-element ratios to constrain proportions of end members in models M-1 

and M-II.  In model M-1, hybrid andesite could be generated by mixing equal proportions of type 11-B 

basalt and dacite.  This result is very similar to that of Pallister et al.  (1992) for Kalama period andesitic 

scoria.  Pallister et al. (1992) found other Kalama andesites more difficult to model and noted that 

additional magma-mixing end members are probably required.  Basaltic andesites (type III-BA) were not 
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used in their models and may represent the mafic end member for those problematic andesites.  We find a 

good fit for Goat Rocks andesite (similar in composition to some Kalama andesites) when 14% basaltic 

andesite mixes with 86% dacite (model M-II). 

 

87
Sr/

86
Sr data are available for both end members and the selected hybrid used in model M-III; we used 

the isotopic data to constrain the proportions of end members required to produce the hybrid andesite.  As 

with incompatible-element ratios, the ratios will not be affected by crystal fractionation.  The result shows 

that 23% type II-B basalt is required to mix with 77% dacite to generate the modeled andesite. 

 

Strontium isotopic data are not available for the specific andesites modeled in models M-I and M-II.  The 

mixing proportions determined in those models (via incompatible-element ratios) predict 
87

Sr/
86

Sr to be 

0.70338 and 0.70354, similar to Sr isotopic ratios available for other MSH andesites (~0.7035).  Figure 10 

shows that mixing models generally produce closer fits to the andesites than do AFC models, particularly 

considering the combined Sr-
87

Sr/
86

Sr systematics.  Nevertheless, the distinction between AFC model 4 

and the mixing models is so slight that we cannot completely rule out the role of AFC in producing some 

andesites.  For example, the tholeiitic andesites are more difficult to reproduce by mixing than are the 

calc-alkaline andesites.  Agreement between calculated and observed abundances in these rocks is 

generally poor regardless of which criteria are used to constrain end-member proportions, or which end-

member compositions are selected.  Our modeling results indicate that AFC is as plausible as mixing in 

generating tholeiitic andesite. 

 

In the models for calc-alkaline andesites presented in Table 6, elemental abundances (and LILE ratios) 

commonly agree within analytical uncertainties for both calculated and observed hybrids.  None of the 

models succeeds in matching all components, particularly FeO, MgO, CaO, Ta, Sc, Co, but such 

discrepancies may result from other factors.  A likely cause for misfits for these elements is uncertainty in 

choice of end members, especially the basalts.  For example, substitution of a type II-B basalt (e.g., DS-6) 

as the mafic end member in model M-II produces an equally satisfactory fit.  On the other hand, such 

calculations indicate that type I-B transitional basalts cannot be parental to the calc-alkaline andesites 

unless the felsic end member differs greatly in composition from MSH dacites (cf. Fig. 10).   

Furthermore, the basalt compositions used in the models may have been modified somewhat (e.g., by FC) 

compared to slightly more primitive magmas actually involved in mixing.  For example, a less 

fractionated parent magma to basalt DS-6, containing > 700 ppm Sr, would be a more suitable end 

member to produce andesites DS-79 or MSH 486-1 (cf. Fig. 10).   Additional diversity of MSH andesites 

could result from the involvement of more than two end members during mixing.  Also, MSH andesites 
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may not represent magmas "captured" at the point of mixing; minor post-mixing FC (and re-equilibration 

of phenocrysts) may have operated prior to eruption.  Even with these complexities, Figure 8 shows that 

magma mixing most closely reproduces the observed variations among MSH andesites than do the other 

processes considered (FC, AFC). 

 

The mixing models indicate that some andesites may contain relatively low proportions (< 25%; models 

M-II and M-III) of a mafic end member.  In such cases, it is unclear how relatively homogeneous hybrid 

magmas are physically produced.  Production of such liquids is favored by high proportions of mafic to 

silicic end members (Sakuyama and Koyaguchi, 1984; Kouchi and Sunagawa, 1985; Sparks and 

Marshall, 1986).  Where the fraction of mafic magma is low (<50%), the mafic magma is dispersed as 

solid xenoliths or inclusions within the silicic magma.   However, the likelihood of homogenization 

increases as the thermal contrast between the two mixing magmas decreases and the water content of the 

mafic magma increases (cf. Thompson and Dungan, 1985; Sparks and Marshall, 1986 ).  Pre-eruptive 

temperatures (~850-920°C) and water contents (~4-5% wt.%) for MSH dacites are constrained from Fe-Ti 

oxide thermometry (Smith and Leeman, 1987) and experimental studies (Merzbacher and Eggler, 1984; 

Rutherford et al., 1985).  Although temperatures and water contents for MSH basaltic magmas are not 

known, if they were fairly hydrous and cool (< 1100°C; cf. Sisson and Grove, 1991), the temperature and 

viscosity contrasts between MSH dacite and basalt magmas may have been sufficiently small to promote 

efficient mixing even at low mafic magma proportions (cf. fig. 11 in Sparks and Marshall, 1986).  It is 

also possible that mixing occurred in more than one stage.  As pointed out by Thompson and Dungan 

(1985), single- and multi-stage mixing may produce similar geochemical trends, particularly if the system 

is not greatly modified by FC or AFC.  The end members used in our mixing models may be slightly 

hybridized themselves; some basaltic andesites may have mingled with small amounts of silicic magma 

(Fig. 3) , and there is petrographic evidence that some dacites are themselves contaminated products of 

more silicic magma (Smith and Leeman, 1987; Pallister et al., 1992). 

 

The MSH magma system 

 

Seismological and experimental studies of the MSH magmatic system (e.g., Barker and Malone, 1991; 

Pallister et al., 1992) suggest that the MSH magmatic system is characterized by a deep (7-11 km), 

cylindrical magma reservoir with a volume between 5 and 7 km
3
 which vents magma to the surface 

through a narrow conduit system (Scandone and Malone, 1985).  A northeast-striking fault at depths > 11 

km may be a conduit to transport (basaltic?) magma from greater depths within the crust to the reservoir 

at 7-11 km depth (Barker and Malone, 1991).  Dacite eruptions from 1980 to the present appear to have 
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vented the upper levels of the reservoir-conduit system (e.g., Rutherford et al., 1985; Carey et al., 1990; 

Pallister et al., 1992). 

 

The petrology and geochemistry of MSH eruptive products seemingly require additional complexity in 

the sub-volcanic plumbing system as sampled during Castle Creek time when a wide variety of magma 

types, ranging from basalt to dacite, were erupted (Table 1).  For example, the 'cave' basalt (type I-B) is 

believed to have erupted along the south flank at about the same time as other basaltic lava types (types 

II-B and III-BA) vented on the north side of the volcano (Crandell, 1987).  Although slightly fractionated, 

these magma types are chemically distinct and not easily related to one another through evolutionary 

processes nor by melting of a common mantle source.  Castle Creek eruptions also included dacites 

(interpreted as variably evolved crustal melts) and a suite of compositionally diverse hybrid andesites.  

Kalama period is also characterized by a variety of andesitic and dacitic eruptive products (Table 1), but 

the existence of basaltic magmas within the system during this time is inferred on the basis of 

petrographic observations and geochemical models presented here and by Pallister et al. (1992).  Eruptive 

products of the Goat Rocks period are more restricted in composition (type II-A andesite and dacite), but 

the presence of more mafic magmas during that interval is implied by petrological and geochemical 

evidence for mixing in those eruptive products. 

 

These observations suggest important implications concerning the nature of the MSH magma system.  

Because nearly the entire spectrum of magma types observed at MSH was produced during the Castle 

Creek period, it is clear that each variant was available during this time.  Also, although eruptive products 

were less diverse during the other eruptive periods, evidence for hybridization in some magmas produced 

subsequent to the Castle Creek period attests to the persistent complexity of the plumbing system.  To 

explain the petrologic evolution and eruptive history of MSH, we infer that the plumbing system 

repeatedly has accommodated isolated storage of relatively primitive mafic magmas and anatectic dacitic 

magmas.  Hybridized intermediate composition magmas, attributed to mixing between these extreme 

magma types or between other hybrid end members, also must have been stored locally within the system.  

We envision a complex plumbing system with multiple conduits, some of which tap mafic and felsic 

reservoirs and allow mixing between these magmas, and others which tap effectively isolated reservoirs.   

Apparently, efficient mixing occurred in some parts of the plumbing system and not in others.  Several 

interesting configurations are suggested.  For example, if basaltic magmas melt the crust to form dacite, 

then subsequent mixing of ascending basalt with anatectic melt may form some andesites.  Another 

scenario involves stagnation of primitive, denser basalt deep in the crust, whereas more evolved, less 

dense basaltic differentiates may ascend to shallower levels, creating a stratified system.  Further 
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stratification may result from emplacement of dacites above the mafic differentiates.  Magma mixing 

resulting in homogeneous hybrids requires the breakdown of this stratification, perhaps by high-velocity 

injection of turbulent plumes of primitive magma into the base of the chamber (Sparks et al., 1980; 

Sakuyama and Koyaguchi, 1984), forced convection during flow in sub-volcanic conduits (Kouchi and 

Sunagawa, 1985; Koyaguchi, 1985), or convective turbulence generated by large differences in 

temperature between end members (Nixon, 1988). 

 

Conclusions 

Several lines of evidence suggest that mafic magmas have been more important at MSH than commonly 

realized, particularly considering the persistent eruption of dacitic magmas over the past 36 ka.  True 

basaltic lavas were produced only during the Castle Creek eruptive period (1.7-2.2 ka) at which time at 

least three compositionally distinct variants issued forth.  It is probably not coincidental that this period 

marked the appearance of the first significant outpourings of intermediate composition lavas (three 

variants of andesite).  Andesites were produced intermittently during the subsequent eruptive episodes (as 

recently as 1857 A.D.). 

 

The petrographic and geochemical data presented here are inconsistent with simple cogenetic 

relationships among these diverse magmas.  Although all magmas underwent varied degrees of fractional 

crystallization and some perhaps assimilated small amounts of wall rocks, the broad compositional 

spectrum represented by MSH magmas cannot be explained as the result of these processes alone.  The 

extreme basaltic and dacitic magma types plausibly represent partial melts of distinct mantle and crustal 

sources, respectively.  Crustal melting to produce the dacites was likely triggered by emplacement of 

ascending basaltic magmas within the sub-arc crust (Smith and Leeman, 1987).  It is proposed here that 

most of the intermediate composition magmas essentially formed as products of single- or multi-stage 

mixing between mafic and dacitic magmas (sensu latu).  Thus, in our view, all MSH magmatism has been 

driven by basaltic magmatism. 

 

The diversity of magma types erupted during Castle Creek time implies a complex sub-volcanic plumbing 

system that allows for the coexistence of several end-member and hybrid magma types.   Evidently, 

compartmentalization allows segregation of diverse magma batches, yet periodic communication between 

different parts of the system results in efficient mixing to produce hybrid magmas.  Temporal trends 

suggest a decreasing role for a basaltic component in magmas erupted from the volcano from ~2200 years 

to the present; this may reflect diminishing influx of basaltic magmas or selective tapping of shallower 

parts of the system with time. 
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