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The origin of Mount St. Helens andesites

Diane R. Smith® and William P. Leeman®
“Geology Department, Trinity University, 715 Stadium Drive, San Antonio, TX 78212, USA
®Keith-Wiess Geological Laboratories, Rice University, Houston, TX 77251, USA

ABSTRACT
Smith, D. R. and Leeman, W. P., 1993. The origin of Mount St. Helens andesites. J. Volcanol. Geotherm.
Res., 55: 271-303.

Mount St. Helens volcano has intermittently produced mainly dacitic products but occasionally erupted a
more diverse suite of lavas including basalts and andesites. Petrogenetic relations between these magmas
provide insight into the dynamics of the subjacent magma system. Mineralogical and geochemical
features of representative lavas erupted during the past 2200 years can distinguish three basaltic and three
andesitic variants. The mafic lavas include: (a) transitional, olivine + plagioclase basalts with low K,O
and incompatible trace-element abundances: (b) calc-alkaline, olivine + plagioclase + clinopyroxene
basalts enriched in K ,0, TiO,, and incompatible trace elements: and (c) calc-alkaline, olivine +
plagioclase basaltic andesites with incompatible trace-element contents transitional between the two
basalt types. Intermediate lavas include (a) tholeiitic, two-pyroxene andesites, (b) calc-alkaline,
plagioclase + two-pyroxenes * olivine + amphibole mafic andesites (56-59% wt.% SiO,), and (c) calc-

alkaline, plagioclase + two-pyroxenes + amphibole high-silica andesites (61-62 wt.% SiO,).

Eruption of these magmatic variants within the same eruptive phase implies the existence of different
petrogenetic lineages, and that the plumbing system is sufficiently complex to simultaneously isolate and
preserve numerous magma batches. It is unlikely that any of the andesites (or dacites) are derived by
fractional crystallization of the recognized basaltic variants. Formation of the andesites simply by
contamination (or assimilation-fractional crystallization) of basaltic magma is also improbable. More
plausibly, the andesites represent mixing between basaltic and dacitic end-member magmas, each of
which may be somewhat heterogeneous or vary in composition with time. In this model, efficient mixing
must occur in some parts of the magma plumbing system, while some conduits or storage reservoirs must

be effectively isolated.



Introduction

The Cascade volcanic arc of the northwestern United States has long been attributed to subduction of the
Juan de Fuca plate beneath the North American plate. The large Quaternary to Recent volcanic centers of
the arc, including Mount St. Helens, are complex systems that have erupted a wide range of magma types.
The details of the volcanic stratigraphy at Mount St. Helens have been well documented (Hoblitt et al.,
1980; Mullineaux and Crandell, 1981) and provide a framework in which to address the temporal

evolution of the volcano.

In this paper, we present the details of the petrology and geochemistry of the youngest Mount St. Helens
basaltic and andesitic eruptive products. We focus our discussion on the origin of the andesites and their
relationship to other coeval magma types erupted at Mount St. Helens. Our major objectives are to
evaluate the relative importance of such processes as fractional crystallization, assimilation, and magma

mixing in producing the andesitic magmas, and to elucidate the nature of the magma system as a whole.

Geologic setting and eruptive history of Mount St. Helens

The Pacific Northwest has been a zone of convergence between North America and oceanic plates of the
Pacific basin throughout much of Cenozoic time (Atwater, 1970; Lipman et al., 1972). In southern
Washington, the Quaternary Cascade arc lies 250-300 km east of the convergent margin (Sherrod and
Smith, 1990). Crustal thickness has been estimated as approximately 40-46 km everywhere beneath the
Cascade Range (Mooney and Weaver, 1989) and the dip of the subducted slab is relatively steep ( > 45°)
(Michaelson and Weaver, 1986; Weaver and Michaelson, 1985).

Guffanti and Weaver (1988) subdivided the Cascade volcanic arc into five segments (Fig. 1) based on the
distribution and composition of rocks erupted from Cenozoic volcanic vents less than 5 Ma in age.
Mount St. Helens is situated within Guffanti and Weaver's Segment 2 which extends from Mount Rainier
to Mount Hood. This 150-km-wide zone of vents is broader but has lower vent density than does the
Oregon Cascades segment immediately to the south (between Mount Hood and Mount Shasta). To the
north, Quaternary volcanism is limited to the stratovolcanoes of Glacier Peak and Mount Baker. Segment
2 is also the most seismically active portion of the Cascade Range (Weaver, 1989). These features and
limited basaltic volcanism north of this segment were suggested by Weaver (1989) to be the result of the
presence of a major crustal block in the southern Washington Cascades. On the basis of magnetotelluric
data, this crustal block has been designated as the southern Washington Cascades conductor (Stanley et
al., 1987), the western edge of which is coincident with the St. Helens seismic zone (Weaver, 1989).

Mount St. Helens lies where structural trends intersect the St. Helens seismic zone (Weaver and Smith,



1983) and where small dextral offset on the seismic zone favors local crustal extension (Weaver, 1989).

Subduction-related magmatism in the vicinity of Mount St. Helens (MSH) dates back to Oligocene/early
Miocene times, and the volcano was built during the past 40,000 years upon an eroded terrane of gently
folded and altered volcanic and plutonic rocks (Evarts et al., 1987). The eruptive history of MSH has
been divided into four eruptive stages (Crandell et al., 1975; Hoblitt et al., 1980; Mullineaux and
Crandell, 1981). The most recent, the Spirit Lake stage, is subdivided as summarized in Table 1. The
volcano has erupted a wide variety of magma types, ranging from basalt to rhyodacite. Dacitic (to
rhyodacitic) magmas were erupted during each eruptive period within the Spirit Lake stage, but andesites
were produced only during the Castle Creek, Kalama and Goat Rocks periods (andesite was also erupted
in the Cougar stage, ~ 21 to 18 ka ago). Basaltic lavas and tephras were erupted only during the Castle
Creek sequence. Detailed petrogenetic studies have been reported by Smith and Leeman (1987) for MSH
dacites, and by Leeman et al. (1990) for Recent-Pliocene volcanic rocks from an E-W transect across the
southern Washington Cascades. A recent synthesis of data concerning the magma reservoir beneath
MSH, new chemical data that record mixing of basalt and dacite during the last 500 years, and

implications of these data for volcanic hazards were reported by Pallister et al. (1992).

Sampling and analytical methods

The samples described in this study were collected both prior to (1978-79) and following (1982) the 1980
eruptive activity that destroyed much of the north flank of the volcano (see Appendix 1 for sample
locations). Samples of Castle Creek products include basaltic to andesitic lavas from the now obliterated
north flank of the volcano and from the south flank. The so-called 'cave' basalt (Verhoogen, 1937;
Greeley and Hyde, 1972) found on the southwest side of the volcano and one andesitic scoria tephra
(layer "Bh", Mullineaux, 1986) are also included. Kalama eruptive products include andesitic flows
located on the south side of the volcano (Mullineaux and Crandell, 1981) and one scoria tephra (layer
"Xb", Mullineaux, 1986). The single andesite lava flow (located on the northwest side of the volcano)
produced during the Goat Rocks period is included (Lawrence, 1941). Two samples of Kalama andesite
(MSH-484-1 and MSH-486-1) and one of Goat Rocks andesite (MSH-260-1) were provided by W.
Melson and C. Hopson.

Minerals in selected samples were analyzed with a 3-channel ETEC microprobe as discussed in Smith
(1984). Bulk-rock analyses were obtained by inductively-coupled plasma spectrometry (Rice Univ.) for
major elements and V, Cu, Be, Ba, Sr, Zr, and Zn; by X-ray fluorescence (Open Univ. and Edinburgh
Univ.) for Rb, Sr, Ba, Zr, Nb, Y, Pb, V, Cr, Co, Ni, and Cu; and by neutron activation (Radiation Center,



Oregon State Univ. and NASA-JSC) for Sc, Cr, Co, Ni, Cs, Sr, Ba, Rb, Zn, Hf, Ta, Th, U, and the rare
earth elements (REE). Analytical errors are typically + 1-3% for major elements and + 2-10% for trace
elements, except for Cr and Ni for which errors may be as high as 15%. For elements determined by
more than one method, either averages or results by the most accurate method are reported. Most of the
Sr isotopic data used in this paper are from Leeman et al. (in prep.); the *’Sr/**Sr ratios cited are precise to

within + 0.00003 or better.

Classification of lavas

We have subdivided MSH basalts and andesites into six groups mainly on the basis of SiO, contents and
FeO*/MgO ratios (Table 2 and Fig. 2). The basaltic lavas include three variants, I-B, II-B, and III-BA, all
of which were erupted during the Castle Creek period. Group I-B includes samples of the 'cave' basalt
(cf. Verhoogen, 1937), which straddles the boundary between tholeiitic and calc-alkaline suites using the
criteria of Irvine and Baragar (1971). Group II-B comprises superposed lava flows from the north flank.
II-B lavas fall in the tholeiitic field of Figure 2, but their high K,O content (~1.3 wt.%) defines them as
calc-alkaline according to Irvine and Baragar's (1971) scheme. These lavas are also richer in TiO, than
are other MSH basaltic lavas (cf. Table 2). Group III-BA includes superposed lava flows located on the
north flank and other flows found on the south flank. These lavas are basalts and basaltic andesites
having SiO, contents between ~51 and 54 wt.%; they straddle the boundary between tholeiitic and calc-
alkaline types in Figure 2, but all samples fit Irvine and Baragar's (1971) definition of calc-alkaline rocks.
Two samples fall within Gill's (1981) field for basic andesites, but the compositional gap between these
rocks and other MSH andesites and their geochemical and mineralogical similarity to other III-BA

samples suggest that the two samples belong to Group III-BA.

Andesitic lavas fall into three groups designated as I-A, II-A, and TH-A. Group I-A includes lavas and
scoria of Kalama and Castle Creek age with SiO, contents ranging from ~56 to 59 wt.%. Group II-A
andesites include lavas of Goat Rocks, Castle Creek, and Kalama age with higher SiO, contents (~61-62
wt.%) compared to I-A lavas. Both I-A and II-A andesites are calc-alkaline; tholeiitic andesites (TH-A)

include two samples of lava and scoria of Castle Creek age.

Although II-A andesites have SiO, contents (61-62 wt.%) that overlap with some MSH dacites erupted
during pre-Spirit Lake eruptive stages and the current eruptive period, these rock types are
petrographically distinct. The low-silica dacites have field and petrographic features similar to dacites
with SiO, contents >63 wt.%, i.e., they are light-colored, pumiceous tephras with phenocrysts of

plagioclase, unreacted hornblende, and orthopyroxene, with or without cummingtonite (Smith and



Leeman, 1987). In contrast, the II-A andesites form blocky, thick, dark-colored lava flows with

phenocrysts of plagioclase, clinopyroxene, orthopyroxene, and resorbed hornblende.

Petrography and mineral chemistry
Table 2 includes modal mineral proportions for MSH mafic to intermediate eruptive products.
Representative analyses of minerals and compositional ranges of plagioclases from selected samples of

each basaltic and andesitic compositional group are given in Table 3.

Basalts and basaltic andesites

The mafic rocks contain 11-23 vol.% phenocrysts (defined here as >0.3 mm) of olivine and plagioclase
embedded in cryptocrystalline, intergranular or subophitic groundmasses consisting of plagioclase, Fe-Ti
oxides, augite, olivine, and sparse pools of brown glass. Trace phenocrysts (up to 0.5 mm) and/or
microphenocrysts of augite are found in a few samples of type II-B and III-BA lavas. I-B lavas are
slightly coarser than are II-B and III-BA lavas. Glomerocrysts of olivine and/or plagioclase are present in

all mafic lavas.

The phenocryst assemblage is dominated by subhedral to euhedral plagioclase grains (up to 2-3 mm) with
clear to partially resorbed cores. Most phenocrysts are normally zoned (cores < Angs, rims < Any);
oscillatory zoning is infrequent. Groundmass grains are variable in composition (typical range being ~15

mole% An); their compositions are similar to or slightly more sodic than phenocryst rim compositions.

Most olivine phenocrysts (up to 1-2 mm) are normally zoned (cores < Fogy, rims < Fg,), but some are
homogeneous in composition. Core compositions in II-B and III-BA lavas tend to be more magnesian
than those in the I-B lava, with the exception of the III-BA sample DS-74, which also has the lowest bulk-
rock Mg-number [ = 100 X molar Mg/ (Mg + Fe**)] of the analyzed mafic rocks. Groundmass and
microphenocryst grain compositions are within the range defined by phenocryst rims or are more Fe-rich.
Olivine in a plagioclase +olivine clot in one of the III-BA samples (DS-4) has an anomalous composition
(Fogs.67) compared to olivine phenocrysts in the rock (Fossss cores, Fo7 79 rims); the clot is probably
xenocrystic. Spinel inclusions are present in olivine phenocrysts in II-B and III-BA mafic lavas, but

appear to be lacking in the more Fe-rich olivine phenocrysts in I-B rocks.

A few of the basaltic andesites have distinctive groundmass textures. For example, basaltic andesite

sample DS-4 contains roundish to feathery patches that are glassier than the surrounding material. A thin



section of this lava reveals a small (2-3 mm) “blob” of glassy material that appears to be dacitic; the
groundmass of this inclusion consists of light brown glass (vs. black in the host rock) that is similar in
composition (~73 wt.% SiO,) to glasses in MSH pumiceous dacites (Fig. 3). The "blob" is also
distinctive in that it lacks olivine but contains the only orthopyroxene microphenocrysts found in any of
the mafic rocks. Orthopyroxene and plagioclase within the light brown glass have compositions similar

to those found in MSH andesites and dacites.

Andesites

The andesites contain between 12 and 40 vol.% phenocrysts of plagioclase + orthopyroxene +
clinopyroxene + olivine + hornblende + Fe-Ti oxides (these minerals also form microphenocrysts).
Glomerocrysts composed of various proportions of those minerals are found in nearly all samples.
Abundant brown glass and plagioclase microlites are in the groundmasses in all but two I-A lavas,
whereas groundmasses in II-A or TH-A lavas consist of fine, anhedral patches of plagioclase and
cryptocrystalline material. Other differences among the andesite types include the absence of olivine in
TH-A and II-A lavas and the absence of amphibole (or pseudomorphs after amphibole) in the TH-A lava.
One sample (L82-48) has banding that is due to variable degrees of groundmass crystallinity; the bands
contain the same mineral assemblage (e.g., olivine rimmed by pyroxene and amphibole pseudomorphs are

found in all bands) in approximately the same proportions.

As in the mafic rocks, plagioclase is the dominant phenocryst (up to 2-3 mm) and generally makes up 80-
90% of all phenocrysts by volume. These crystals exhibit various textures, including clear phenocrysts
and phenocrysts with "sieve" textures. Although "sieve" implies that the growing crystal engulfed melt
during growth (e.g., Glazner, 1990), we use this term to describe cores that appear to have undergone
resorption or partial dissolution; some, in fact, may have formed by inclusion of melt during
crystallization. We note that plagioclase textures which Kawamoto (1992) described as "dusty" and
"honeycomb" both occur in individual MSH andesite samples. In most andesites, clear phenocryst cores
have generally lower anorthite contents (Ans;¢s) than do those in the mafic lavas, the exception being a
relatively plagioclase-poor II-A andesite (DS-2) where core compositions range from Ang to Angs.
Phenocrysts with "sieve" textures in DS-70 (type II-A) have core compositions as calcic as Anys.gs and
rims of ~Ans, (note that Table 3 does not include compositions for sieve-texture plagioclases in
andesites). Oscillatory and reverse zoning also occur and are more common in the andesites than in the
mafic lavas. Rim and groundmass grain compositions range from Anyg to Ang in DS-2 and from Anszy to

Ansg in the other analyzed andesites.



Olivine phenocrysts (< 2 vol.%; up to 1-2 mm) are present in type I-A andesites, usually as subhedral
phenocrysts surrounded by thin (10-100 microns) reaction rims of pyroxene; unrimmed grains have
embayed margins. Olivine also occurs in glomerocrystic clusters with pyroxene + plagioclase + Fe-Ti
oxides. Sample DS-2 contains strongly zoned and Mg-rich olivine phenocrysts (Fogs cores and Fo;;
rims); this range exceeds that (5-10 mole%) typical of olivine phenocrysts in the mafic lavas. After
Roeder and Emslie (1970), olivine core compositions in DS-2 suggest a coexisting melt composition with
Mg-number (62) significantly higher than that observed (46) for the bulk lava; rim compositions,

however, are consistent with equilibrium with the host melt.

Modal pyroxene contents range from < 0.5 to ~5 vol.%. Subhedral to euhedral orthopyroxene
phenocrysts (up to 1 mm) have small compositional ranges (< 4 mole%) and most are either
homogeneous or normally zoned. Some phenocrysts in sample DS-2 show small Mg-enrichment towards
the rims. Alumina contents are variable, but rarely exceed 1.8 wt.%. Subhedral to euhedral
clinopyroxene phenocrysts (up to 1-2 mm) show small compositional variations (< 5 mole%) and, of the
grains analyzed, about half showed Fe-enrichment towards the rims and the others, Mg-enrichments.
Al,O5 contents are variable and range from 1.2 to 3.6 wt.%, except for phenocrysts in sample DS-2 in
which Al,O; ranges from 1.8 up to 4.5 wt.% and Cr,0O; ranges up to 0.6 wt.% (the highest Cr,0O; in grains

with the highest alumina contents).

In I-A lavas, the previous existence of small amounts (< 1 vol.%) of amphibole is inferred from
pseudomorphs (up to 1 mm) of very fine opaque material, some of which have distinct prismatic or
hexagonal shapes. In II-A lavas, the amphibole (tschermakitic to magnesiohastingsitic hornblende; cf.

Leake, 1978) is partially to completely converted to granular oxides and silicates.

Trace amounts of magnetite and ilmenite form anhedral phenocrysts, microphenocrysts, and inclusions
within silicate grains. Microprobe analyses show a large range in composition for oxide grains in lavas
(e.g., TiO, contents vary from ~4 to 22 wt.% in a single titanomagnetite grain in sample DS-70), whereas
a smaller range is observed for oxides in scoria (e.g., TiO, contents vary from ~12 to 15 wt.% in

titanomagnetites in sample SH-3).



Bulk-rock geochemistry

Major elements

Excluding the tholeiitic andesites (TH-A), Harker diagrams (Fig. 4) reveal linear and negative
correlations between SiO, (49-70 wt.%) and FeO, MgO, MnO (not shown), and CaO; a weaker trend is
observed between Si0O, and TiO,. No obvious relationship exists between between Al,O; and SiO,; fairly
wide ranges in alumina content exist for the basaltic andesites, andesites, and dacites. A roughly positive
correlation exists between Na,O and SiO,. K,O and P,0s contents differ among the three mafic lava
groups; the andesites have intermediate (to overlapping) K,O and P,Os contents between the

basalts/basaltic andesites and the dacites.

Mg-numbers for the basalts and basaltic andesites range from 48 to 57. Calc-alkaline andesites (types I-A
and II-A) have Mg-numbers (46 to 56) similar to those for the basalts and basaltic andesites, even though
their MgO contents are lower. The tholeiitic andesites are distinct in having the lowest MgO contents
(1.0-2.2) and Mg-numbers (29) of all MSH mafic rocks. Most MSH dacites have higher Mg-numbers

than the tholeiitic andesites (as is evident from the FeO*/MgO ratios in Fig. 2).

Eruptive products of the Castle Creek period include all of the mafic and intermediate rock groups
described here, as well as dacites (Fig. 2). Rhyodacite was extruded during the succeeding Sugar Bowl
eruptive period. Kalama period volcanic rocks include mafic and silicic (types I-A and II-A) andesites
and dacites and the Goat Rocks eruptive products consist of dacites and a silicic andesite (type 1I-A) lava
flow. It appears that during the past 2200 years, the compositional range of magma erupted during a
given eruptive period has become more restricted towards dacite with time (cf. Pallister et al., 1992). The
volume of mafic and intermediate rocks also appears to decrease with time from the Castle Creek to the
Goat Rocks eruptive period, although quantitative estimates are not available. However, the volumes of
Kalama-age Plinian dacitic eruptive products (up to 2 km®) are greater than those produced during the

Goat Rocks (0.5 km3) and current (<0.5 km3) eruptive periods (Carey et al., 1989; Criswell, 1989).
Trace elements
Basalts and basaltic andesites

I-B and II-B basalt types have similar contents of Cr, V, Co, Sc and Ni, but are readily distinguished by
relatively higher abundances of incompatible trace elements (K,O, Sr, Rb, Ba, Zr, Nb, Hf, Ta, Th and light



REE) in II-B lavas (Table 4; Figs. 5 and 6a). Light REE abundances are higher in II-B ((La/Yb)y =
5.9-6.8) compared to I-B lavas ((La/Yb)y ~2.5), whereas heavy REE abundances are similar (10-12 times
chondrites) in the two basalt types (Fig. 6).

Compared to I-B and II-B lavas, the basaltic andesites (III-BA) have wider abundance ranges for LILE,
HFSE, and light REE that overlap with or are intermediate between the ranges for I-B and II-B lavas
(Figs. 5 and 6a). The basaltic andesites have slightly lower or similar HREE contents (7.7-10.7 X
chondrites) and intermediate (La/Yb)y ratios (3.9-4.6) compared to the basalts (Fig. 6b). None of the
basalts have significant europium anomalies whereas a few basaltic andesites have slight positive

anomalies (Eu/Eu* = ~1.1-1.2, as interpolated from Sm and Tb data).

Primordial mantle-normalized incompatible trace-element patterns (cf. Leeman et al., 1990) are similar
for all three mafic magma types; they are fairly smooth, convex upward patterns typical of ocean island
basalts (OIB). Unlike typical arc magmas, they do not display relative depletions in Nb and Ta. These
patterns are typical of most basaltic rocks from the southern Washington Cascades (Leeman et al., 1990)
and from the central Oregon Cascades (e.g., Hughes and Taylor, 1986; Hughes, 1990). In various
incompatible-element ratio-ratio diagrams (e.g., Ba/Zr vs. Ta/Zr; Fig. 7), MSH mafic rocks plot along
"mantle arrays" defined by mid-ocean ridge basalts (MORB) and OIB and lack the characteristic

enrichments in LILE seen in most subduction-related magmas.

Andesites and dacites

In general, it is difficult to distinguish the andesite types based on their trace-element abundances.
Although types I-A and II-A calc-alkaline andesites have overlapping trace-element abundances, the
tholeiitic andesites are distinctive in having relatively higher HREE, Hf, Zr, and lower Ni, Sr, and
(La/Yb)y (Figs. 5 and 6). SiO, is negatively correlated with V, Co, Sc, Ni, and Cr (not shown) in the more
evolved MSH lavas (Fig. 5). The andesites are compositionally intermediate between the basalts and
dacites. For elements with similar abundances among all basalt types (e.g., V, Co, Sc, Ni, Fe, Mg, Ca, Ti),
near-linear variations with SiO, (correlation coefficients ~0.9 or higher for well determined elements) are
observed for the basalt-andesite-dacite suite. Where the mafic rocks are compositionally diverse with
regards to a particular element (e.g., K,O, AL,Os, P,Os, Rb, Ba, Th, Sr, Zr, Hf, Ta), the andesites likewise
display relatively wide variations of the element with SiO,. Although Rb, Ba, Th, and Cs abundances
generally increase with SiO,, some dacites have similar or even lower abundances than do more mafic
rocks; the andesites have similar to slightly higher abundances of these elements compared to the mafic

rocks (Fig. 5). Sr, Zr, and Hf abundances are wide-ranging and nearly overlapping for the basalts/basaltic



10

andesites, andesites, and dacites (Fig. 5). Incompatible element ratio diagrams (Fig. 7) show that the
andesites are intermediate between the mafic rocks and the dacites. Europium anomalies are lacking or

small (Eu/Eu*= ~0.8-1.2) andesites.

Isotopes

Sr, Nd, Pb, and O isotope variations among southern Washington Cascades volcanic rocks have been
summarized by Leeman et al. (1990). Halliday et al. (1983) and Leeman et al. (in prep.) present more
detailed isotopic studies of MSH. The MSH basalt-andesite-dacite suite has small but significant ranges
in *’Sr/**Sr (0.70301-0.70394), "*Nd/"**Nd (0.512872-0.513012), and 6'°0 (+5.7 to +7.6). Sr-Nd isotopic
ratios for the basalts and basaltic andesites are similar to those for oceanic island basalts, whereas the
andesites and dacites plot within or slightly to the right of the so-called "mantle array". For the purposes

of this paper we emphasize that *’Sr/**Sr is strongly correlated with SiO, (Fig. 9).

Petrogenesis of MSH magmas

The following discussion summarizes the character and possible origins of MSH dacitic and basaltic

rocks. We then focus on petrogenetic models for the andesites.

Dacitic rocks

Smith and Leeman (1987) observed that MSH dacites commonly are depleted in many incompatible
elements (HREE, Be, U, HFSE) compared to basalts and andesites erupted from the volcano. Thus, the
dacites are unlikely to be related to the associated mafic or intermediate magmas via fractional
crystallization. They can be modeled as partial melts of an amphibolite source (hydrated MORB or
primitive arc basalt) containing a small proportion of sediment to account for relative enrichment of LILE
(Ba, Rb, Th, Cs, Sr) in the source (e.g., Fig. 7). We proposed that the dacites represent melts of sub-arc
crust in response to intrusion of hot basaltic magma. Similar models have been suggested for silicic
magmas elsewhere in the Cascades (e.g., Medicine Lake - Condie and Hayslip, 1975; Lassen volcanic
center - Bullen and Clynne, 1990), in other volcanic arcs (e.g., Usu volcano, Japan - Fujimaki, 1986;
Taupo volcanic zone, New Zealand - Cole, 1981), and in some ophiolite complexes (e.g., Canyon
Mountain Complex, Oregon - Gerlach et al., 1981). Alternatively, Drummond and Defant (1990) have
suggested that where young (<20-30 Ma) oceanic crust is being subducted, high-alumina dacite can be

generated directly by slab melting involving garnet-bearing restite. The main difference between our
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model and that of Drummond and Defant (1990) is the depth of the mafic source for high-alumina dacitic
magmas. From observations of seismicity and eruptive behavior during the current eruptive period
(Scandone and Malone, 1985; Barker and Malone, 1991) and from experimental studies (Merzbacher and
Eggler, 1984; Rutherford et al., 1985), it is clear that dacitic magma was supplied from a mid-crustal (7-11
km) chamber, but the depth of the original source of dacite melts remains a debatable point. However,
there is little doubt that basaltic and dacitic magmas coexisted during eruptive activity beginning with the
Castle Creek period (Table 1). Smith and Leeman (1987) and Pallister et al. (1992) noted xenocrystic
olivine and clinopyroxene in Goat Rocks and Kalama dacitic tephras. Other evidence of mingling
between mafic and felsic magmas is found in Kalama-age banded scoria that contains basaltic bands with
olivine and 58% SiO, glass in an andesitic matrix with 66% SiO, glass (Pallister et al., 1992). Heliker
(1984) interpreted gabbroic nodules in MSH dacite dome rocks as representing crystallization of basaltic
magma at depth, rather than crystal cumulates from the current eruptive period dacite, and Pallister et al.
(1991) interpreted gabbroic xenoliths in older dome rocks as being scavenged from an active mafic pluton
(vs. Tertiary basement) underlying MSH. The dacites thus tapped or traversed a region that had recently

contained mafic magma (Pallister et al., 1992).

Basaltic rocks

We define three distinct mafic magma types at MSH which have fairly wide ranges in trace-element
abundances and ratios. In addition, Leeman et al. (1990) documented other alkalic and tholeiitic variants
in the nearby Mt. Adams, Indian Heaven, and Simcoe eruptive centers. The somewhat evolved nature of
MSH basaltic rocks (e.g., Mg-number <57, Ni < 110 ppm, Cr <200 ppm, Co <42 ppm) suggests that they
have experienced fractionation of small amounts of olivine + plagioclase + clinopyroxene, and some of
the basaltic andesites (e.g., sample DS-4) may have experienced small degrees of mixing with silicic
magmas. Nevertheless, these basalt types cannot be related to any single parental magma in light of the
large differences in incompatible element contents and ratios among them (Figs. 7 and 8). There is no
systematic inverse relation between compatible and incompatible element contents; Mg, Ni, Co, Cr, and V
contents overlap for all basaltic variants despite large differences in Sr, Ba, and other incompatible

elements (Figs. 4 and 5).

The observation that the mafic lavas lie within the "mantle array" defined by MORB and OIB for some
incompatible element ratios (cf. Fig. 7) suggests that the basaltic magmas may be generated via melting of
a heterogeneous reservoir composed of MORB and OIB mantle sources. Leeman et al. (1990) further

discussed this variable mantle source model for the petrogenesis of southern Washington Cascades basalts
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in general and noted that it is consistent with the tectonic and geologic history of the Pacific Northwest
margin. An important observation made in that study was that most southern Washington Cascade
basalts, including all MSH mafic rocks, lack compositional features (LILE enrichment and HFSE
depletion) generally attributed to a subduction component (i.e., fluids released by dehydrating subduction

lithosphere, subducted sediments).

MSH andesite petrogenesis

We consider MSH andesites to be either derivative or hybrid magmas as they have few of the expected
properties for direct mantle melts or partial melts of subducted altered oceanic crust (Gill, 1981). Specific
hypotheses considered here include crystal fractionation of basaltic magmas (e.g., Gill, 1981; Brophy,
1990), assimilation of crust by mafic magmas accompanied by fractional crystallization (AFC) (e.g.,
Grove et al., 1982; DePaolo, 1981; Davidson et al., 1987; Patterson and Graham, 1988), and mixing of
mafic with felsic magmas (e.g., Eichelberger, 1975; Grove et al., 1982; Hickey-Vargas et al., 1989).

The role of crystal fractionation at MSH

Fractional crystallization (FC) is probably responsible for some of the compositional variations within
MSH rock types, as demonstrated for the dacites (Smith and Leeman, 1987) and as suggested above for
the basalts. However, this process cannot account for generation of the andesites from any of the mafic
magma types. Removal of any feasible mineral assemblages from basaltic magmas fails to reproduce the
trace-element characteristics of MSH andesites (Figs. 6 and 8). The only way to generate the basalt-
andesite trend in Figure 6b via FC is to involve an amphibole- or garnet-rich assemblage, but this cannot
explain the variations in incompatible trace-element ratios illustrated in Figure 8. Even considering
analytical errors, the observed differences in these ratios within the MSH basalt-andesite-dacite suite are

too large to be attributed to effects of crystal fractionation.

Isotopic data also preclude a closed-system genetic relationship between MSH basalts and andesites. The
andesites have elevated ¥’Sr/%°Sr compared to the basalts (Fig. 9; Halliday et al., 1983; Leeman et al., in
prep.), and their formation clearly involves addition of isotopically distinct material during open system
magmatic processes. Recent studies of radioactive (***Ra/*Th) disequilibrium between minerals and
groundmass or bulk-rock samples provide further evidence for open-system magmatic processes (Volpe

and Hammond, 1991).
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The role of assimilation at MSH

We quantitatively modeled assimilation-fractional crystallization (AFC) processes to investigate the
possibility that this process generates andesitic liquids from basaltic parents. The assimilants considered
include upper crust (Taylor and McLennan, 1985), Tyee sediments (cf. table 8, Smith and Leeman, 1987)
and selected MSH dacites. These lithologies were chosen to reflect representative continent-derived
sediment and, in the case of the dacites, solidified magmas (or re-melts thereof) which may be present in
the MSH sub-volcanic complex. Distribution coefficients used in the calculations are given in Table 5,

and representative models are shown in Figures 8 and 10. These results reveal the following:

(1) Regardless of assimilant composition, type II-B basalts are not suitable mafic end members. Their La
and Ba (and other incompatible element) contents are too high and alkalis/LREE ratios too low to produce

the compositional characteristics of MSH andesites via AFC.

(2) The other two mafic end members (I-B and III-BA) produce observed characteristics of some MSH
calc-alkaline andesites and one of the tholeiitic andesites, but only if large (0.5 or higher) rates of
assimilation vs. crystallization operate and if large amounts of material (20-40%) are assimilated. Grove
et al. (1989) found that such large amounts of assimilation are inconsistent with thermal models for
melting of crust due to crystallization of basalt at shallow crustal levels. If mafic magmas are emplaced at
shallow levels, it is more likely they will heat and cause the surrounding crust to melt (and possibly mix
with those liquids) rather than crystallize and simultaneously assimilate solid crustal material (Grove et

al., 1989).

(3) The models that appear to fit the observed trends for andesites in Figure 8 predict ¥'St/**Sr ratios
which are within the range observed for some calc-alkaline and sites, to predict Sr contents of those
andesites (filled triangles, Fig. 10). It is possible to generate MSH calc-alkaline andesites by AFC only if
the parental magma contains more Sr than observed in MSH basalts. One of the tholeiitic andesites (DS-
73) cannot be generated by any reasonable AFC models; its K/La, Ba/La, and *’Sr/**Sr ratios are too high

compared to the calculated values (Figs. 8 and 10).

The role of magma mixing at MSH

Petrographic evidence in some of the MSH andesites studied supports magma mixing. Mineral-melt

disequilibrium is indicated by resorption of olivine and pyroxene jackets on olivine phenocrysts (cf.
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Tsuchiyama, 1986) in the mafic andesites (type I-A), and by the occurrence of plagioclase resorption
textures in most andesites. The presence of olivine with cores of Fogs in type I-A andesite suggests
precipitation from a more mafic magma prior to mixing with dacitic magma. The calcic cores in some
"sieve" textured plagioclases also indicate an origin from basaltic magma. Reverse zoning observed in
some pyroxene and plagioclase phenocrysts is consistent with magma mixing, but other processes (e.g.,
changing water pressure, decreasing load pressure) could also produce these features. The phenocrysts

could have re-equilibrated after mixing, causing many to become normally zoned.

An important aspect of MSH calc-alkaline andesites is that virtually all elemental/isotopic ratios and
major/trace-element abundances are intermediate between the basaltic and dacitic rocks. This
relationship is consistent with some form of mixing of dacitic and basaltic magmas. Furthermore, strong
linear correlations exist between SiO, and some major and trace elements (e.g., MgO, CaO, V, Co; cf.
Figs. 4 and 5), and between strontium and oxygen isotopic ratios (Smith et al., 1983). For these
components, the basaltic and dacitic end members are relatively uniform. The lack of strong linear
correlations between SiO, and other major and trace elements (e.g., P,Os, AL,Os, Sr, Zr, Hf; cf. Figs. 4 and
5) does not necessarily rule out mixing as the scatter may be attributed to variable end-member

compositions coupled with some fractional crystallization subsequent to mixing.

Although probably oversimplistic, binary mixing models were calculated to test whether mixing between
MSH basaltic and dacitic magmas can account for the major- and trace-element compositions of the
andesites, and to constrain end-member compositions and relative proportions necessary to generate the
andesitic magmas. Table 6 shows the results of the most successful models. The best fits are obtained
when andesites and dacites of the same eruptive period are used in a given model (e.g., models M-1 and
M-11). However, because basalts were erupted only during Castle Creek time, it was necessary to use
compositions of those lavas in modeling andesites of other eruptive periods. It is possible that mafic
magmas present in the magma system at other times could have had compositions slightly different from

those used in the models.

Rather than rely on elemental abundances, which are sensitive to crystal removal and/or accumulation, we
instead used incompatible trace-element ratios to constrain proportions of end members in models M-1
and M-II. In model M-1, hybrid andesite could be generated by mixing equal proportions of type 11-B
basalt and dacite. This result is very similar to that of Pallister et al. (1992) for Kalama period andesitic
scoria. Pallister et al. (1992) found other Kalama andesites more difficult to model and noted that

additional magma-mixing end members are probably required. Basaltic andesites (type III-BA) were not
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used in their models and may represent the mafic end member for those problematic andesites. We find a
good fit for Goat Rocks andesite (similar in composition to some Kalama andesites) when 14% basaltic

andesite mixes with 86% dacite (model M-II).

Sr/*°Sr data are available for both end members and the selected hybrid used in model M-III; we used
the isotopic data to constrain the proportions of end members required to produce the hybrid andesite. As
with incompatible-element ratios, the ratios will not be affected by crystal fractionation. The result shows

that 23% type II-B basalt is required to mix with 77% dacite to generate the modeled andesite.

Strontium isotopic data are not available for the specific andesites modeled in models M-I and M-II. The
mixing proportions determined in those models (via incompatible-element ratios) predict *St/**Sr to be
0.70338 and 0.70354, similar to Sr isotopic ratios available for other MSH andesites (~0.7035). Figure 10
shows that mixing models generally produce closer fits to the andesites than do AFC models, particularly
considering the combined Sr-*’Sr/**Sr systematics. Nevertheless, the distinction between AFC model 4
and the mixing models is so slight that we cannot completely rule out the role of AFC in producing some
andesites. For example, the tholeiitic andesites are more difficult to reproduce by mixing than are the
calc-alkaline andesites. Agreement between calculated and observed abundances in these rocks is
generally poor regardless of which criteria are used to constrain end-member proportions, or which end-
member compositions are selected. Our modeling results indicate that AFC is as plausible as mixing in

generating tholeiitic andesite.

In the models for calc-alkaline andesites presented in Table 6, elemental abundances (and LILE ratios)
commonly agree within analytical uncertainties for both calculated and observed hybrids. None of the
models succeeds in matching all components, particularly FeO, MgO, CaO, Ta, Sc, Co, but such
discrepancies may result from other factors. A likely cause for misfits for these elements is uncertainty in
choice of end members, especially the basalts. For example, substitution of a type II-B basalt (e.g., DS-6)
as the mafic end member in model M-II produces an equally satisfactory fit. On the other hand, such
calculations indicate that type I-B transitional basalts cannot be parental to the calc-alkaline andesites
unless the felsic end member differs greatly in composition from MSH dacites (cf. Fig. 10).
Furthermore, the basalt compositions used in the models may have been modified somewhat (e.g., by FC)
compared to slightly more primitive magmas actually involved in mixing. For example, a less
fractionated parent magma to basalt DS-6, containing > 700 ppm Sr, would be a more suitable end
member to produce andesites DS-79 or MSH 486-1 (cf. Fig. 10). Additional diversity of MSH andesites

could result from the involvement of more than two end members during mixing. Also, MSH andesites
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may not represent magmas "captured” at the point of mixing; minor post-mixing FC (and re-equilibration
of phenocrysts) may have operated prior to eruption. Even with these complexities, Figure 8 shows that
magma mixing most closely reproduces the observed variations among MSH andesites than do the other

processes considered (FC, AFC).

The mixing models indicate that some andesites may contain relatively low proportions (< 25%; models
M-II and M-III) of a mafic end member. In such cases, it is unclear how relatively homogeneous hybrid
magmas are physically produced. Production of such liquids is favored by high proportions of mafic to
silicic end members (Sakuyama and Koyaguchi, 1984; Kouchi and Sunagawa, 1985; Sparks and
Marshall, 1986). Where the fraction of mafic magma is low (<50%), the mafic magma is dispersed as
solid xenoliths or inclusions within the silicic magma. However, the likelihood of homogenization
increases as the thermal contrast between the two mixing magmas decreases and the water content of the
mafic magma increases (cf. Thompson and Dungan, 1985; Sparks and Marshall, 1986 ). Pre-eruptive
temperatures (~850-920°C) and water contents (~4-5% wt.%) for MSH dacites are constrained from Fe-Ti
oxide thermometry (Smith and Leeman, 1987) and experimental studies (Merzbacher and Eggler, 1984;
Rutherford et al., 1985). Although temperatures and water contents for MSH basaltic magmas are not
known, if they were fairly hydrous and cool (< 1100°C; cf. Sisson and Grove, 1991), the temperature and
viscosity contrasts between MSH dacite and basalt magmas may have been sufficiently small to promote
efficient mixing even at low mafic magma proportions (cf. fig. 11 in Sparks and Marshall, 1986). It is
also possible that mixing occurred in more than one stage. As pointed out by Thompson and Dungan
(1985), single- and multi-stage mixing may produce similar geochemical trends, particularly if the system
is not greatly modified by FC or AFC. The end members used in our mixing models may be slightly
hybridized themselves; some basaltic andesites may have mingled with small amounts of silicic magma
(Fig. 3) , and there is petrographic evidence that some dacites are themselves contaminated products of

more silicic magma (Smith and Leeman, 1987; Pallister et al., 1992).

The MSH magma system

Seismological and experimental studies of the MSH magmatic system (e.g., Barker and Malone, 1991;
Pallister et al., 1992) suggest that the MSH magmatic system is characterized by a deep (7-11 km),
cylindrical magma reservoir with a volume between 5 and 7 km® which vents magma to the surface
through a narrow conduit system (Scandone and Malone, 1985). A northeast-striking fault at depths > 11
km may be a conduit to transport (basaltic?) magma from greater depths within the crust to the reservoir

at 7-11 km depth (Barker and Malone, 1991). Dacite eruptions from 1980 to the present appear to have
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vented the upper levels of the reservoir-conduit system (e.g., Rutherford et al., 1985; Carey et al., 1990;
Pallister et al., 1992).

The petrology and geochemistry of MSH eruptive products seemingly require additional complexity in
the sub-volcanic plumbing system as sampled during Castle Creek time when a wide variety of magma
types, ranging from basalt to dacite, were erupted (Table 1). For example, the 'cave' basalt (type I-B) is
believed to have erupted along the south flank at about the same time as other basaltic lava types (types
II-B and ITII-BA) vented on the north side of the volcano (Crandell, 1987). Although slightly fractionated,
these magma types are chemically distinct and not easily related to one another through evolutionary
processes nor by melting of a common mantle source. Castle Creek eruptions also included dacites
(interpreted as variably evolved crustal melts) and a suite of compositionally diverse hybrid andesites.
Kalama period is also characterized by a variety of andesitic and dacitic eruptive products (Table 1), but
the existence of basaltic magmas within the system during this time is inferred on the basis of
petrographic observations and geochemical models presented here and by Pallister et al. (1992). Eruptive
products of the Goat Rocks period are more restricted in composition (type II-A andesite and dacite), but
the presence of more mafic magmas during that interval is implied by petrological and geochemical

evidence for mixing in those eruptive products.

These observations suggest important implications concerning the nature of the MSH magma system.
Because nearly the entire spectrum of magma types observed at MSH was produced during the Castle
Creek period, it is clear that each variant was available during this time. Also, although eruptive products
were less diverse during the other eruptive periods, evidence for hybridization in some magmas produced
subsequent to the Castle Creek period attests to the persistent complexity of the plumbing system. To
explain the petrologic evolution and eruptive history of MSH, we infer that the plumbing system
repeatedly has accommodated isolated storage of relatively primitive mafic magmas and anatectic dacitic
magmas. Hybridized intermediate composition magmas, attributed to mixing between these extreme
magma types or between other hybrid end members, also must have been stored locally within the system.
We envision a complex plumbing system with multiple conduits, some of which tap mafic and felsic
reservoirs and allow mixing between these magmas, and others which tap effectively isolated reservoirs.
Apparently, efficient mixing occurred in some parts of the plumbing system and not in others. Several
interesting configurations are suggested. For example, if basaltic magmas melt the crust to form dacite,
then subsequent mixing of ascending basalt with anatectic melt may form some andesites. Another
scenario involves stagnation of primitive, denser basalt deep in the crust, whereas more evolved, less

dense basaltic differentiates may ascend to shallower levels, creating a stratified system. Further
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stratification may result from emplacement of dacites above the mafic differentiates. Magma mixing
resulting in homogeneous hybrids requires the breakdown of this stratification, perhaps by high-velocity
injection of turbulent plumes of primitive magma into the base of the chamber (Sparks et al., 1980;
Sakuyama and Koyaguchi, 1984), forced convection during flow in sub-volcanic conduits (Kouchi and
Sunagawa, 1985; Koyaguchi, 1985), or convective turbulence generated by large differences in

temperature between end members (Nixon, 1988).

Conclusions

Several lines of evidence suggest that mafic magmas have been more important at MSH than commonly
realized, particularly considering the persistent eruption of dacitic magmas over the past 36 ka. True
basaltic lavas were produced only during the Castle Creek eruptive period (1.7-2.2 ka) at which time at
least three compositionally distinct variants issued forth. It is probably not coincidental that this period
marked the appearance of the first significant outpourings of intermediate composition lavas (three
variants of andesite). Andesites were produced intermittently during the subsequent eruptive episodes (as

recently as 1857 A.D.).

The petrographic and geochemical data presented here are inconsistent with simple cogenetic
relationships among these diverse magmas. Although all magmas underwent varied degrees of fractional
crystallization and some perhaps assimilated small amounts of wall rocks, the broad compositional
spectrum represented by MSH magmas cannot be explained as the result of these processes alone. The
extreme basaltic and dacitic magma types plausibly represent partial melts of distinct mantle and crustal
sources, respectively. Crustal melting to produce the dacites was likely triggered by emplacement of
ascending basaltic magmas within the sub-arc crust (Smith and Leeman, 1987). It is proposed here that
most of the intermediate composition magmas essentially formed as products of single- or multi-stage
mixing between mafic and dacitic magmas (sensu latu). Thus, in our view, all MSH magmatism has been

driven by basaltic magmatism.

The diversity of magma types erupted during Castle Creek time implies a complex sub-volcanic plumbing
system that allows for the coexistence of several end-member and hybrid magma types. Evidently,
compartmentalization allows segregation of diverse magma batches, yet periodic communication between
different parts of the system results in efficient mixing to produce hybrid magmas. Temporal trends
suggest a decreasing role for a basaltic component in magmas erupted from the volcano from ~2200 years
to the present; this may reflect diminishing influx of basaltic magmas or selective tapping of shallower

parts of the system with time.
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Appendix I

Appendix 1
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Figure 1:

131

. CALIFORMIA | NEVADA

Fig. !. Map showing volcanic segments (circled numbers and brackets, dashed where uncertain) based on distribution
(shaded areas) of vents less than 5 Ma old (Guffanti and Weaver, 1988). Triangles represent selected major Cascade
stratovolcances; M SH =Mount St. Helens. Plate tectonic features of the Juan de Fuca-North American subduction sys-
tem are from Riddihough ( 1984). Open arrows show ridge-spreading directions and solid arrow shows direction of con-
vergence between the Juan de Fuca and North American plates. The 40- and 60-km contours {dashed where uncertain)
show depth of seismicity in the upper part of the Juan de Fuca and Gorda plates (from Weaver and Baker, 1988).
V_F.=volcanic front.
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Table 1:
TABLE 1

Summary of the eruptive history of Mount St. Helens { MSH )

Eruptive period Age* Eruptive products
Smith Creck ~4Um:m;l o ECLI—[LTI.E;.J'.I_FEI& and pyroclastic flows -
Pine Creek ~ 3000=2500 a Dacitic tephras, pyroclastic flows, domes
Castle Creek ~2200=1700 a Dacitic tephras and pyroelastic Nows
Basaltic lavas:

I-B% D827, L§2-56

11-B: DE&-5, DE-6, DS-7, DS-%

II-BA; LE2-63, DG4, LE2-40, L82-414, DS-78, DS-T7, DS-76, DS-74, [S-
72,D8-71

Andesitic lavas and tephra:

I-A: DS§-2, LE2-55

II-A: Lg2-42

TH-A: DS8-T3 5H-23

Supgar Bowl B00 A_D, Dacitic tephras, domes
Kalama 1480-~ 1778 A.[D. Dacitic tephras, pyroelastic flows, lavas and domes; andesitic pyroclastic
flows

Andesitic lavas and tephra:

I=A: SH-3, MSH-484-1, MSH-486-1, D5-79, DS-33, DS-61, L42-57,
L82-44, LE2-45, LE2-47, L8248

II-A: L&2-54

Goat Rocks 1EOO-1B57 A.D. Dacitic tephra and dome
Andesitic lava:
TI-A: D8-70, MSH-260-1

Currem 1980-1986 A.D. Dacitic tephira, pyroclastic flows, domes

*Eruptive periods, ages, and names of eruptive units are from Mullineaux and Crandell (1981), Hoblitt et al. (1980 ), Crandeli
(1987), and Hoblit { 1989 ), Ages for Smith Creek, Pine Creek, and Castle Creek eruptive periods are given in years { =a ) before
1992; ages for Sugar Bowl, Kalama, Goat Rocks, and Current eruptive periods are given as dates A.D.

PSee Smith and Leeman ( 1987) for detailed information concerning dacitic eruptive products.

“See text for definition of groups I-B, II-B, III-BA, I-A, 11-A, and TH-A. Appendix | gives sample location descriplions and
indicates 1o which stratigraphic units these samples belong.

9%ample numbers for all basaltic and andesitic eruptive products included in this study are noted. Sample locations are described
in Appendix 1 {except for samples provided by C.A. Hopson and W. Melson for which specific locations were not given ).
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Figure 2:
=1 T T .
(e Mipashin, 1974) Ernuptive Paripd
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Fig. 2. Classification of MSH eruptive products based on FeO* /MpO and S10,. All samples are plotied on this and
subzequent major element plots on a “dry” basis ( major elements recalculated o 100% ). Samples are plotied according o
eruptive period and grouped on the basis of composition (see tex1 for discussion ). Shaded field includes data for MSH
dacites from Smith and Leeman ( 1987),
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Table 2:
TABLE 2
Major-clement composttions {in w1.% oxides 1 amd modal phenocryst abundances for Moant St Helens mafic o intermediate
wileanic rocks
Sample no.: D527 LEX-36 D53 DS6  DST DS99 LEI-63 DS4 LE240  Ls2-41a DSTR DST7
Eruptive perind: € oC LS S R SR & S & oC [ oo [as o
Rack type: B I-B B 0-8 0B 0-B  I-BA  10-BA  NI-BA [BA DI-BA HIE-RA
Sy 485 ML95 4928 498% 4954 4B92 SL0d .77 4308 5198 5113 S0
Ty 147 1.54 00 204 1L%E L0 1.&2 .73 L& 1.4l 1,34 |.56
Al 1747 1735 1688 I6ED 1626 1467 17.06 1774 1638 1643 173 1766
Fei* 16T 954 002 112 1053 1002 Bad 853  &8Y A.86 a65 G004
Mni [ER T 015 o4 kI1F o1y als 4 iy o4 mis 15 LI ]
Mg 657 14 U6 B6L 683 H6T 6T 6l A07 547 SER 617
Caiy 958 933 70 A& BS54 &7 B2 830 Th 141 793 140
My 365 560 38y 31RE 390 ATE  1TH 424 LRG 1E1 403 4.22
Ky 056 065 126 131 1M 136 08 117 L4 1.03 .00 097
By 01s 020 044 041 038 037 033 {8, LI T .30 029 015
Taal 9584 9945 5987 90ES U9F 9985 9924 10000 9R9F 98T ¥ae 9999
Mg 2 0.1 %4 354 SRR Ale AT A% A4 440 a4.0 320 523
Modal mineralogy
GM A7.2  &L5 3.1 Ly 7173 BLa  Ben LER] LN KR
Plag 105 1.8 Al 146 153 161 fihi 11L& 134 Ei0
Ofliv 13 4.7 59 5.1 74 23 4.2 a7 15 L
Cpx = = Lr. tr. ol 2 - - -
Ops - - - - - - - - -
Amph - - - - - - - - -
Cinides - - - - - - - - - -
Sampde 0o D576 DS-74 DET2 D571 DS D573 LA2-3S LB242 SH-25 SH-1 MSH-4R4-1 MSH-286-1
Eruptive perind; OO oC [N [ [ o o [ o Kal  Kal Bl
Rock Lype: M-BA [I-BA [I-BA D-BA 1A TH-A LA I-A TH-A LA LA [ B
Silhy, 5138 5165 52100 10D 563 mOL13 S6 04 6152 5Tl RETE SA.IG SE.R4
iy 140 130 143 123 14 122 123 DRS 149 L 22 oz
Al 1821 1870 1831 1833 17.07 1635 1732 17001 1863 1725 1609 16.74
Feii™ D40 kB4 BRI 052 T2 Bl6 aB% 531 945 &8I Tab 740
M) i3 o1 ol 63 b aan o oo% a2 oar i 1o
LT ] 5.0% 446 349 A3 3ES 1HY 482 262 13 344 424 LRI
Calh T TAT O Tes 7898 G6R O ST 2 352 580 624 A58 677
May 427 442 426 425 409 465 404 464 461 451 405 4400
K0 Lo 4 09% 095 12 142 120 143 13 1L3E 1L 147
Py LT 5. Y N I 0 T e O . SO e 025 3l 026 I3 [EN
Tatal WS S90S GGRD 9993 S0 SREE SUIR 9924 99RF GRS WK HRLHY
Mg & 494 4789 5.2 493 463 290 555 468 93 473 5 4749
Modal mineralagy
GM

8435 T .2
14.1

BI.5 HE_ G BiLh E4T HE.6
Plag 15.4 12.4 155 138 al 4 I3 16.8
CHiv 1l 0.7 19 1.5 1.9 - 2 -
Cpa - - - - 04 0 LY ] .
O ir. = - - tr. iR ] i3 15
Amph - - - = = 0.5

Chnides - - - - T N
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Samplc no.- D579 D533 D561 L8257 LE2-3% LAI-24 LE2-45 LE247 LE24E  D&T0 MSH-26d-1

Eruplive period:  Kal Kal Kal Kal Kal Bal Kal Bal Kal Goan Bx. Gioat Rx.
Bk Lype: -4 -4 1-4 1-A 11-4 HEY 1-4, -4 1-A -4 Il-A
S, 650 5604 S 5750 sLG3 AT74 AR FTEL AL G160 fil A0
T WL nar ] 94 75 0,595 ag 1.0% (93 (LT3 074
Ak 17,41 1E14 ITHE 1776 17.51 L& 19 1773 1754 18.06 IB. 16 | &.50
Fel* 1,54 1.4 TAZ [T 5.26 fd9 Bl 6.1 B4l q4. Kl s
hAni 0l (IR 1Y oo ol [ER]] LN} ot 0.1l (IR Lt IR
Mg 4,14 L7 141 i 142 LTa | 416 ir: 2.51 Fh b
Cald H.ER 6.H3 658 .74 5.44 h.ES b 658 [ A kU snd
Myl 4,43 458 .15 411 4.53 4.22 4.28 445 4.21 441 4.0
K0 1,14 1.24 114 1.15 1.33 1.06 I.19 1.17 I.1% 1.27 1.30
sl .15 0.2l 01s o6& s i3 1w [ ] 114 AL 019
Tonal GU Sy 0,50 .G 0497 UG 3 9064 494 9Os) 0G0 oy aj 1Lz
Mg 2 L] 4.7 3.5 51.5 4740 1.0 S0.8 54.1 S0LR 482 47.5
Modal mineralogy

[t BLY TI.5 61.7 (LR T4.4 S0.E Th.B 714 780

Plag I6.1 4.3 1i6 e 25.3 363 9.9 24.7 14.5

(Hiw L1} .6 - 0. - 0.4 - 0.3 -

Cpn 1.1 sy LG 1.5 ol 1.1 03 (] h

s (12 1.6 rl LN [ 24 in .Y I.f

Amiph - LU wd?) DB i) i) (LY R T 4

Chundes - Ir. - - - - - - i

More than 10K points were coamed per thin section. PRencorysis of plagioclase [Plagh, olivine (O |, clinopyrasene (0px],
amphibok: [Amph b, orhepyrosene (Ops ], and Fe-Tionides (Oxades | were defined s =03 mm Groundmasses {GM pinclude
microphenocrysis | berween (003 and .3 mm ). Where the presence of amphibole cosld only be inferred from psewdomorphs of
wery fine opagque material, the modal percentage is fallowed by a (7); ir.=irace amounl. lron oxsde s given as ioial Fed)®, and
Mg &= 100 modar Mg/ ( Mg+ Fe®* 1. Samples include products from the Castle Creck (0O ). Kalama § Kal |, and Goal Rocks
crugive pengads,
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Table 3:
TABLE 3

Represeniative microprobe analyses of mimerals and anonhive contents of plagioclase in M5H valcanic rocks

Samplenoc: D827 084 DE-TH
Rock type:  [-B - [I[-Fa
Phise: LY CFX PLAL CHLIY CHY

PheC Ph-E MP G Ph-C Fh-E WP Ph-C Fh-K Fh-C  Ph-R P

Hiy lBE 364 L 434 A 342 35V a8 a5 R ja4
Toil, 004 002 (14 1.73 - - - ()3 IR LR PR (il
Al 0.03 .02 oy X LI g4 251 IR

. 1,04 RE] [P ]
Fei 4 6 240 113 .54 0,60 n&7 1 540 5.4 I7.1 2.5 211
Mrld .14 0,37 .45 28 - - - 020 .46 02 {15 (R
Mgth 1 E o2 3TR 132 - - - LEN 14 435 T A0F
Caily 0,33 .32 M35 1%.f 1 5% 1.5 103 m22 032 a1y o2l 027
Ma, - - (K] 121 4,16 .64 = -
Kk - - [’ N1 0.z 0. 5
Cr, - - - - - - - - - - - -
Tatal 10074 10093 10145 100LST 10075 J00L4E 99 RE 9389 10097 10025 9%47 14:0.31
Mg ThE Tih 737 3.9 - - - a4.1 4.7 aly Ta.T L]
Flagioclase:
e Ay Al Afigg—Afipg Ang-Ang

Rims Ay ANy ARy~ AR Afigg—Aiy

- . S R R —

Sample no [¥5-2
Raock type: [-A

Phase: PLAG LRV QP UFX

Fh-C PR MPO MP-R Fh-C Fh-R Ph-C Ph-R MFP Fh-C Pa-R MP

——— = s ——

S, 4495 358 5.8 55.4 8.0 IR0 il EiA 511 519 5IB ST

Tl - = = - - o2 o1& 024 oy oS4 027 37
AlyChy 1.8 130 ] 606 o2 04 [.3% 4l Oe% 323 158 250
Fel .53 L3l 0. 1.75 14.5 Ih.3 239 FIN | 2.6 012 614 LEI
Blnid - - - - s 4l .44 (a4 i - -

Mgl - - - - 243 357 RN 29 14 1.2 173 Ik
Cadd 150 10,7 151 LR [N L} 14 [ 1,73 T 19,4 196
Ma,ih 217 4 & L34 .08 - - - - - mi3 04z s
) {L.OR [ .14 028 - . . - - -
Cryly - - - - - - - - n4d 024 05]
Tuodal |00.0E 99890 9970 29.01 SB.016  1OL66  DIDOLIL SES6 10DZE 999A 9925 9908
ME“" - - - - 84,5 f1.3 RN EE R al.7 g3 a5 LR
Plagsoclase:

LOres; Adej—Adl sy

Rims: N g ATlgy

Al but plagroclase ranges ang gven in wl. % axides. Ranges m plagieclase con: and rim compasition ane given in maole®: Anorthie;
ieite fhat plagioclase compositions for amdesilic samples do ol incdude seve-1eaiuned phepocrysts discussod in the texi. Symbols:
OLIV =alivine, PLAG=plagioclase, OPX=orhopyrocene, CPX =clinopyrazens, AMPH=amphitale, Ph=phembcrys,
MP =microphenccrysl, GPh = gamenophenocryst gram. Gib e groundmess grain, © s oome, B rim, Me¥= 100 [ Mg/ Mg+ Fej |
(adl iron 38 Fe' ™)
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TABLE 3 {continucd }

Sample nou:

5-33
Raock type: I-A
Phase FLAG OFX CPFX

Fh-C Ph-E G Pl Ph-R Ph-C LGPk Fh-C Fh-E Fh-C Ph-R
Silk, A MY e 14 M M3 RiA LER L1CLUBNE LS B R T | B
Tilk, - - - - - a8 0 e 31 Bl DAY Dl
ALk . L e 4 nr I 0.Th 142 1.43 iy LE2 197 213
Fell T ] 048 D e 137 16 11 Tk A5 A1 da
i - - - - - 2 029 [id .23 .06 01z 0
Mgl - - - 24,9 5T Ji 134 154 158 134
Cal) 11 AU B TR .27 M9 [ 176 LA RS H4 14 15
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Ma* - - - - - 753 T4.0 Td.B A2 Th.2 46 T
Plagsowlase:
Cares: ARy —Aligg
Rim= AR ja=Aligy
Sample no.: 3573 S0
Rk e TH-A 1A
Phase: CPX Orx AMPH OFX CFX

Pha Fh-R Fh-TC Fh- Ph-” Ph R Fhd

Sy 5s 514 5314 411 | 52.7 514
Tr, .59 0.25 0,30 252 27 .17 0.3
Al 2.1 162 1.32 1.5 1,15 .72 1461
Feld 12.6 i3 214 114 193 X2 946
Mnik (UL .22 042 017 (.42 (154 ]|
Mgy l4.4 X 1.3 148 155 137 159
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Figure 3:

[ {V\Hrtle. 0.5 mm
“ oo
5 |

Fig. 3. (a) Phowwmicrograph of grousdmass texture in MSH basalue andesie (sample [35-4; uncrossed pedars ) (b
Figure highlighting somse features in above phatomicrograph (with scale ). The dashed line encircles the dacitic “bloh™
fund within a more typacal basaltic host. Moted featores inclwde orthopyroxens (QFY ) microphenoerests within the
glassy “blob™, an olivine | (L) microphenocryst within the host, and vesicles Ler holes) in the thin secuion @suppled
arezs §, Flagioclase comprises the ather phenacoryeis, The diffuse margins of the dacitic blob suggest thay it may have been
lnguied a1 the vime of its incorporaton by the host magma. See text for further discussaon.
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Figure 4:
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Fig. 4. Major-clement {oaide wo. %) Harker varation dii,;raml lor MSH valcanwe rocks. Analvlical unberianLy for each
clemenl is shown by crror bars, B? denoles the cormelation coefTicient for lincar regressions through data paoints for Fel1*,
Mpch, Calk, amd Tilk; vs, Sid;, Shaded field includes data Tor MSH dacites from Smith and Lesman (1587
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Table 4:

TABLE 4

Trace-element composinons (in ppan ) fer MSH maic o mtermediate volcamic rcks

Sample no.: [35-27  LBI-¥ D55 &6 D&ET nE-4 LEXGY  [¥5-4 LEZ-40 LEX-41A DSTH 1%-77

Eruptive persod: OO o o or i oC oo oC or [ cC o

Rack type: 1B B 1l-B [i-B -8 II-E l-BA  [l-BA  I1-B4 11-Ba 11-Ba LI-Ba

b 11 15 by 15 ar 24 b 25 2 22 2 -

s 3 .38 .18 .25 [WE T 061 - 0. 56 = a7 0,58 -

Sr | Il 584 A0 577 S00 574 581 476 468 514 4u3

Ba 118 - 272 ilG 39 iz - 275 - - 242 krll

¥ 130 i1 - 49 - 262 0 17,5 8D 26.0 = -

Ir 132 139 Rl 203 i} 200 | 76 188 181 178 I7R 10

Mh BT 110 - kP - 255 4.0 214 18.0 14.0 - =

HF 30 12 4% 4.3 4.4 4.5 - a1 - 4.1 i =

Ta 0.57 056 M ke L 207 213 - 1.4l - .95 0% =

5 133 il 255 250 R LR - 246 - EER ] 238 -

¥ Zid 219 Ilr 21 X4 - 1HE - - 147 LEE

L] 175 140 ] 10 157 155 - 169 175 152 137

Co 41.7 EEN | 354 363 36.E 384 - k] - 15 44 -

Mi 4% 04 ] T &l Bd 1% BO 107 104 Th L]

Zn LR 77 "™ T4 71 % 18 rp B a9 5 a2

La il 2 o i) 1.2 [ 1'% 1%k - 1.8 - I5.4 14.3 =

Ce 201 50 413 433 441 457 - 26.3 - I kLR -

Sm 151 4.02 585 5.4 3,30 525 - 131 - 443 441 -

Eu 1.29 1.532 L85 1.7 1,74 1B L.36 - 1.5% 152 -

b1 069 077 77 7 .73 T - 059 0.4x b2 -

¥h L35 2.41 m 11 208 110 - &9 1 210 -

Lu 033 ] nal 33 .13 3 - 15 - 034 m3l -

Th .94 1.4 1] 147 2.1 2.2 - 205 - o 1584

B 14 - - 4.0 - 5.1 - - - - -

u : - - - .59 - - hal - - - -

B (K1} - I.K 1.7 1T 1.& - 1.6 = - 1.5 1.5

Fh 5 fi - k] - ] a4 ] T m - -
Sample no.: [X5-Th D5-74 Ds-72 571 352 D573 LE2-55% LE2.42 SH-25 SH-3 MSH-484-1 MSH-486<1
Eruptive perend;. OO [ o [ o O i i i k.al Kal Kal
Rk typee I11-B4 [II-BA NN 1I-BA [ TH-A JY I PN TH-A 1-A BN T-a
Kb 15 23 23 L) iz 35 24 27 il Kk 29 24
Cs 057 L7} 031 e 1.35 L] .38 D56 [ B 045 &2 .65
& 517 R 528 all 469 4 594 2 383 523 - 558
Ba 226 244 123 20 EEC) 329 - - 345 123 k10 2040
¥ - 2.3 - 201 137 (LAt 4.4 - - - -
i 165 153 L5d 156 154 [E+] 142 I 7R 111 153 170 140
Mh - - 12.5 105 {13 17.0 2.0 - - - -
HT kX 15 R 16 15 48 37 4.1 49 L7 4.0 14
Ta ] Lh& &y 080 a3 .74 086 &l 100 [ag .14 047
S 218 9.0 1%1 1.9 18.1 17.2 19.0 15 196 15.2 1.7 17.2
v 1T 174 134 173 1 ¥ 11z - - 153 123 - 3%
Cr 94 ] 113 ug [{12] I th k) T4 103 w A6
Ca 320 JES i ] arn 34 176 250 15.6 168 14 134 23
Mi &l 57 Gh 58 25 El 45 M 1 s - 46
&n T4 B3} T4 0 [ Hl mn 1 1% [ik] - L1
La 1% s 1.2 1) 129 (1] 12.4 15,1 17,2 159 177 4.5
(] 0.7 24.E 168 244 bt 154 1800 19 4.2 4.5 Y 227
m 330 417 342 iz 345 360 3% 39K 5.10 3Te 412 160
Eu 130 1.23 1.21 1.26 1.14 .44 1.2% 1.23 1.58 1.2 1.34 L.a7
Th 056 .48 0,49 48 057 LR 052 .49 LR 4K L0 138
b .70 1,68 .61 1,58 1.75 Tk | .46 1.23 161 1.4k 168 1.33
Lu 024 .24 025 {25 [ B 35 02 1% i), 441 [ Mk 0,14 2l
I'h | .66 .64 .36 1.54 2 1.57 240 1A0 159 2.6 150 2403
B - - 57 - - 140 = = - = = -
u 74 5% 075 0.6 08T 1.08 - - 082 03K 069 60
e 14 1.3 1.5 1.5 1.5 1.H - - .7 1.5 - 1.0
b = - # - 1} il # i - - - -
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TABLE 4 [comitnued i

Sample oo
Erupdive period:
Rock type:

Rb

FFCT O SFT RN Z00 <Y T ZN=<FY D

8-31

D5-7% (B LEr-a7 LEI-50
Kal Kal Kal Kal Kal
I-A A A 1A -4
b k] 14 23 3l
= 052 54 635
595 S6E 543 453 478
333 263 262 - -
15.46 - 15,5 17,0 14.0
173 151 147 144 141
17.5 - LX) .1 3
- 15 34 il -
- 5% 50 0.8 =
- 16,7 164 17.5
148 152 4% -
92 55 44 e =
- Pl 2240 4.5 -
4 53 Afi k) 19
TH Tl 74 fi& 9
- 147 12.8 IXR -
- M0 8.7 2840 -
= LA i3 147 =
= 115 1.08 0e?
- aa% 0,47 33 -
- 1458 1.47 1,57 -
- 02z .21 114 -
- 134 119 240 -
A4 - 10 - -
. - 0 -
L& 1.3 1.4 - -
i3 - o i I

LBZ-44

Laz-43

L&2-47 LB2-48 D57 MSH-260-1
Kal Kal Kal Kal GioatRx, Croarkx.
-4 -4 I-a -4 =4 ([
I 13 IR 3 o 15
- - 0.7R = .19 1.25
54 543 5092 542 R4 410
= - - 2% I
160 170 140 6.0 14.5 -
i45 las 15 144} 133 20
i T4 130 ? B.O -
- - 3.7 - 1l 1.2
- - AT - 44 48
- - 16.6 - 12.0 1.5
- - - 107 -
- - 50 = » RE ]
a - 115 - 15.4 152
14 15 3o il 18 -
&7 G5 k] i fid -
- 151 - 1.6 LD
- - 330 - 254 248
- - 371 - LA L%
- - 1.3 1T oo
057 - V1] .35
- 1.50 - 1.30 1.24
- 02 1.0 020 e
- - 180 - 214 2124
- - - Q.81 -
- - - 1.3 -
L] 12 L [l 11 -

Al samples except the LE2-series sampbes were analyzed by D, Smith/%, P, Leeman via [CP (Bice Univ, ), INAA (Oregon State Uaiv ) and XRF
(Cpen Univ ). The LE2-series somples were analyzed by G. Fitcon ( XRF, Univ. of Edinburgh ) and M. Sorman {[NAA, NASA-TSC). Where an element
wis delermaned by more than ane techinigies the value given iseriher {1} 2 single value obtained by the technique which vielded the haghest qaality daia
(o5 padged by analyses of standard rocks BCR-|. AGY-1, GSP-1, and BHVO-1). ar (23 an average of values oblained by muliiple iechaiques where
analstical precision and accuracy are comparable '
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Figure 5:
250 Fi50 v —
| RPEEEEES 1
) Erfar = -I-EB]' |
s NI
150 550 b i
s %
100 I b ] & ]
b
Y asot " )
o
&k T
[
@ - FroreTi I
-]
1RO ,,,ua N * & b
* o, ‘8
g it
0
140 -]
8
1a &
4.5 .
" -]
4.0 -
a5 e
o
-] 3.:' & L]
- — i
ﬂ;iErﬂ}r--]— Ennl':--\]-;'rai
LT E e T T Spu——.
2 #
& L]
+ &
i & 1 o i
# &
-n EB Rl o ﬂqﬁn "l‘. * &
q..I:I o L Y q
5D a0 T =¥ e

weight % Si0,

Fig. 5. Trace-eleavenl vanalions {10 ppm ) 1im MSH volcanc mocks. Error bars represent estimated analylical uncertaimiy
far each elemeni. B dempies ihe correlation coefficient for linear regressions through data points for W, Ca, Sc, and B
v&, Sill. Symbols and field as in Figure 3.
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Figure 6:
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Fig. . Chondrite-normalized (ab La and (b) Yh ve
chondrite-pormalized (La/Ybp variations in MSH wol-
canat rocks. Symbioels and Neld as in Frgure 3, Veciors are
shevam Tor removal of plagioclase (), olivine (£, map-
metite (b ), clinopyroseee (O, amphibale (4 ), and gar-
mel (0. Alio shown are represeniadive iremds corre-
spomeling o assimilaticn-fractional cryssallization { AFC)
ProCessss assuming a constanl rate of asamilation vs
crvslalloeatwn (8 /K =7.3). The mibed armows oorre-
spond e @ cryseatlization assemblage consisting of 7%
plagioclase + 20 olivime+ 3% augiic + 5% Fe-Ti oxsdes,
the shaded armows correspond 1o an assemblage of 3%
plagioclase + 108 gugite + 0% amphibole + 3% Fe-Ti os-
whes. Distrbution coclficiens sl 1o determine mmeral
werlors and AFC trends are given in Tahle 5, Assimilanis
included Tyee sediment {cf. table 8, Semuth and Leeman.
L9ET 5, upper crust { Taylor amd MeLennan, 1985 ), and
MSH dacile sample 5H-24 {Smith and Leeman, 1987},
The siee of the AFC arrpws encompasses &fTects of assim-
ilpting these warous end-members and assume approxi-
mately 23% crysiallization.
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Figure 7:

Ba'fr

Ta'Zi

Fig. 7, Ba/fr vs. Ta/ Zr vanaiions in M5H voleanic rocks
isymbals and skaded Neld as in Figure 3). A "manibe an-
ray” {stippled fighd ) defined by typacal MORE ard O10 s
shown for comparnson. Mote that none of the MSH basal-
nt rocks {mor most of the dacites ) phot wathin the feld
far tvpical volcanic arc magmas (diagonally ruled ficld;
Leeman, unpublished compilation of worldwade resulis).
Walwis for Tyee sedimenis ( Leeman, unpubl. dota ) imdi-
cated by circled Ts. Pacific authigense weighted mean
sedimeal [ PAWMS: Hole et al, 1984 plots off the scale
al BaEr=020and Ta/ Zr=000213,
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Figure 8:
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Fig. B. (a), (b, and {c) BasLa v Ba (ppond, and (d), (e), and (F) K/ La vs, La {ppm ) variatiens in M5H volcanic
rocks. Symbols and field as in Figare 3. Error bars represent estimated apalvtical uncerainiy for sach trace clement ar
ratie. Alsa shown in (Bh aad {e) are estimates for upper (00 ) and lower crust (L) ( Taylor and Mclennan, 1985],
Tremads im (a) and (d) labelled SO represent clesed-system fractional cryssallization processes, Treads in (b and (¢}
invishve assimilation plus fraciional crysaallization { AFC). Crysialhzation assemblages and distribution coefficients used
in the FC and AFC models are the same as used m AFC madels iltusiraied in Figure 5. The black curves invelve assimi-
lation of MSH dacite smple SH-24 (Smith and Leeman, 1987) by 1ype [-B bazalt {both erupted during Castle Creek
time ), The shaded curves involve assimilation of upper erust { Tayhor and MeLennan, 1985 ) by iype 1<B bazali, The naled
curve shows U generalized rend Tor sssimilation of any of the M5H dacites by type 11-B hasalts. The lengih of all curves
represents approxcimadely equal degress of cvolution via AFC, Le., 40% crysiallization ( clased systerm equivalent ), or 2%
assimilation (for Bo0R, =051 and 4% assimilatton (for &,/ R® =10 B,/ F.=rote of assimilation, rate of crysialliza-
Tion b Treeds in (o) and (1) represent hinary mixing models M-1, 34-10, and M-I (se Takble 61,
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Figure 9:
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Fig. 9. Sirontium sopic compositions vs. silica in MSH voleanic rocks, Crosses represent M5H daciies | Leeman e al,
in prep. b other symbaols as in Figure 3. Ruled Nelds include das for addinsenal MSH samples from Halliday eal, (1983,

Table 5:

TABLE %

Minemab-meh distnbution coefTichens usad in pearalogs modes

K

Kh
[
Th
Ba
Sr

£

HI
La
Th

Plegiccluse
a?
o=
00
(.01
nix
1.80
nnz
iz
(LN
[IEEL]

Amgliabsnle Clinopy o Fe-Ta Cixade CHh v Crarnel
054 03 i, AT -
nii Lol 0.1 TLCHG -

ol ral .1 KR E

0.3 L] 0.1 Dk -

0.4 LN [{NI]Y 1 CHW -
048 {14 0. (R4 ]| -

035 {126 .15 LA -

s .26 025 ]|

2% LUNRR P 0,026 ELAIKRS nars
1.2 L&D (LOES [EEEIE 4

Sogrges of valwes include Shimion and Kughing {1975, Pearce and Morre £ 1979 ), Hemdersan § 19821, Dostal o al 19835, ancd

Honjo and Leeman { 1987 b,
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Figure 10:
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Fig. 10, 50 /&1 v, Sr (ppm ) for selected MSH volcanic rocks, Crosses represent MSH dacites; other svmbods as in
Figure 3. Error bars represeni estimated analytical wnceriainty for *'Sr/*Sr ratios and Sr conteats. Curves for four AFC
madets (1,2, 3, and 4 b are illwstranted . The assimilant is a M5H daciie vephra erupred during Castle Creek ime ( sample
5H-24; Smith and Lezman, | %87 ). Parental magmas include maffic types I-B (D527, models | and 2] and [0 (DS
T2 models 3 and 4 ). The fractionating assemblage used in models | and 5 is 70% plagioclase < 3% clinopyroxene + 3%
Fe-T1 axides + 3% aliving the assemblage used in models 2 and 4 15 45% plagioclpse + 1% clinopyroxens + 3% Fe-Ti
oxide +40% amphibole. The length of the curves represents the same degrees of AFC evolution as illusiraced im Figure
Eboe, Lo, A% erystallizanon (closed svitem equivalent), or 20% sssimilation. B /R, = 0.5 for the models shown here;
madels involving R, /R, rafios equal to 1.0 have trends within the ranges for the models ilfustrated, thus they were omitied
for clarity. Also shown are curves for mixing berween end members used in models M-I, -1 and M-I (see Tabie &)
the crrcled asterssks represent specific andesite compositions caleulated in thase models



Table 6:

TABLE &
Pelagma exining models
Mende: M- -1 ML
Samuple: D5+ SH-1B=  SH-A D571+ DS4l= DT L%+ SH-2l= D6
Rock type: {1-B) {Dacmic)  (1-A) AI-BA (Dacie) (kA (1) (Dacitey  (l-A)
Eruptive perioal: (07} Kl (Kl 100 {GR (GR ) (oc) (P (K)
% Felsic EM s .86 Ty

Caloulated  Obsersed Allowatle  Caloulated  Observed Allpwable  Calculaied  Observed AL Bl

Bvbrid hybeid  Dlferemes  cmor hyhrid hybrid  [dference  ermar Fiyrid Fiybrid Dhffersnce  eqeor
s B3I nat - - 070334 na - 070351 0Inas) M LM
Sy 5161 58.78 L.17 1.1% 6198 6169 —29 1.2% 023 54,38 - I.8F 1.7
Tl 1,28 LI - 7 .71 TS .04 a0 (54 91 — i a0
Al 1 7.6 17.25 k19 035 17 E2 1E.1& 0,34 035 Rl 17.42 LLELK] 0k
Fel® T8 f.82 =037 041 RE2 430 -~ Ly ] .06 102 [ 047
nl) i1 1l (R 041 i ao% anl 010 (A1) (IEL] ol
Mgl 414 3.44 -85 0.2 1M bR 1] 2 QI .0 142 adl 07
Cald 054 .34 =L 15 .37 L | Saw o 01 5,80 6,58 i1 =]
M0 44y 442 L3 0.27 A TT 461 016 [iBE] 444 4,35 —09 024
L] |49 158 —ii? a0k 121 1.7 004 .08 1.3 1.14 — i [iird
Fiid, e 01.26 — i aaz oS [N 010K H1]] 0.22 AT ~d ]
Eb i3 3 0.0 3 o H L] 4 24 24 -5 3
Cy 141 (IR -0.03% wnr ] 1.19 04 nid 1.00 0% —ik s min
Th 136 b3 —0.30 1833 L0 214 QL i H 207 riw iR R 03l
Ba St rd ) =100 £ 35 329 4 Ll im ey [ 41
S 534 23 -1 52 478 EET] & a8 534 543 4 54
& 173 133 = B 1§ 133 133 i} 13 142 147 5 1%
Hi 4 4 —(0.30 04 12 3 1] .3 3 1 1] .3
Ta 141 L =4 o4 046 D44 L B s 50 -3 aar
e 163 5.2 i VL] 9.7 1240 FX 0.7 122 1Ed il 14
Co 2.4 196 ~ 180 L& 14,0 15,5 1.5 1.2 1.7 nn i3 LE
La 163 159 — 050 1. 1.2 1.4 04 0 12T 18 ml 0k
Ce ELL 4.5 — 140 2.8 238 454 21 zl 116 my 11 13
Sk 404 174 —03% 30 FRH LY ] 047 023 1M 135 o o7
Eu 1.33 (1] -3 i 0.80 05 LAY s 1.7 1.4 HEI}] 0ioé
T .57 k48 — i 07 03B 040 002 LIEY dh 047 K] oo
¥h .63 1.6 — 03 16 1.2% .30 LR il 17 1.47 30 o
Lu .25 23 — o2 k02 .19 fuliy] Al ooy 1Y .21 naz o
La/Th .56 T IET] 1. 480 541 —ia S (L] 584 —i3 nas
BayLa 2.4 204 — 1 k| 200 W4 =i 41 250 3R b3 1.5
K/La TiE T — 1A 6D 9z wra _% T a4 EET] A 3]
RbyTh 12,70 14,60 111 IEY 146 (LN ik 058 LT 1.EE -1 3 0.7

.27

SH dacite campasitioas (SH.21. SH- 18, US—“II.I;S;:‘ in the models are piven in Smith and Lecman {1947 5 the sample locations s deseribod im Appendix [, Abbre

vintions for eruplive pords: (0 =Castle Croek, PO = Pse Creek, K =Kalsms, G = Gost Rocks. (cof. Table 1) Difh

beraezn cal

J and observed hybnd

cumpasitins which 15 cutside the range of allowable error are given in bedd italice thease which are slightly out of range are gives in light sialics. The slksshle ermes
givem for cach moded equid v limes the absoluie amalvtical error for each elemens and ritie ohsereed in thie madelled andesite,
.6 = nal aveilabie.



	The Origin of Mount St. Helens Andesites
	Repository Citation

	Microsoft Word - 355408-text.native.1378907599.docx

