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The Relationship Between Discrete Vector

Quantization and the P-Median Problem
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Abstract

We show that a well studied problem in the engineering community is the
same as a problem studied by mathematical combinatorialists. Specifically, we
show that the question of optimally designing a vector quantizer, which is an im-
portant problem in coding theory, is the same as the p-median problem, which
is a classic graph theory problem with important applications in operations
research. The importance of the relationship lies in the fact that both commu-
nities have spent years developing solution methodologies, and this connection
permits each community to glean new ideas from the other. We show that two
of the most popular heuristics are equivalent, meaning that they produce the
same sequence of iterates, under suitable conditions. However, the technique
used to design a quantizer outperforms its counterpart in graph theory under
these same conditions.
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1 Introduction

Advances in information and coding theory have revolutionized how society han-
dles data transactions. The examples are numerous and far reaching and include
internet transmissions, image compression, and security coding, to name just a few.
Information theory is credited to Claude E. Shannon, and one of the problems he
foreshadowed was that of vector quantization (VQ). Shannon’s insight was that we
can quantify the difference between an input and coded signal by assuming the exis-
tence of a distortion measure. Although not titled vector quantization at the time,
he worked on VQ under the guise of source coding subject to a fidelity criterion [3].

About the same time as Shannon was laying the groundwork for information
theory, graph theorists and operations researchers were beginning to investigate a
clustering problem called the p-median problem. Initial investigations were under-
taken by Hakimi [6], and investigations have continued as part of facility location.
The problem has spawned a substantial literature, and readers are directed to the an-
notated bibliography in [11]. At first glance, there is no reason to believe that coding
theory should have any but the most tenuous connection to facility location. However,
both problems are clustering problems since both are interested in grouping elements
and assigning a representative to each group. So there surely is a connection, and in
fact, we show that the problems in the discrete setting are equivalent. Both problems
have continuous counterparts, with VQ’s original intent being to quantize a contin-
uous signal and the p-median’s foundations lying in the Weber problem [11, 18]. As
with all continuous problems that are solved with digital computation, both manifest
themselves as discrete problems in practice. Moreover, in the case of the p-median
problem Hakimi [6] proved that the continuous problem always has a solution that
corresponds to its discrete counterpart.

We begin by defining the problems in detail and establishing the previously un-
recognized result that they are the same. The sense of equivalence is strong, and
in fact, a primal and dual pair of linear programs would not be equivalent with our
definition. The connection is important for two reasons: 1) some problems are con-
ceptually easier to model in terms of quantizer design while others are better suited to
graph theory descriptions, and 2) each community can adopt the heuristic procedures
developed in the other community. With regards to the latter, we show that under
suitable conditions two of the most popular heuristics produce the same sequence of
iterates, but that the technique developed for VQ design is superior computationally.

2 Notation and Problem Statements

Vector quantization is a process that codes continuous or discrete signals subject to
a fidelity criterion and is often used to compress images or other data. A vector
quantizer, or simply a quantizer, is a mapping Q from an input set of vectors V onto
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an N element subset C of V —i.e. Q : V
onto
→ C ⊆ V, where |C| = N . The image

set C is called the codebook and its elements are called codevectors or codewords. A
quantizer partitions V into N distinct regions called cells, which are defined for every
v̂ ∈ C by

Vv̂ = {v ∈ V | Q(v) = v̂}.

Quantizers are typically separated into two processes, known as the encoder E
and the decoder D. The encoder’s task is to assign an input vector to a partition
cell, and hence, E : V → {1, 2, . . . , N}. The decoder selects a vector from each cell
to serve as that cell’s codevector. So, D : {1, 2, . . . , N} → C and Q(v) = D(E(v)).
A common example is found in analog to digital conversion, where the continuous
analog signal in Hertz (Hz) is quantized into a finite collection of digital signals. For
example, a human’s auditory range is between 20 and 20,000 Hz. If the digital storage
medium only distinguishes between N different signals, a simple encoder would map
the interval [20+19980(i−1)/N , 20+19980i/N ] to the integer i, for i = 1, 2, . . . , N . A
simple decoder would map i to the midpoint of the interval, i 7→ 20+19980(i−1/2)/N .
Such a quantizer mimics the rounding process. A discrete example is to let V be a
finite set of points on a city map. Consider an encoder that maps these locations into
school districts, each represented by a district number. The decoder then maps the
index number of a particular district to the location for that district’s school. In this
work we only consider discrete quantizers, and hence |V| ≤ |N|, where N is the set of
natural numbers.

A quantizer’s performance is evaluated in terms of distortion, which relies on two
pieces of information. The first of these is a real value that represents the similarity
between any two input vectors, and allowing R+ to be the set of nonnegative real
values, we let ρ : V × V → R+ map the ordered pair (vi, vj) to the nonnegative
similarity ρ(vi, vj), which measures how similar vi is to vj. We emphasize that ρ is
not necessarily a metric. In particular, ρ is not required to be symmetric, it does
not need to satisfy the triangular inequality, and ρ(vi, vj) = 0 does not necessarily
imply vi = vj. This said, a common measure is the squared Euclidean distance,
ρ(vi, vj) = ‖vi − vj‖

2, but the particular measure is often tailored to the application.
We simply assume that ρ(vi, vj) is a nonnegative value meaningful to its application.
The second piece of information is the probability of observing an input vector, and
we assume that α(v) is the probability of observing v. In the school district example,
α(v) could be the probability that location v is a house with school-age children.

A quantizer’s performance is measured in terms of its expected (or average) dis-
tortion, which is

DQ = Eρ(v,Q(v)) =
∑

i

ρ(vi,Q(vi))α(vi),

where i indexes the elements of V. The objective is to design an optimal quantizer,
meaning that it minimizes the expected distortion. The feasible region for the design
process is the collection of N element subsets of V, making the size of the feasible
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region
(

|V|
N

)

. For any particular N element subset of V, say W, we have that the
partition cell for each w ∈ W that minimize the distortion is

Vw = {v ∈ V : ρ(v, w) ≤ ρ(v, w′) for w′ ∈ W}. (2.1)

A subtle nuance is that Vw is not necessarily unique because some of the elements
of V may be equally similar to several elements of W. In such a situation, we assign
these elements of V to the member of W with the smallest index, making Vw well
defined. With this notation, the N-element VQ design problem on V with respect to
(ρ, α) is

min

{

∑

w∈W

∑

v∈Vw

ρ(v, w)α(v) : W ⊆ V, |W| = N

}

. (2.2)

We now turn our direction to the p-median problem, which is a facility location
problem first investigated by Hakimi [6]. This problem operates on a strongly con-
nected digraph (V, E). We define a position on (V, E) to be either a vertex or a point
along an arc, and we write P ⊆ (V, E) to mean that P is a collection of positions
on (V, E). Although it is customary to call the problem the p-median problem, for
notational convenience we instead refer to it as the N -median problem (p is used
denote a position). We let β(v) be the weight assigned to vertex v and γ(pi, pj) be
the nonnegative value assigned to each ordered pair of positions (pi, pj). As before,
we do not generally assume that γ is a metric. The N -median problem is to locate
N positions on the digraph and an assignment of the vertices to these positions that
solves

min







∑

p∈P

∑

v∈Vp

γ(p, v)β(v) : P ⊆ (V, E), |P| = N







,

where
Vp = {v ∈ V : v is assigned to position p}.

Any collection P that solves this optimization problem is said to be a collection of
medians.

While the vertex set is assumed to be finite, the fact that the positions are allowed
to be located along the edges makes the problem continuous. We are only concerned
with the discrete counterpart, which considers selecting N positions from a set P′

with the properties that V ⊆ P′ and |P′| ≤ |N|. We call this the N-median problem
on (V, E) restricted to P′ with respect to (γ, β). Similar to the quantization problem,
for an N element sub-collection P of P′ to be a collection of medians, it is necessary
that

Vp = {v ∈ V : γ(v, p) ≤ γ(v, p′) for p′ ∈ P}. (2.3)

Again, these sets are not necessarily unique, and if ties exist, the vertex is assigned
to the position with the lowest index. The N -median problem restricted to P′ with
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respect to (γ, β) is

min







∑

p∈P

∑

v∈Vp

γ(v, p)β(v) : P ⊆ P′, |P| = N







. (2.4)

Some historical notes about the N -median problem are worth mentioning because
they position our work within the current research environment. Hakimi’s original
work [6] assumed a (strongly) connected and non-negatively weighted (di)graph. From
this graph he constructed a complete (di)graph in which the edge weights were the
shortest path distances in the original graph. This construction induces the shortest-
path metric on the complete graph, which is a pseudo-metric instead of a metric.
Under these conditions he established the following result.

Theorem 2.1 (Hakimi [6]) If G is a connected (di)graph with nonnegative vertex
and edge weights, then there is a collection of N vertices that are also medians with
respect to the shortest-path-metric.

This result states that we can solve the N -median problem by restricting our search
to vertices, provided that the conditions of the theorem are satisfied. However, over
time the conditions guaranteeing this result were disregarded, and today the N -
median problem is often stated as the discrete problem of finding N -vertices on a
weighted (di)graph where the edge weights have no particular structure. This modern
re-formulation undermines Hakimi’s original work, which provides conditions under
which a continuous problem can be solved by a discrete counterpart. In the next
section, we define an equivalence relation between optimization problems and show
that the discrete version of the N -median problem is equivalent to finding N vertices
of a uniquely associated digraph. This result addresses the modern re-formulation
since we do not require any particular structure on the edge weights, and hence, our
result re-casts Hakimi’s original work with respect to the modern statement of the
N -median problem. The same equivalence relation is used to show that the optimal
design of a quantizer is the same as solving the N -median problem. The problem
statements in (2.2) and (2.4) certainly hint at this connection, which is formalized in
the next section.

3 Problem Equivalence

A standard concept of ‘equivalent’ mathematical programs is not widely accepted
within the optimization community. Some use the term to mean that the solutions
of one problem correspond to the solutions of another. Others use the term to mean
that a problem is simply re-modeled. In fact, nothing is mentioned about this in
the Mathematical Programming Glossary [4] because the concept is not generally well
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defined [5]. We define an equivalence relation that requires problems to be invertible
transformations of each other, and such problems are called identical. To be precise,
we say that the problems

P1 : min{f(x) : x ∈ X} and P2 : min{g(y) : y ∈ Y } (3.1)

are identical under h if there is a bijection h : X → Y such that f = g ◦ h−1. This
sense of equivalence is strong and essentially states that we have simply re-labeled
the elements of the feasible region in a way that maintains the objective value. Some
immediate observations about this relation are that

1. if P1 is identical to P2 under h, then

h(argmin{f(x) : x ∈ X}) = argmin{g(x) : y ∈ Y }) and

2. the equivalence class of P1, denoted [f, X], is

[f, X] = {(g, Y ) : h(X) = Y and f = g◦h−1, for some bijection h : X → Y }.

The problem statements in (2.2) and (2.4) were modeled to highlight their similar-
ity. Indeed, we purposefully used V to denote both the set of vectors to be quantized
and the vertex set of the digraph to highlight this connection. The electrical engineers
were addressing the problem probabilistically as the optimal design of a quantizer
(recall that α is a probability density) whereas the mathematical programmers ap-
proached it as a combinatorial optimization problem. In the end, the problems are
identical, a statement made rigorous in Theorem 3.1.

Theorem 3.1 Let P′ be a discrete collection of positions on the strongly connected
digraph (V, E). Let β : P′ → R+ satisfy

∑

v∈V
β(v) = 1 and β(v) = 0 if v ∈ P′\V.

Further assume that γ is any map from P × P into R+. Then the following problems
are identical.

1. The N-element VQ design problem on P′ with respect to (γ, β),

2. The N-median problem on the complete digraph (P′, P′×P′) restricted to P′ with
respect to (γ, β), and

3. The N-median problem on (V, E) restricted to P′ with respect to (γ, β).

Proof: From (2.2) and (2.4) we see that problems 1 and 2 are respectively

min

{

∑

w∈W

∑

v∈Vw

γ(v, w)β(v) : W ⊆ P′, |W| = N

}

(3.2)
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and

min







∑

p∈P

∑

v∈Vp

γ(v, p)β(v) : P ⊆ P′, |P| = N







. (3.3)

We define the bijection from the feasible region of (3.2) onto (3.3) by

h(W) = P if and only if W = P.

We mention that this is nothing more than the identity map on the collection of
N -element subsets of P′. To see that the objective values align properly under this
bijection, notice that from (2.1) and (2.3) we have

Vw = {v ∈ P′ : γ(v, w) ≤ γ(v, w′) for w′ ∈ W}

= {v ∈ P′ : γ(v, w) ≤ γ(v, w′) for w′ ∈ h(W) = P = W}

= Vp.

Hence, the index sets for the summations agree, from which we conclude that problems
1 and 2 are identical.

To see that problem 3 is identical to problem 2, first notice that problem 3 is (3.3),
which means both problems have the same feasible region. This allows us to use the
identity map ĥ(P) = P. Unfortunately, the index sets of the inner summations do not
agree since the vertex set for problem 3 is V and the vertex set for problem 2 is P′.
This means the index set of the inner summation for problem 3 is

Vp = {v ∈ V : γ(v, p) ≤ γ(v, p′) for p′ ∈ P},

while the index set for problem 2 is

V̂p = {v ∈ P′ : γ(v, p) ≤ γ(v, p′) for p′ ∈ P}.

However, from the assumption that β(v) = 0 for v ∈ P′\V, we have for any p ∈ P′

that
∑

v∈Vp

γ(v, p)β(v) =
∑

v∈V̂p

γ(v, p)β(v),

and hence the objective values agree under ĥ. We conclude that problems 2 and 3
are identical. The fact that problems 1 and 3 are identical follows by considering the
composition of h and ĥ.

We mention that the manner in which the two problems were stated is important to
the theorem’s conclusion. Typically, both problems are stated in terms of selecting
a subset of vectors or vertices, referred to as selection, and assigning the vectors
or vertices to the selected elements, referred to as assignment. The optimization
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problems in (2.2) and (2.4) do not consider assignment in their descriptions of the
feasible regions. Instead, both feasible regions are the N -element subsets of the
vectors or vertices and the assignments are described by the index set of the inner
summation. This is allowed because each N -element subset defines a unique optimal
assignment as defined in (2.1) and (2.3). The fact that some elements may have
equal similarity means there may be numerous, even an uncountable number of,
alternative assignments. However, the discrete assumption means that the vectors to
be quantized and the vertices of the digraph were at most countable. This is crucial
to the proof since it allows us to define a unique assignment for each feasible subset
with the least index rule.

To highlight the importance of the least index rule, let (V, E) be the digraph in
Figure 1 for problem 3 in Theorem 3.1. The corresponding complete digraph for
problem 2 is in Figure 2 (arrows are not shown). The problem on (V, E) only assigns
positions p1, p3 and p4 —i.e. the vertices in V, whereas the problem on (P′, P′ × P′)
assigns p1, p2, . . . , p6 —i.e. the elements of P′. Suppose we are solving the 2-median
problem and that γ and β are such that

• {p1, p4} is the unique solution (notice this is for both problems), and

• for the problem on (V, E) we have Vp1
= {p1} and Vp4

= {p3, p4}.

Considering the problem for (P′, P′ × P′), we see that the positions p2, p5 and p6 now
need to be added to Vp1

and Vp4
, and our construction says they will be assigned

to p1 or p4 depending on to which they are more similar. However, we could have
γ(pi, pj) = 0 for i = 2, 5, 6 and j = 1, 3, 5, meaning p2, p5 and p6 are equally similar
to each of the elements in V. Our construction dictates that p2, p5 and p6 are each
assigned to the median with the lowest index, and using the notation from the proof
of Theorem 3.1, we have V̂p1

= {p1, p2, p5, p6} and V̂p4
= {p3, p4}, which is a unique

assignment. If the least index rule was removed, then there would be
(

3

3

)

+

(

3

2

)

+

(

3

1

)

+

(

3

0

)

= 8

possible ways to add p2, p5 and p6 to Vp1
and Vp4

. Notice that if the feasible regions
had been stated in terms of both selection and assignment without regard to some
tie braking rule for the assignment decision, then this would have violated the fact
that the argument minimums would have needed to have the same cardinality. So
our statement of the model is important because the objective function is defined in
terms of a unique assignment. It is likely that one could address the problem in the
continuum by invoking the axiom of choice.

Theorem 3.1 has two important corollaries.

Corollary 3.2 Every discrete N-element VQ design problem corresponds to a dis-
crete N-median problem on a complete digraph restricted the vertices.
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Figure 1: A strongly connected
digraph with 3 added positions
to select medians from.
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Figure 2: The corresponding
complete graph of the digraph
in Figure 1, all edges are bi-
directional arcs.

This follows immediately from the fact that problems 1 and 2 in Theorem 3.1 are
identical. The idea is to start with an N -element VQ design problem and simply
construct the complete digraph whose vertices are the vectors in the quantization
problem. Notice that the N -median problem is restricted to the vertices, which
allows the similarity measure ρ in the quantization problem to fulfill the role of γ in
the N -median problem. Similarly, the vertex weights in the N -median problem are
the probability measures in the quantization problem (after normalization).

The second corollary addresses the historical divide between Hakimi’s original
work and the modern interpretation of the N -median problem.

Corollary 3.3 For every discrete N-median problem there is an alternative N-median
problem in which only collections of vertices need to be considered. Moreover, this al-
ternative N-median problem corresponds to an N-element VQ design problem.

Similar to the previous corollary, this statement follows immediately from the fact
that problems 1, 2 and 3 in Theorem 3.1 are identical. However, a graph description
is warranted. Consider the N -median problem on (V, E) restricted to P′ with respect
to (γ, β). Recall that γ is defined for every element in P′ × P′. This means we can
consider the complete digraph (P′, P′ × P′) with edge weights defined by γ. This
complete digraph does not have node values for the vertices in P′\V, and we extend
the definition of β to β̂ so that β̂(p) = β(p) if p ∈ V and β̂(p) = 0 if p ∈ P′\V. This
extension satisfies the conditions of Theorem 3.1, and hence, we only need to consider
collections of vertices of the complete digraph to solve the discrete problem on (V, E)
restricted to P′.
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This argument is similar to Hakimi’s original proof since he constructs a complete
graph with the shortest-path metric. However, Hakimi’s proof required an addi-
tive property along arcs, namely that if p is a position on (vi, vj), then γ(vi, vj) =
γ(vi, p) + γ(p, vj). This is a reasonable assumption in some settings, but it is not
appropriate in others. For example, if γ(vi, vj) is the travel cost from vi to vj, then
stopping along the way may increase or decrease the cost depending on tolls and/or
fuel costs. Our approach does not require this additive property. Our conclusion co-
incides with Hakimi’s because they both state that we only need to consider vertices
of an appropriate digraph when searching for medians.

4 Solution Techniques & Complexity

Kariv and Hakimi [8] showed that the problem of finding an N -median on a connected
digraph is NP-hard in N and |V|. Polynomial algorithms exist, however, for the case
when N is fixed. This is often confused in the literature, where many have supported
the need for heuristics because of the NP-hardness of the problem for a fixed N . A
complete discussion of this topic is found in [2].

Although our discrete version of the N -median problem is different than Hakimi’s
original statement, the following result states the related conclusion that the discrete
N -median problem on (V, E) restricted to P′ with respect to (γ, β) is polynomial as
long as N is fixed.

Theorem 4.1 The worst-case complexity of the discrete N-median problem on G =
(V, E) restricted to P′ with respect to (γ, β) is O(|V||P′|N+1).

Proof: The size of the feasible region is
(

|P′|
N

)

= O(|P′|N). We need to compare
each element of a feasible P to the elements of V to form Vp, which is O(|V||P′|).
So, starting with (V, E) and P′, we require no more than O(|V||P′|N+1) iterations to
define (2.4). The addition in the objective function additionally requires no more
than O(N |V|) multiplications. Hence, the total computation requires no worse than
O(|V||P′|N+1 + N |V|) = O(|V||P′|N+1).

Notice that since V ⊆ P′, we also find that the complexity is no worse than O(|P′|N+2),
which is less impressive for the N -median problem but appropriate for VQ design.
This leads to the following corollary.

Corollary 4.2 The worst-case complexity of the N-element VQ design problem on
P′ with respect to (γ, β) is O(|P′|N+2).

Proof: From Theorem 3.1 we have that if V = P′, then the problems are identical.
So the result is established by Theorem 4.1.

10



Polynomial time does not mean heuristics are unimportant, and the computational
demand in many applications exceeds modern capabilities. Both communities have
suggested heuristics, and a benefit of Theorem 3.1 is that it allows us to model a
situation as either VQ design or median location, whichever is cognitively simpler,
but heuristically solve the problem with the techniques from the other realm. The rest
of this section compares some of the common heuristics for both problems, with the
most significant result being that two of the heuristics are the same under common
conditions, meaning that they produce the same sequence of iterates. However, a
subsequent argument shows that the method for VQ design has a lower complexity.

The most common method for designing a quantizer is the Lloyd Algorithm, which
was originally proposed in an unpublished technical report in 1957 and later published
in 1982 [9]. Lloyd’s algorithm is stated in terms of the continuum, and we discuss
and analyze a discrete counterpart that we call the discrete Lloyd algorithm (DLA).
With respect to the N -median problem, a technique first proposed in 1964 that re-
mains popular is the Maranzana algorithm [10]. Both techniques iterate between the
assignment and selection parts of the problem in a way that improves the objective
function. In terms of (2.2) and (2.4), both algorithms begin with an initial feasible
element, W and P. The assignments part is the construction of the inner summations’
index sets, Vw for w ∈ W and Vp for p ∈ P. The selection part of the problem is to
update W and P by respectively calculating for each w ∈ W and p ∈ P

argmin

{

∑

v∈Ww

ρ(v, w′)α(v) : w′ ∈ Ww

}

(4.1)

and

argmin







∑

v∈Vp

γ(v, p′)β(v) : p′ ∈ Vp







. (4.2)

An element from each argument minimum is selected to form the new feasible sets,
say Ŵ and P̂, which replace W and P. The process continues until Ŵ = W and P̂ = P.
The objective function is non-increasing with every new Ŵ and P̂, see [3] and [10].

The fact that these two algorithms produce the same iterates if applied to the same
problem and initialized in the same way is clear. However, because the historical de-
velopments are different, the Lloyd algorithm calculates the argument minimums in
(4.1) differently than the Maranzana algorithm does for the argument minimums in
(4.2). The difference lies in the fact that VQ design was traditionally addressed as a
continuous problem with ρ(vi, vj) = ‖vi − vj‖

2 —i.e. the similarity measure between
two vectors was the squared error. Lloyd used this to his advantage when calcu-
lating the argument minimums, and instead of addressing (4.1) directly, he instead
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calculated the center-of-mass of each cell Ww, which is

∑

v∈Ww

α(v)v

∑

v∈Ww

α(v)
.

A couple of observations are warranted. This calculation requires the product α(v)v
to be well defined, which is true if V is a vector space built on a scalar field containing
the range of α. Traditional VQ problems are cast in the continuum with V = Rn

and α(V) ⊆ R, an assumption used by Lloyd. Our discrete setting does not permit
this assumption, but the dense approximation V = Qn and α(V) ⊆ Q is allowed (Q
is the set of rationals), which reduces everything to rational arithmetic. In general
we simply assume in this discussion that V is at most a countable subset of Rn (α is
already assumed to be real valued).

A second observation in the discrete setting is that we are not guaranteed V

contains the center-of-mass even if the arithmetic is well defined. This is not an issue
for rational arithmetic but is a significant problem in the common situation of V being
finite. However, if we assume that α(v) is constant, which is the same as assuming the
elements of V are uniformly distributed, then we can compute the center-of-mass and
project it onto Ww to calculate the argument minimums in (4.1). A short argument
establishing this fact begins with the well-known and easily established result that

{

1

|Ww|

∑

v∈Ww

v

}

= argmin

{

∑

v∈Ww

‖x − v‖2 : x ∈ Rn

}

, (4.3)

which states that the center-of-mass minimizes the squared error in the continuum.
Since the objective is strictly convex, a proof of this follows by showing that the center-
of-mass satisfies the first order conditions, an argument we forgo. We let proj

Ww
(v)

be the nearest element of Ww to v, with ties being decided by the least index rule,
and show that this element is in the desired argument minimum. Similar ideas are
found in [1].

Theorem 4.3 Assume W ⊆ V, |V| = N < ∞, ρ(vi, vj) = ‖vi − vj‖
2 and α(v) is

constant. Then, for each w ∈ W we have

projWw

(

1

|Ww|

∑

w∈Ww

w

)

∈ argmin

{

∑

v∈Ww

‖w′ − v‖2 : w′ ∈ Ww

}

.

Proof: Let w ∈ Ww and M = (1/|Ww|)
∑

w∈Ww
w. From (4.3) we have for any
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nonnegative k that
{

x ∈ Rn :
∑

v∈Ww

‖x − v‖2 ≤
∑

v∈Ww

‖M − v‖2 + k

}

=

{

x ∈ Rn :
∑

v∈Ww

(

(x − v)T (x − v) − (M − v)T (M − v)
)

≤ k

}

=

{

x ∈ Rn :
∑

v∈Ww

(

xT x − 2xT v − MT M + 2MT v
)

≤ k

}

=

{

x ∈ Rn :
1

|Ww|

∑

v∈Ww

xT x − 2xT

(

1

|Ww|

∑

v∈Ww

v

)

−

1

|Ww|

∑

v∈Ww

MT M + 2MT

(

1

|Ww|

∑

v∈Ww

v

)

≤
k

|Ww|

}

=
{

x ∈ Rn : xT x − 2xT M − MT M + 2MT M ≤ k/|Ww|
}

=
{

x ∈ Rn : xT x − 2MT x + MT M ≤ k/|Ww|
}

=
{

x ∈ Rn : ‖x − M‖2 ≤ k/|Ww|
}

=
{

x ∈ Rn : ‖x − M‖ ≤
√

k/|Ww|
}

.

So, the optimal value of

min

{

∑

v∈Ww

‖w′ − v‖2 : w′ ∈ Ww

}

(4.4)

is
∑

v∈Ww
‖M − v‖2 + k, where k is the smallest value such that

{

x ∈ Rn : ‖x − M‖ ≤
√

k/|Ww|
}

∩ Ww 6= ∅.

Since the first set is a ball around M of radius
√

k/|Ww|, we have from the def-
inition of proj

Ww
(M) that the smallest value k/|Ww| with this property is (M −

projWw
(M))T (M − projWw

(M)), which guarantees

projWw
(M) ∈

{

x : ‖x − M‖ ≤ ‖M − projWw
(M)‖

}

∩ Ww.

Hence, projWw
(M) solves (4.4).

Theorem 4.3 shows that an element of (4.1) can be calculated by projecting the
center-of-mass onto Ww, provided that α(v) is constant and V is finite. Both cal-
culating the center-of-mass and projecting it onto Ww are O(|V|), which means the
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complexity of calculating Ŵ in the Lloyd algorithm is O(N |V|). Unlike the Lloyd
algorithm, the Maranzana heuristic was developed without any foreknowledge of γ
and β, and hence the construction of P̂ requires pairwise comparisons within each
Vp, which is O(N |V|2). So, in the finite case when β is constant and γ is squared
error, the Lloyd algorithm applied to the N -median problem has significantly lower
complexity, a fact supported by the numerical results of the next section.

The conditions of Theorem 4.3 are limiting, and in general, the pairwise com-
parisons of the Maranzana algorithm are needed. In fact, translating an N -median
problem into a VQ problem that naturally mirrors the framework presented in the
VQ literature is not possible. This is because the similarity measures (edge weights)
γ(vi, vj) are not generally assumed to represent the geometry of Rn whereas the val-
ues ρ(vi, vj) generally do. Our algebraic models easily demonstrate the relationship
between the two problems, but to adapt a solution methodology for VQ design, like
the Lloyd algorithm that uses the metric properties of Rn, requires caution. If γ does
not allow the graph to be embedded in Rn, then there is not a natural way to give
the nodes coordinates. Without coordinates, the arithmetic needed to calculate the
center-of-mass is not well defined, making the Lloyd algorithm useless for the general
N -median problem.

Heuristics developed for the N -median problem are designed to work with or with-
out any special structure, and it is simple to translate VQ problems into N -median
problems and use any number of heuristics developed for the N -median problem,
see [11] for a review of such methods. Because of this, the numerical experiments of
the next section consider heuristics to the N -median problem and the Lloyd algorithm
(appropriate structure is assumed). The most common and most tested heuristic for
the N -median problem is vertex substitution (VS), see [14, 15, 16] for comparisons.

Vertex substitution was originally developed in 1968 by Teitz and Bart [17]. Each
iteration of the method decides whether or not to swap a position in P with po-
sition not in P. Variations differ in how they select the elements to swap. In
1983, Whitaker [19] developed an implementation known as fast interchange, which
was later implemented in the Variable Neighborhood Search method of Hansen and
Mladenovicć [7]. Both of these implementations begin by searching through V\P

and testing whether swapping with an element of P would reduce the objective func-
tion. Whitaker’s method performs the swap with the first profitable position found,
whereas the Hansen and Mladenović implementation tests all possible swaps and per-
forms the most profitable one. Interested readers are directed to [7] and [12] for
complete descriptions.

5 Numerical Experiment

The discussions of Section 4 identify possible performance differences in the solution
methods for the two problems, and in this section we numerically compare the per-
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formance of the methods presented in Section 4. To make sure that all problems can
be solved with the Lloyd algorithm in addition to the heuristics for the N -median
problem, we assume all examples are complete digraphs for which P′ = V ⊆ R3,
|V| < ∞, β(v) = 1 and γ(v1, v2) = ‖v1 − v2‖

2. This graph representation allows us to
naturally interpret the problem of finding medians as a problem in VQ design, simply
let α = β and ρ = γ.

Problems are identified by the tuple (|V|, N), so (1000, 15) is an instance with
1000 nodes (vectors) and 15 medians (codewords). We randomly generated V with
MATLAB 7.0 and considered all instances (|V|, N) in

{100, 250, 500, 1000, 1200, 1500, 2000}× {5, 10, 15, 20, 30},

producing 35 different problems in the unit hypercube of R3. For each problem we
randomly generated 30 different N -element subsets of V to use as starting points for
each heuristic.

Each problem was modeled as the standard binary optimization problem in Ap-
pendix A and solved with CPLEX’s network simplex algorithm. This allowed us to
know a global solution for problems with |V| ≤ 1000 (larger instances were beyond
this technique) together with the time needed to calculate it. Other CPLEX options
were considered, but the network simplex method consistently outperformed the other
possibilities.

The discrete Lloyd algorithm dominates the other techniques with respect to
speed, but as Figure 3 indicates, the solution quality is not as impressive as Hansen’s
approach, which is routinely within 5% of the global optimum. A natural question was
whether or not we could harness the speed of the discrete Lloyd algorithm to seed the
vertex substitution methods to improve run time. This experiment was conducted,
and each problem with each starting point was solved by 6 heuristics: Maranzana’s
algorithm, the discrete Lloyd algorithm, Hansen’s algorithm, Whitaker’s algorithm,
and both Hansen’s and Whitaker’s technique initialized with the solution from the
discrete Lloyd algorithm. All implementations were written in MATLAB, and results
are reported in terms of the mean and standard deviation of the objective value,
number of iterations, and run times over the 30 solves for each problem.

The results for problem instances of size |V| = 500 are shown in Table 1. A
complete list of tables for all cases is found at http://lagrange.math.trinity.

edu/tumath/research/reports/misc/report102/. The numbers in parentheses in-
dicate the appropriate percentage of the global solution found by the network simplex
algorithm. For example, a value of (1.10) in the Objective column indicates that the
heuristic terminated with an objective value that was 110% of the global optimum
and a value of (0.72) in the time column means the heuristic required 72% of the time
needed to find the global solution.

As Theorem 4.3 indicates, the Maranzana and discrete Lloyd algorithm terminate
with identical solutions, but our numerical results mirror the complexity analysis
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Figure 3: The average objective value as a ratio of the global solution versus |V| with
N = 5. Each technique appears to improve its solution quality as |V| increases.

of the previous section and show that the discrete Lloyd algorithm has a significant
computational advantage over the Maranzana algorithm, see Figures 4 and 5. Figure 5
is the same as Figure 4 except that it includes the solution time for the network
simplex algorithm for |V| ≤ 500, and this curve appears exponential. The heuristics
clearly dominate the global approach with respect to speed. For a few of the smaller
networks the heuristics were slower than the network simplex algorithm, something we
attribute to the fact that the heuristics were coded in MATLAB, which is interpreted.

Figure 6 shows an odd trend in the solution quality of the discrete Lloyd and
Maranzana algorithms. Allowing |V| to remain constant, notice that the solution
quality degrades as N increases. The ratios of Whitaker and Hansen are nearly
constant at 1.02 and 1.3, respectively. This indicates that vertex substitution is less
sensitive to a change in N . Each technique took longer to converge as N increased,
although the change for the discrete Lloyd method was insignificant.

In general, Hansen’s approach obtains excellent solutions but takes a long time to
solve. Whitaker’s approach is faster but produces solutions of lesser quality. The dis-
crete Lloyd and Maranzana methods are even faster and produce solutions generally
better than Whitaker’s method. However, these techniques are sensitive to N , and
it appears as though solution quality approaches that of Whitaker’s approach as N
increases. In many cases initializing Whitaker’s method with the solution from the
Lloyd algorithm improved the solution quality, although the improved solution was
still not as good as that from Hansen’s technique. Initializing Hansen’s technique
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Objective Iterations Time
|V| N Method µ σ µ σ µ σ

500 5

Global 501407.97 (—) — 114294 — 4282.88 (—) —
MAR 549777.60 (1.10) 26591.23 4.13 1.25 2.15 (0.00) 0.12
DLA 549777.60 (1.10) 26591.23 4.13 1.25 0.03 (0.00) 0.01
HAN 511191.39 (1.02) 7201.95 9.87 2.11 31.22 (0.01) 6.24
WHIT 648306.88 (1.29) 50385.48 4.27 2.42 7.61 (0.00) 2.62
HAN / DLA 511004.83 (1.02) 8521.28 8.00 2.84 26.56 (0.01) 10.64
WHIT / DLA 545965.52 (1.09) 19918.92 1.33 0.61 5.34 (0.00) 1.29

500 10

Global 274236.58 (—) — 30483 — 299.22 (—) —
MAR 311046.20 (1.13) 16103.83 5.20 1.94 3.09 (0.01) 0.74
DLA 311046.20 (1.13) 16103.83 5.20 1.94 0.12 (0.00) 0.07
HAN 278217.88 (1.01) 3492.21 17.87 3.51 216.63 (0.72) 90.27
WHIT 392236.36 (1.43) 19055.32 7.47 3.41 34.08 (0.11) 20.24
HAN / DLA 277250.25 (1.01) 3842.16 13.10 4.17 161.88 (0.54) 79.07
WHIT / DLA 309458.05 (1.13) 14132.92 1.17 0.38 14.61 (0.05) 6.13

500 15

Global 209176.79 (—) — 142286 — 7465.60 (—) —
MAR 241080.60 (1.15) 11371.49 4.57 1.19 2.68 (0.00) 1.01
DLA 241080.60 (1.15) 11371.49 4.57 1.19 0.11 (0.00) 0.07
HAN 213132.48 (1.02) 1963.72 23.47 4.06 329.44 (0.04) 171.43
WHIT 276778.90 (1.32) 13252.56 12.40 3.91 55.78 (0.01) 40.46
HAN / DLA 213871.82 (1.02) 2478.79 15.73 4.60 234.54 (0.03) 157.51
WHIT / DLA 238216.37 (1.14) 9649.00 1.63 0.85 19.59 (0.00) 14.52

500 20

Global 167475.09 (—) — 31609 — 3427.54 (—) —
MAR 198087.25 (1.18) 6001.96 4.77 1.25 3.61 (0.00) 0.81
DLA 198087.25 (1.18) 6001.96 4.77 1.25 0.26 (0.00) 0.11
HAN 171428.21 (1.02) 1849.10 28.63 4.96 939.15 (0.27) 172.05
WHIT 219462.79 (1.31) 8785.06 16.80 5.37 184.54 (0.05) 61.14
HAN / DLA 171983.64 (1.03) 2228.37 20.37 5.01 706.38 (0.21) 186.52
WHIT / DLA 193251.61 (1.15) 4651.41 2.87 1.38 47.11 (0.01) 19.43

500 30

Global 121038.81 (—) — 14912 — 795.63 (—) —
MAR 151675.27 (1.25) 5472.31 5.17 1.23 3.32 (0.00) 0.46
DLA 151675.27 (1.25) 5472.31 5.17 1.23 0.37 (0.00) 0.11
HAN 123840.27 (1.02) 954.77 37.93 3.52 1942.48 (2.44) 249.03
WHIT 157963.85 (1.31) 4979.40 23.60 6.03 331.29 (0.42) 108.69
HAN / DLA 124195.91 (1.03) 1284.02 27.70 5.03 1414.40 (1.78) 307.38
WHIT / DLA 144139.45 (1.19) 3200.81 5.53 2.40 96.13 (0.12) 32.92

Table 1: Data on problem instances with |V| = 500 and varying values of N and
solution methods. The number of runs of each heuristic technique was 30.
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Figure 4: The computation time for the heuristics plotted versus |V|.
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Figure 5: The computation time plotted versus the value of |V|. The solve time for
the network simplex algorithm with |V| = 1000 was 675021.47sec ≈ 8days
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Figure 6: The objective value as a ratio of the global solution versus N with |V| = 500.

with the solution from the discrete Lloyd algorithm did not produce a remarkable
change, which is expected since the solutions were generally close to optimal anyway.

In the future we hope to improve the solution quality of the discrete Lloyd algo-
rithm without sacrificing its favorable speed. In particular, we hope to be able to
initialize the algorithm so that it converges to a near optimal solution. Also, the nu-
merical results clearly demonstrate that Hansen’s approach produces quality solutions
in a fraction of the time it takes to calculate the global solution, and Theorem 3.1
allows us to use this technique to solve VQ problems. We suspect that the numerous
applications of VQ design could benefit from this approach.
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A Binary Representation of the N-Median Prob-

lem

The following binary formulation of the N -median problem from [13] was used in our
numerical experiments. Let ξij be such that

ξij =

{

1 if vertex vi is allocated to vertex vj

0 otherwise.

With this notation, the math program is

min Z =
∑

ij

β(vi)γ(vi, vj)ξij

subject to
∑

j

ξij = 1, for i = 1, . . . , n,
∑

j

ξjj = N,

ξjj ≥ ξij, ∀i, j = 1, . . . , n,
ξij ∈ {0, 1}.

The first constraint ensures that each vertex is allocated to one and only one
element in the N -element subset. The second constraint guarantees that there are N
vertices allocated to themselves, which forces the cardinality of the N -median subset
to be N . Although this is not a requirement of the general N -median problem we
presented, it is appropriate for our numerical work in which γ(vi, vj) = ‖vi − vj‖

2.
The third constraint states that vertices cannot be allocated to non medians. The
solution is {vj | ξjj = 1}.
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