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Abstract

We survey some of the fundamental results on the stability and
asymptoticity of linear Volterra difference equations. The method of
Z-transform is heavily utilized in equations of convolution type. An
example is given to show that uniform asymptotic stability does not
necessarily imply exponential stabilty. It is shown that the two notions
are equivalent if the kernel decays exponentially. For equations of non-
convolution type, Liapunov functions are used to find explicit criteria
for stability. Moreover, the resolvent matrix is defined to produce a
variation of constants formula. The study of asymptotic equivalence
for difference equations with infinite delay is carried out in Section 6.
Finally, we state some problems.

Keywords: Volterra Difference Equations, stability, Resolvent Matrix, Z-
transform, asymptotic equivalence, dichotomy

0 Introduction

Burton [3] gave a comprehensive exposition on the stability of Volterra in-
tegrodifferential and integral equations. Brunner and Van der Houwen [2]
provided numerical methods to solve Volterra equations. It is well known,
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[2, 1, 17], that numerical methods applied to Volterra equations lead to
Volterra difference equations. A systematic study of Volterra difference equa-
tions may be traced to two papers by the author that appeared in 1993 [11]
and 1994 [12]. Independently, Kolmanovskii and his collaborators developed
a parallel theory [5, 6, 7, 8]. Interesting results on stability and boundedness
of solutions of Volterra difference equations may be found in [4, 18]. Readable
accounts on Volterra difference equations and Z-transform may be found in
[13]. The main objective of this paper is to present the latest developments
in the theory of linear Volterra difference equations of both convolution and
nonconvolution types. It is not a survey of all the work done but rather a
more focused report on the work of the author and his collaborators.

1 Scalar linear equations of convolution type

Consider the equation

x(n + 1) = ax(n) +
n
∑

j=0

b(n − j)x(j), (1.1)

where n ∈ Z
+, a(n) ∈ R, and b(n) : Z

+ → R are given sequences. This
equation may be considered as the discrete analogue of the famous Volterra
integrodifferential equation

x′(t) = ux(t) +

∫ t

0

v(t − s)x(s) ds.

One of the most effective methods of dealing with Eq. (1.1) is the Z-
transform method which we will review.

Definition 1.1. [13] The Z-transform Z(x(n)) or x̃(z) of a sequence x(n),
n ∈ Z

+ (x(n) = 0 for n < 0) is defined by
x̃(z) = Z(x(n)) =

∑∞

j=0 x(j)z−j ∗ Z(x(n+k)) = zkx̃(z)−∑k−1
r=0 x(r)zk−r.

The convolution of two sequences x(n) and y(n) is defined by

x(n) ∗ y(n) =
n
∑

j=0

x(n − j)y(j) =
n
∑

j=0

x(n)y(n − j)

Z(x(n) ∗ y(n)) = x̃(z) · ỹ(z)
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Eq. (1.1) may be written as

x(n + 1) = ax(n) + b(n) ∗ x(n).

Taking the Z-transform of both sides yields

x̃(z) =
zx(0)

z − a − b̃(z)
(1.2)

or

x̃(z) = zx(0)g−1(z) (1.2′)

where
g(z) = z − a − b̃(z). (1.3)

Lemma 1.2. [12, 13] The zeros of g(z) all lie in the region |z| < c for
some real positive constant c. Moreover, g(z) has finitely many zeros z with

|z| ≥ 1, provided that x(n) ∈ `1 (summable
∞
∑

i=0

|x(i)| = ‖x‖1 < ∞).

Proof. Suppose that all the zeros of g(z) do not lie in any region |z| < c for
any c > 0. Then there exists a sequence of zeros {zi} of g(z) with zi → ∞
as i → ∞. Now

|zi − a| = |b̃(zi)| ≤
∞
∑

n=0

|b(n)||zi|−n. (1.4)

Note that the left hand side of Eq. (1.4) tends to ∞ as i → ∞, while the
right hand side tends to b(0) (by inspection), which is a contradiction. This
proves the first part of the lemma.

Since x(n) ∈ `1, the “radius” of convergence of x̃(z) is R = 1. Hence
x̃(z) can be differentiated term by term in its region of convergence |z| > 1.
Thus x̃(z) is analytic in the region |z| > 1. Furthermore, since x(n) ∈ `1, it
follows that x̃(z) is analytic on |z| ≥ 1. Hence x̃(z) is analytic in the region
1 ≤ |z| ≤ c and consequently g(z) has finitely many zeros for |z| ≥ 1.

We now utilize this lemma to provide conditions for uniform stability and
uniform asymptotic stability of the zero solution of Eq. (1.1).
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Since x̃(z) = x(0)zg−1(z), it follows that

x(n) =
1

2πi

∮

γ

x(0)zng−1(z) dz, ∗

where γ is the origin-centered circle that includes all the zeros of g(z). By
the residue theorem

x(n) = x(0) · sum of residues of zng−1(z). (1.5)

Let zr be a zero of g(z) of order k. Then the Laurent’s series expansion

g−1(z) =
∞
∑

n=−k

gn(z−zr)
n, for some sequence {gn}. Now zn = [zr−(zr−z)]n =

n
∑

i=0

(

n

i

)

zn−i
r (z − zr)

i. Let Kr be the residue of x(0)zng−1(z) at zr. Then

Kr = x(0) · coefficient of (z − zr)
−1 in g−1(z)zn. Note that the coefficient of

(z − zr)
−1 in g−1(z)zn is given by

g−k

(

n

k − 1

)

zn−k+1
r + g−k+1

(

n

k − r

)

zn−k+2
r + · · · + g−1

(

n

0

)

zn
r .

Hence

x(n) =
∑

pr(n)zn
r (1.6)

This formula has the following important consequences.

Theorem 1.3. [12, 13] The zero solution of Eq. (1.1) is uniformly stable if
and only if the following statements hold.

(a) z − a − b̃(z) 6= 0 for all |z| > 1, and

(b) if zr is a zero of g(z) with |zr| = 1, then the residue of zng−1(z) at zr is
bounded as n → ∞ (i.e., the zero of g(z) with |z| = 1 are simple).

∗Cauchy Integral Formula x(n) = 1
2πi

∮

γ
x̃(z)zn−1 dz, where γ is the origin-centered

circle that encloses all the poles of x̃(z)zn−1. By the residue theorem x(n) = sum of

residues Ki of x̃(z)zn−1. If x̃(z)zn−1 = h(z)
g(z) , then Ki = lim

z→zi

[

(z − zi)
h(z)
g(z)

]

, residue Ki at

a simple zero zi of g(z); Ki = 1
(r−1)! lim

z→zi

dr−1

dzr−1

[

(z − zi)
r h(z)

g(z)

]

if zi is a multiple zero of

g(z) of order r.

4



Proof. If condition (a) holds, then all the zeros of g(z) lie inside the disc
|z| ≤ 1. If |zr| < 1, then its contribution to the solution x(n) is bounded.
Now if |zr| = 1 at which by condition (b) the residue of x(0)zng−1(z) is
bounded as n → ∞,then by formula (1.6), its contribution to the solution
x(n) is bounded. Hence |x(n)| ≤ L|x(0)|, for some L > 0, and consequently,
the zero solution is uniformly stable.

The converse will be omitted.

Theorem 1.4. [12, 13] The zero solution of Eq. (1.1) is uniformly asymp-
totically stable if and only if

z − a − b̃(z) 6= 0 for all |z| ≥ 1

2 Explicit criteria for stability of scalar equa-

tions

We start our exposition by establishing a sufficient condition for asymptotic
stability.

Theorem 2.1. [12, 13] Suppose that b(n) does not change sign for n ∈ Z
+.

Then the zero solution of Eq. (1.1) is asymptotically stable if

|a| +
∣

∣

∣

∣

∞
∑

n=0

b(n)

∣

∣

∣

∣

< 1. (2.1)

Proof. Suppose that b(n) ≥ 0 for n ∈ Z
+. Let β =

∞
∑

n=0

b(n) and c(n) =

β−1b(n). Then
∞
∑

n=0

c(n) = 1. Furthermore |c̃(z)| ≤
∞
∑

n=0

|c(n)||z−n| =
∞
∑

n=0

c(n)|z−n| ≤
1 for |z| ≥ 1. Moreover, c̃(1) = 1. Let us write our g(z) in the form g(z) =
z−a−βc̃(z). To show uniform stability, we use Theorem 1.4. So assume that
there exists a zero zr of g(z) with |zr| ≥ 1. Then 0 = g(zr) = zr −a−βc̃(zr).
Hence |zr − a| = |βc̃(zr)| ≤ |β|. This implies that |zr| ≤ |a| + |β| < 1, a
contradiction. This completes the proof.

It is still an open question of whether or not condition (2.1) is also a
necessary condition for asymptotic stability. Nevertheless, we are able to
prove the following partial converse of Theorem 2.1.
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Theorem 2.2. [12, 13] Suppose that b(n) does not change sign on Z
+. Then

the zero solution of Eq. (1.1) is not asymptotically stable if any one of the
following conditions holds.

(i) a +
∞
∑

n=0

b(n) ≥ 1,

(ii) a +
∞
∑

n=0

b(n) ≤ −1 and b(n) > 0, for some n ∈ Z
+,

(iii) a +
∞
∑

n=0

b(n) ≤ −1 and b(n) < 0, for some n ∈ Z
+ and

∞
∑

n=0

b(n) is

sufficiently small.

Proof. We will prove (i). Let β =
∞
∑

n=0

b(n), c(n) = β−1b(n). If a + β = 1,

then g(1) = 1 − a − βc̃(1) = 1 − a − β = 0. Hence by Theorem 2.1 , the
zero solution of Eq. (1.1) is not asymptotically stable. On the other hand
if a + β > 1, say a + β = 1 + δ, for some δ > 0, then we have two separate
cases to consider.

(a) If β < 0, we let γ be the circle in the complex plane with center at a and
radius equal to |β| + 1

2
δ. Then on γ, |z| > 1. Hence |βc̃(z)| ≤ |β| <

|z − a|.

a

z
|    | + 1/2 

γ

δ

1+1/2 δ

β

a = 1+   + |    |δ β

Let h(z) = −βc̃(z), f(z) = z − a. Then on γ, |h(z)| < |f(z)|.
[Rouche’s Theorem: Suppose that the functions f(z) and g(z) are an-
alytic inside and on a simple closed contour γ in the complex domain,
and |g(z)| < |f(z)| at z ∈ γ. Then f(z) and f(z) + g(z) have the same
number of zeros, counting multiplicities, inside γ.]

Now by Rouche’s Theorem f(z) and g(z) = h(z)+f(z) = z−a−βc̃(z)
have the same number of zeros inside the circle γ, namely one z = a.
Thus g(z) has only one zero zr inside γ with |zr| > 1. Again by using
Theorem 2.1, the zero solution of Eq. (1.1) is not asymptotically stable.
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(b) Suppose that β > 0. Since a + β > 1, g(z) = 1 − a − β < 0. Moreover,

|c̃(a + β)| =

∣

∣

∣

∣

∞
∑

n=0

βb(n)z−n

∣

∣

∣

∣

≤ 1. Thus g(a + β) = β[1 − c̃(a + β)] ≥ 0.

Hence g has a zero between 1 and a + β. By virture of Theorem 2.1,
the zero solution of Eq. (1.1) is not asymptotically stable.

3 Systems of Linear Volterra Difference Equa-

tions of Convolution Type

Consider the k-dimensional system

x(n) = Ax(n) +
n
∑

j=0

B(n − j)x(j) (3.1)

where A(aij) is a k × k (real or complex) matrix, B(n) is a sequence of
k × k matrices defined on Z

+. It is always assumed that B(n) ∈ `1 (i.e.,
n
∑

j=0

|B(j)| < ∞).

Taking the Z-transform of both sides of Eq. (3.1) yields

zx̃(z) − zx(0) = Ax̃(z) + B̃(z)x̃(z)

or

x̃(z) = zG−1(z)x(0) (3.2)

where

G(z) = zI − A − B̃(z). (3.3)

In order to provide a more comprehensive characterization of uniform
asymptotic stability, we now introduce the notion of a resolvent matrix.

Definition 3.1. [11, 13] The resolvent marix R(n) of Eq. (3.1) is defined
as the unique solution of the matrix equation

R(n + 1) = AR(n) +
n
∑

j=0

B(n − j)R(j), (3.4)

R(0) = I, n ∈ Z
+.
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Take the Z-transform of Eq. (3.4) yields

R̃(z) = zG−1(z), |z| > µ. (3.5)

The resolvent matrix R(n) will be used to find the solution of the perturbed
system

y(n + 1) = Ay(n) +
n
∑

j=0

B(n − j)y(j) + g(n). (3.6)

Taking the Z-transform of Eq. (3.6) yields

ỹ(z) = G−1(z)[zy(0) + g̃(z)], |z| > µ

= R̃(z)y(0) +
1

z
R̃(z)g̃(z), |z| > µ.

Taking the inverse Z-transform we obtain

y(n) = R(n)y0 +
n−1
∑

j=0

R(n − r − 1)g(r) † (3.7)

Formula (3.7) is called the variation of constants formula of Eq. (3.1).
We now return to our main focus, asymptotic stability. Next we state a

fundamental result.
Let

h(n) :=
∞
∑

r=0

|
n−1
∑

j=0

R(n − j − 1)B(j + r + 1)|.

Theorem 3.2. [15] For Eq. (3.1), the following statements are equivalent.

(a) det(zI − A − B̃(z)) 6= 0, for |z| ≥ 1

(b) R(n) ∈ `1(Z+)

(c) The zero solution of Eq. (3.1) is UAS

(d) Both R(n) and h(n) tend to zero as n → ∞
†z[x(n − 1)] = 1

z
x̃(z)
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Proof. (a) ⇒ (b) Define the matrix sequence B̂(n) = B(n) if n 6= 0, B̂(0) =
B(0) + A. Then Eq. (3.4) may be written as

R(n + 1) = B̂(n) +
n
∑

j=1

B̂(n − j)R(j)

|R(n + 1)| ≤ α +
n
∑

j=1

|B̂(n − j)||R(j)|.

By the discrete Gronwalls’ inequality

|R(n)| ≤ (1 + α)n = βn, α = ‖B(n)‖.

Hence

R̃(z) = z(zI − A − B̃(z))−1, |z| > β > 1

=

(

I − 1

z
A − 1

z
B̃(z)

)−1

, |z| > β > 1.

For sufficiently large η,

inf

∣

∣

∣

∣

det

(

I − 1

z
A − 1

z
B̃(z)

) ∣

∣

∣

∣

≥ 1

2

|z| > η.

Furthermore, on the compact annulus 1 ≤ |z| ≤ η, inf det
(

I − 1
z
A − 1

z
B̃(z)

)

6=
0. Consequently,

inf

∣

∣

∣

∣

det

(

I − 1

z
A − 1

z
B̃(z)

) ∣

∣

∣

∣

> 0, for |z| ≥ 1.

By a Theorem of Wiener, there exists H(n) ∈ `1(Z+) such that

H̃(z)

(

I − 1

z
A − 1

z
B̃(z)

)

= I, for |z| ≥ 1.

By the uniqueness of the inverse,

H̃(z) = R̃(z) ∈ `1,
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and the proof is now complete.
(b) ⇒ (c) Assume that R(n) ∈ `1. Then

x(n + τ + 1, τ, ϕ) = A(x(n + τ, τ, ϕ)

+
n+τ
∑

j=0

B(n + τ − j)x(j, τ, ϕ),

where ϕ : [0, s] → R
k is a given initial function, where x(n) = ϕ(n) on [0, s].

x(n + τ + 1, τ, ϕ) = Ax(n + τ, τ, ϕ) +
n
∑

j=0

B(n − j)x(j + τ, τ, ϕ)

+
τ
∑

j=1

B(n + j)ϕ(τ − j).

By the Variation of Constants formula

x(n + τ, τ, ϕ) = R(n)ϕ(τ) +
n−1
∑

j=0

R(n − j − 1)
τ
∑

j=0

B(j + s)ϕ(τ − s) (3.8)

|x(n + τ, τ, ϕ)| ≤ ‖ϕ‖[0,τ ]

[

|R(n)| +
n−1
∑

j=0

|R(n − j − 1)|
∞
∑

s=j+1

|B(s)|
]

(3.9)

Since |R(n)| → 0 as n → ∞, the second term in (3.9) tends to zero as it
is the convolution of `1 sequence with a null sequence, the right had side of
(3.9) bounded and tends to zero as n → ∞. Hence the zero solution of Eq.
(1.1) is UAS.

The proof of (c) ⇒ (d) and (d) ⇒ (a) will not be provided.

Using Theorem 3.2, we give sufficient conditions for asymptotic stability.

We also provide a partial converse. Let νij =
∞
∑

n=0

bij(n) < ∞.

Theorem 3.3. Let A = (aij) and B(n) = (bij(n)) such that

βij =
∞
∑

n=0

|bij(n)| < ∞.
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Then the zero solution of equation (3.1) is uniformly asymptotically stable if
either one of the following conditions hold.

(a)
k
∑

j=1

(|aij| + βij) < 1, 1 ≤ i ≤ k, (3.10)

(b)
k
∑

i=1

(|aij| + βij) < 1, 1 ≤ j ≤ k. (3.11)

Theorem 3.4. Suppose that the following statements hold:

1. aii + νii > 1, 1 ≤ i ≤ k,

2. (aii + νii − 1)(ajj + νjj − 1) >
′
∑

r

|air + νir|
′
∑

r

|ajr + νjr|,
where

′
∑

r

air =
k
∑

r=1

air − aii.

Then if k is odd, the zero solution of equation (3.1) is not asymptotically
stable. If k is even, then the zero solution of equation (3.1) may or may not
be asymptotically stable.

4 Uniform Asymptotic Stability versus Ex-

ponential Stability

We commence this section by the following illustrative example.

Example 4.1. Consider the scalar equation

x(n + 1) =
1

4
x(n) +

n
∑

j=0

x(j)

(2(n − j) + 1)(2(n − j) + 3)
.

Here a = 1
4
, b(n) = 1/[(2n + 1)(2n + 3)] which is an `1 sequence. Since

a+
∞
∑

n=0

b(n) ≤ 1
4
+ 1

2
< 1, it follows that the zero solution is UAS. This raises

the question of whether or not the zero solution is exponentially stable.
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The next result provides the definitive answer to this question and shows
that the zero solution is not exponenetially stable.

Theorem 4.2. [15] Suppose that the zero solution of Eq (3.1) is UAS. Then
the zero solution of Eq. (3.1) is exponentially stable if and only if B(n) decays
exponentially.

5 Equations of Nonconvolution Type

In this section we consider the following system of Volterra difference equa-
tions of nonconvolution type

x(n + 1) = A(n)x(n) +
n
∑

j=0

B(n, j)x(j) (5.1)

y(n + 1) = A(n)y(n) +
n
∑

j=0

B(n, j)y(j) + g(n), (5.2)

where A(n) = (aij(n)), B(n,m) = (bij(n,m)) are k × k matrices on Z
+,

Z
+ × Z

+, respectively, and g(n) is a vector spequence on Z
+.

Definition 5.1. [11] The resolvent matrix R(n,m) of Eq. (5.1) is defined as
the unique solution of the matrix difference equation

R(n + 1,m) = A(n)R(n,m) +
n
∑

j=m

B(n,m)R(j,m), n ≥ m, (5.3)

with R(m,m) = I.

A variation of constants formula

y(n, n0, y0) = R(n, n0)y0 +
n−1
∑

j=n0

R(n, j + 1)g(j) (5.4)

is the unique solution of Eq. (5.2) with y(n0) = y0.
The main disadvantage of dealing with equations of nonconvolution type

is that we are unable to use the Z-transform methods and theory. Hence we
are forced to use the method of Liapunov functions which is definitley much
harder to construct.

12



Let

βij(n) =
∞
∑

s=n

|bij(s, n)|

and

δ = sup
n
∑

r=0

∞
∑

s=n

|bij(s, r)|.

Theorem 5.2. [11] Assume that βij(n) < ∞ and δ < ∞ and such that for
1 ≤ i ≤ k, n ≥ 0,

k
∑

j=1

|aji(n)| + βji(n)] ≤ 1 − c

for some c ∈ (0, 1). Then the zero solution of Eq. (5.1) is globally UAS and
in fact globally exponentially stable.

Proof. Let

V (n, x(·)) =
k
∑

j=1

[

|xi(n)|

+
k
∑

j=1

n−1
∑

r=0

∞
∑

s=n

|bij(s, r)| · |xj(r)|
]

.

Then it is easy to show that

∆V (n, x(·)) ≤ −cV (n, x(·)).
Hence

|x(n)| ≤ V (n, x(·)) ≤ (1 − c)nV (n0, ϕ(·))
≤ M(1 − c)n‖ϕ‖

where ‖ϕ‖ = sup{|ϕ(s)| : s ∈ [0, n0]}.
A second approach to study stability is through the use of vetor Liapunov

functions. To simplify our notation, let us rewrite Eq. (5.1) in the form

x(n + 1) =
n
∑

j=0

c(n, j)x(j), (5.5)

where c(n, n) = A(n) + B(n, n) and c(n, j) = B(n, j) for n 6= j. We define
the absolute value of a matrix A = (aij) as the matrix |A| = (|aij|). We say
that A ≤ C if aij ≤ cij, for 1 ≤ i, j ≤ k.
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Theorem 5.3. [14] Suppose that for each n ∈ Z
+,

∞
∑

i=0

|c(i, n)| < ∞ and the eigenvalues of the matrix c = sup
n≥0

{

∞
∑

i=n

|c(i, n)|
}

lie inside the unit disc. Then the zero solution of (5.1) is UAS.

Sketch of the proof. Use the vector Liapunov functional

V (n, x(·)) = (I − C)−1

[

|x(n)| +
n−1
∑

r=0

∞
∑

s=n

|c(s, r)||x(r)|
]

6 Asymptotic Equivalence for Difference Equa-

tions with Infinite Delay

Consider the Volterra equations

x(n + 1) =
n
∑

s=−∞

K(n − s)x(s), n ≥ n0 ≥ 0 (6.1)

y(n + 1) =
n
∑

s=−∞

{K(n − s) + D(n, s)}y(s),

n ≥ n0 ≥ 0. (6.2)

Assume

(H1)
∞
∑

n=0

|K(n)|eγn < ∞ and
n
∑

s=−∞

sup
n≥n0

|D(n, s)|eγ(n−s) < ∞ for some γ > 0.

By virtue of Assumption (H1), Systems (6.1) and (6.2) are viewed as
functional difference equations on the Banach space

Bγ =

{

ϕ : Z
− → Ck : sup

t∈Z−

|ϕ(t)|eγt < ∞
}

equipped with the norm

‖ϕ‖ = sup
t∈Z−

|ϕ(t)|eγt < ∞, ϕ ∈ Bγ ,

14



where Z
− = {. . . ,−2,−1, 0}. Indeed, System (6.1) can be written as a

functional difference equation of the form

x(n + 1) = L(xn), (6.3)

where L(·) : Bγ → Ck is a functional defined by

L(ϕ) =
∞
∑

j=0

K(j)ϕ(−j), ϕ ∈ Bγ ,

and xn is a function in Bγ defined as

xn(s) = x(n + s), s ∈ Z
−.

Let T (n) denote the solution operator of Eq. (6.3). Then T (n)ϕ = xn(ϕ),
for ϕ ∈ Bγ. Moreover, we will denote by x(·, ϕ) the solution of Eq. (6.3)
satisfying x(s, ϕ) = ϕ(s), for s ∈ Z

−. It can be easily verified that T (n) is a
bounded linear operator on Bγ and satisfies the semigroup property

T (n + m) = T (n)T (m), n,m ∈ Z
+. (6.4)

In the first two results we assume that Eq. (6.3) possesses an ordinary
dichotomy. For the convenience of the reader, we now give its definition.

Let P be a projection on Bγ. Then Bγ can be written as a direct sum
Bγ = S ⊕ U , where S and U are closed subspaces of Bγ such that P is a
projection from Bγ to S.

Definition 6.1. [16] System (6.3) is said to possess an ordinary dichotomy
if there exists a projection P and a positive constant M such that

(i) S and U are invariant for T (n),

(ii) ‖T (n)P‖ ≤ M , for n ∈ Z
+, and

(iii) T (n) is extendable for n ∈ Z
− on U as a group with

‖T (n)(I − P )‖ ≤ M, for n ∈ Z
−.

In the sequel, M is referred to as the dichotomy constant.
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Set

E0(t) =

{

I, the k × k identity matrix if t = 0,

0, the zero k × k matrix if t 6= 0.

To this end we have presented all the necessary preliminaries and ground-
work. Hence, without further delay, we now state our main results.

Theorem 6.2. [16] Suppose that Eq. (6.3) possesses an ordinary dichotomy
and Assumption (H1) holds. Moreover, suppose that condition

(H2)
∞
∑

s=n0

n0−1
∑

j=−∞

|D(s, j)|eγ(n0−j) +
∞
∑

s=n0

s
∑

j=n0

|D(s, j)| < 1/M ,

where M is the dichotomy constant, is satisfied. Then, for any bounded
solution x(n) of (6.1) on [n0,∞) there exists a unique bounded solution y(n)
of (6.2) on [n0,∞) such that

yn = xn +
n−1
∑

s=n0

T (n − s − 1)PE0

(

s
∑

j=−∞

D(s, j)y(j)

)

−
∞
∑

s=n

T (n − s − 1)(I − P )E0

(

s
∑

j=−∞

D(s, j)y(j)

)

, (6.5)

n ≥ n0.

Conversely, for any bounded solution y(n) of (6.2) on [n0,∞) there exists a
bounded solution x(n) of (6.1) on [n0,∞) satisfying the relation (6.5).

Theorem 6.3. [16] Assume (H1), (H2) and ordinary dichotomy with the
strenthened estimate

‖T (n)P‖ ≤ Man (n ≥ 0) for some A with 0 < a < 1. (6.6)

Then there is a one to one correspondence between bounded solutions x(n)
of (6.1) on [n0,∞) and bounded solutions y(n) of (6.2) on [n0,∞) , and the
asymptotic relation

y(n) = x(n) + o(1) (n → ∞) (6.7)

holds.
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Theorem 6.4. [16] Suppose that (H1) and the following two conditions are
satisfied:

(H3)
∞
∑

s=n0

s
∑

j=−∞

|D(s, j)|eγ(s−j) < ∞;

(H4) the roots of the equation

det

(

zI −
∞
∑

n=0

K(n)z−n

)

= 0

are simple on the complex unit circle.

Then there is a one to one correspondence between bounded solutions x(n)
of (6.1) on [n1,∞) and bounded solutions y(n) of (6.2) on [n1,∞), and the
asymptotic relations (6.7) holds; here n1 is a sufficienlty large integer.

It follows that det (zI −∑∞

n=0 K(n)z−n) 6= 0 for all |z| ≥ 1 if the k × k
matrix K(n) = (Kij(n)) satisfies the following condition:

(H5) max
1≤i≤k

k
∑

j=1

∞
∑

n=0

|Kij(n)| < 1 or max
1≤j≤k

k
∑

j=1

∞
∑

n=0

|Kij(n)| < 1.

Therefore the following result is a direct consequence of Theorem 6.4.

Corollary 6.5. [16] Assume (H1), (H3) and (H5). Then, for a sufficiently
large integer n1 there is a one to one correspondence between bounded solu-
tions x(n) of (6.1) on [n1,∞) and bounded solutions y(n) of (6.2) on [n1,∞),
and the asymptotic relations (6.7) holds.

Before concluding this section, we provide an example to illustrate the
usefulness of our results.

We consider the following scalar difference equation:

x(n + 1) = 2x(n) −
n
∑

s=−∞

(

1

2

)n−s

x(s), (6.8)

which is a special case of Eq. (6.1) with K(0) = 1 and K(n) = −(1/2)n

for n ≥ 1. Condition (H4) is satisfied for (6.8), because “the characteristic
equation” det (zI −∑∞

n=0 K(n)z−n) = 0 yields the equation 2z2−3z +2 = 0
whose roots (3 ±

√
7i)/4 are simple.

17



Consider the perturbed equation

y(n + 1) = 2y(n) −
n
∑

s=−∞

(

1

2

)n−s

y(s) + d(n)
n
∑

s=−∞

B(n − s)y(s), (6.9)

where
∑∞|d(n)| < ∞ and |B(n)| ≤ (1/2)n for n ∈ Z

+. Clearly, Conditions
(H1) and (H3) are satisfied with γ = log(3/2). We note that x̃(n) := ((3 +√

7i)/4)n is a bounded solution of (6.8). By applying Theorem 6.4, we see
that there exists a bounded solution which approaches to x̃(n) as n → ∞. We
emphasize that Condition (H3) cannot necessarily be replaced by a weaker
condition

“sup
s≥n0

s
∑

τ=−∞

|D(s, τ)|eγ(s−r) < ∞”

in Theorem 6.4. Indeed, when d(n) ≡ d(−7/4 < d < 0), B(0) = 1 and
B(n) = −(1/2)n for n ≥ 1, any solution of (6.9) tends to zero as n → ∞,
because the characteristic equation of (6.9) is the equation 2z2 − (3+2d)z +
2(1 + d) = 0 whose roots belong to the open unit disk in the complex plane.
Therefore, no solutions of (6.9) can approach to the bounded solution x̃(n)
of (6.8) as n → ∞, becuase of |x̃(n)| ≡ 1.

7 Open Problems

Open Problem 1 Determine the stability of equation (1.1) when

A +
∞
∑

n=0

B(n) = −1 and
∞
∑

n=0

B(n) < 0.

Open Problem 2 Determine the stability of the zero solution of equation
(1.1) when

−1 < A +
∞
∑

n=0

B(n) < 1.

Open Problem 3 If in Theorem 3.4 aii + vii < 1, for 1 ≤ i ≤ k, what can we
conclude about the stability of the zero solution of equation (1.1)?

Open Problem 4 Suppose that any one of the conditions in Theorem 3.2
holds. Then by Theorem 4.2 the zero solution of equation (3.1) is exponen-
tially stable if and only if B(n) is of exponential decay. Find an estimate of

18



the rate of decay of solutions of equation (3.1) if B(n) is not of exponential
decay.

Consider Eqs. (5.1) (5.2) with A(n), B(n, j), g(n) almost periodic for
n, j ∈ Z

+ and n ≥ j.

Open Problem 5 Find conditions under which Eq. (5.2) has an almost
periodic solution.

Open Problem 6 Find conditions under which Eq. (5.2) has a unique asymp-
totically stable almost periodic solution.
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