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LETTER

Earth Planets Space, 61, 615-619, 2009

Timing of substorm related auroral oscillations

P. Martin'!, N. E. Turner', and J. Wanliss>

VFlorida Institute of Technology
2presbyterian College

(Received October 26, 2007; Accepted August 16, 2008; Online published May 29, 2009)

Previous studies have shown that auroral luminosity oscillations are often associated with substorms. Here we
examine photometer data for the magnetospheric substorm on April 1, 2000 (expansive phase onset at 0525 UT)
to study the detailed timing of the auroral oscillations relative to onset. Accurate timing information for the
periodicities in the photometer data were determined using the wavelet transform. We find that the oscillations

occur primarily during the recovery phase.
Key words: Aurora, substorm, wavelet, CANOPUS.

1. Introduction

Magnetospheric substorms are among the more conse-
quential space weather effects, second in importance only to
the massive and global space storms. Several studies have
considered the effects of magnetohydrodynamic (MHD)
waves on particle precipitation in the ionosphere (Berger,
1963; Davidson, 1990; Milan et al., 2001), and a strong link
has been suggested between discrete auroral arcs and MHD
waves (Samson et al., 1996; Wanliss and Rankin, 2002;
Wanliss et al., 2002). MHD field line resonances (FLRs) are
formed through wave coupling of compressional and shear
Alfvén waves. The local compression of the magnetosphere
at substorm expansive phase onset generates compressional
MHD waves that encounter positive gradients in the Alfvén
velocity leading to the excitation of shear Alfvén waves on
the magnetic shells distant from the source of the onset. Be-
cause of the coupling of energy at spatially different loca-
tions, auroral activity is expected to occur at high and low
latitudes. Theory predicts that the high latitude activity will
feature a poleward phase shift of 180 degrees across the belt
of auroral oscillation (Hughes, 1983; Liu et al., 1995). Sim-
ilarly, the low latitude activity should exhibit a 180 degree
equatorward phase shift and a temporarily varying parallel
electric field will be established along the resonant field line
(Block and Filthammer, 1990; Liu et al., 1995). A conse-
quence of this parallel electric field is the periodicities of
the precipitating protons and electrons are anti-correlated.
If there were no parallel electric field there should be no
such phase difference and the precipitation of protons and
electrons would likely be similarly modulated (Liu ez al.,
1995).

In this study we examine the timing of substorm associ-
ated auroral oscillations in order to determine which sub-
storm phase they are associated with. The data are for the
substorm on April 1, 2000 previously studied in detail by
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Wanliss and Rankin (2002). They found 2.2 mHz pulsations
in magnetometer and photometer data. The proton and elec-
tron auroras were found to oscillate essentially out of phase,
and the variation of phase across the peak in the luminos-
ity resonance followed the pattern expected for the coupling
of resonant Alfvén modes by normal compressional modes
in the magnetotail. The previous work established accu-
rate frequency information, but here we wish to establish
detailed timing of the oscillations, a task for which the mul-
tiple filters of the wavelet transform are best suited.

2. Data Description

Wanliss and Rankin (2002) used photometer data from
the Gillam meridian scanning photometer in northern
Canada and found luminosity oscillations associated with
magnetospheric substorms. They examined photometer
and magnetometer data of a magnetospheric substorm on
April 1, 2000 which had its expansive phase onset at
0525 UT. They examined the proton (486.1 nm) and elec-
tron (557.7 nm, 630.0 nm) auroras. The 486.1 nm (HS)
emission is caused by precipitation of protons of tens of
keV, 557.7 nm from hot electrons of several keV, and
630.0 nm from warm electrons of a few hundred eV. This
particular substorm occurred during a moderate space storm
recovery phase with minimum Dy = —60 nT. Figure 1
shows the 557.7 nm photometer data from the Gillam sta-
tion (GILL). The data show brightness (Rayleighs) as a
function of latitude and time. Each meridian scan takes one
minute to complete, and data are organized into 17 latitu-
dinal bins. The substorm growth phase is indicated by the
steady equatorward motion of the auroras prior to 0525 UT,
indicative of stretching of the inner magnetotail (Wanliss et
al., 2000). At this time the emissions brighten and begin
to move poleward, indicative of dipolarization of the previ-
ously stretched field lines.

A Fourier spectrogram of each wavelength revealed
a peak around 2.2 mHz (Wanliss and Rankin, 2002).
The 630.0 nm wavelength also showed peaks at 2.9 and
3.8 mHz. Using CANOPUS magnetometer data the Pi2
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Fig. 1. Photometer data (557.7 nm) from the Gillam station for April 1, 2000 where substorm onset begins at the 309th minute of the day. The first
vertical line indicates substorm onset and the two other lines indicate an equatorward intensification of the aurora.

pulsation was found to be localized between 67.4 and 69.7
degrees geomagnetic latitude. A phase correlation analy-
sis was performed to determine if the spectral peaks might
be related to field line resonances (FLR). The signals at
66.6, 66.1, and 65.6 degrees magnetic latitude, were anti-
correlated which is consistent with a FLR and a parallel
electric field. The phase shift around 2.2 mHz showed a
120 degree phase shift at ~66 degrees for the 557.7 nm line
which is lower than the theoretically required 180 degrees
expected for a FLR (Chen and Hasegawa, 1974). For the
630.0 nm emission there was a 100 degree phase change
which is qualitatively consistent but not quantitatively con-
sistent with the FLR theory.

3. Wavelet Analysis Method

As with our previous work we produce a spectrogram
of the photometer data for the substorm on April, 1 2000.
Spectral analysis yields excellent frequency resolution for
the peaks in the spectrogram, but poor timing information.
In this study we seek good timing and frequency informa-
tion, thus the wavelet transform is used to identify signif-
icant spectral power in frequency/time space. The varying
size of the frequency/time bins makes it easier to identify
wave power in time compared to the fixed size of the fre-
quency/time bins in the windowed Fourier transform. Obvi-
ously, good time information results in decreased frequency
resolution.

The output of the wavelet transform is both time and fre-
quency dependent which is similar to the windowed Fourier
transform. However, one obvious difference is the variable

time length of the wavelet which results in a variable scale
size or frequency band. The user does not need to know the
frequency band to be searched for significant waves. The
time span of the wavelet determines the frequency of the
band in the spectrum. The wavelet makes multiple passes
through the time series, adjusting its size for each pass. This
is necessary to guarantee a complete period will fit in the
wavelet and be recognized as a true wave, not a disconti-
nuity. The resulting wave power is distributed in frequency
and time. The highest possible frequency of the wavelet
transform is the Nyquist frequency which is determined by
the sampling rate. The lowest possible frequency is deter-
mined by the time length of the time series. The version
of the wavelet transformed used in this study, required a
minimum of eight complete wavelets to fit in the time se-
ries. The time length of the wavelet determines the lowest
possible frequency. The multiple scale sizes also provide
an advantage, in terms of timing issues, over the windowed
Fourier transform. There is little power leakage along the
time axis.

The power element of the wavelet transform represents
the variance of the original time series at a specific range of
time and frequency. Percival and Walden (1993, 2000) and
Torrence and Compo (1998) showed the distribution of the
power elements of the windowed Fourier and wavelet spec-
trums are similar to a chi-square distribution with 2 degrees
of freedom. Therefore, analysis of variance (ANOVA) can
be performed on the output to determine an accurate esti-
mate of the frequency/time spectrum of the time series or
the power spectral density (PSD).
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Fig. 2. The wavelet spectrum of the 557.7 nm photometer data measured at 61.6 degrees latitude. The regions outlined highlight significant spectral
power.
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Fig. 3. The significant peaks in the 486.1 nm photometer spectra based on measurements at different latitudes. The data are divided into time intervals
which represent the phases of the substorm. The vertical dashed lines mark the CMS frequencies greater than 1 mHz.
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Fig. 4. The significant peaks in the 557.7 nm photometer spectra based on measurements at different latitudes.
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Fig. 5. The significant peaks in the 630.0 nm photometer spectra based on measurements at different latitudes.
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The power spectrum is determined from the baseline
power level for each frequency band from which wave
amplitudes can be measured (Percival and Walden, 1993,
2000; Torrence and Compo, 1998). The process of anal-
ysis of variance for the wavelet power spectrum assumes
the time series has a mean power spectrum (Torrence and
Compo, 1998). If a peak in the spectrum is significantly
above the background then it can be assumed to be a true
feature with a particular percent confidence (Torrence and
Compo, 1998). A 90% confidence level was calculated for
each scale which spans the entire length of the time series
(256 minutes). Any random power variable with a value
less than the 90% confidence level has a 90% probability
of being the true mean and was considered to be part of
the background. A power value greater than the confidence
level is considered extraordinary and therefore significant.
Any significant power value is considered to be a real peak
in the spectral estimate.

We have used the complex valued Morlet wavelet over a
256 minute interval (128 minutes from substorm onset).
The time resolution of the continuous wavelet transform
(CWT) increases at higher frequencies where the bandwidth
gets larger (Press et al., 1992; Percival and Walden, 2000).
For this analysis, the transform is set up for 56 scales or
frequency bins; there are 5 subscales for every scale and
there are 11 scales. These scales span 0.47 mHz to 500 mHz
which is the Nyquist frequency. The first 18 scales (0.47 to
5.73 mHz) were used for this analysis. Figure 2 shows the
spectrogram for the 557.7 nm data with the 90% confidence
level indicated.

4. Results

The significant peaks from the seventeen latitudes for
each of the three auroral wavelengths are combined to cre-
ate Figs. 3 through 5. The spectra are summarized accord-
ing to latitude and frequency across the entire 256 minute
interval around the substorm onset which is marked as time
equal to zero. The error bars indicate the bandwidth of the
peaks. The error bar range marks high and low frequencies
where the signal/noise drops below a value of 1. The ver-
tical dashed lines mark the CMS frequencies greater than
1 mHz as identified by Samson et al. (1991) (1.3, 1.9, 2.7
and 3.3 mHz).

We find that spectral peaks in the 3 observed auroral
wavelengths (486.1, 557.7, and 630.0 nm) have a North-
South alignment during the expansion phase of the sub-
storm. The North-South arrangement is a result of the
spectral peaks from the 17 different latitudes possessing the
same frequency. In each of the three studied auroral wave-
lengths no significant wave activity is observed during the
growth and early expansive phases of the substorm (—50 to
0 min, and O to 5 min). Figures 3 through 5 show that the
peaks in the spectrum form a North-South arrangement near
one of the CMS frequencies, with most significant activity
occurring from 10 to 30 minutes after substorm onset when
the expansion phase is well developed.
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5. Discussion

The study by Wanliss and Rankin (2002) showed how os-
cillations in the aurora were tied to substorm initiated, field
line resonances. Here we have considered the timing of the
FLR. Whereas the previous study accurately determined the
frequency of the auroral oscillations, here we have utilized
the wavelet transform to achieve accurate and quantitative
isolation of the timing of significant oscillations. We find
that the auroral oscillations for both electron and proton au-
roras do not begin at substorm expansion phase onset, but
several minutes after the identified onset, and at a relatively
localized latitude range. The oscillations intensify through-
out the rest of the expansion phase across a wide range of
latitudes, before dying down during the substorm recovery
phase.
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