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Toward a Parallel Implementation of J: Data Parallelism in

Functional, Array-Oriented Languages with Function Rank

Christopher Jenkins

Abstract

The notion of function rank has important implications for the field of parallel computing.
In particular, certain formalizations of function rank can be helpful for exploiting potential
concurrency in the form of data parallelism, because function rank can allow the programmer
to express safely, easily, and in an automatically data parallel fashion both the application
of a function to subcollections of a regularly shaped multidimensional collection and the
extension of a function to similar problems in higher dimensions.

This paper illustrates this importance by discussing solutions using function rank to
three parallel problems, each chosen to represent a different parallel design patterns. Addi-
tionally, included are both a set of proposals for a parallel implementation of J, which is an
array-oriented, functional programming language with function rank, as well as a prototype
implementation of a parallel regular collections library using function rank in Scala. Perfor-
mance results for solutions using the prototype Scala library (as well as C with OpenMP,
for comparison) to each of the problems are also given, though this work is intended only

as a proof of concept.
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Chapter 1

Introduction

1.1 Motivation

Many scientific and business computing applications must work on large data sets natu-
rally structured in regular, multidimensional collections. In order for these applications to
achieve good performance, it is often the case that programmers must exploit any and all
potential concurrency in the application through different approaches to parallel program-
ming. One form of potential concurrency frequently encountered when programs operate
on large collections of data is data parallelism, which is when programs update elements
or subsections of collections in parallel. Many tools have already been developed to help
programmers exploit data parallelism easily and safely (i.e., with reduced risk of race con-
ditions or program crashes)[12][16]. However, many of these tools may not be as helpful for
exploiting data parallelism on regular collections as they could be, and thus make it more
difficult for programs to achieve good performance (that is, fast execution time), for two
reasons.

First, many programming languages implement regular collections as nested collections;



e.g. a 2-dimensional, 2 by 3 array (or rank 2 array with shape 2 3) of integers would be
implemented as an array of 2 arrays, with each of these containing 3 integers. However,
in such languages irregular collections are also usually implemented as nested collections,
with each of the sub-collections possibly containing a different number of elements from
each other. Since both regular and irregular collections are implemented the same way, it
can be difficult for programmers to view, manipulate, and verify any important properties
of the structure of regular collections. For example, if a function requires that one or more
of its arguments is a regular collection, programmers must either write code to ensure this
requirement is met, increasing the difficulty of writing what could be an already complex
program, or risk run-time indexing errors and program crashes.

Alternatively, regular collections can be implemented as vectors that have an associated
shape vector. These shape-associated collections make the structure of a regular collection
a field that can be viewed and manipulated and allow the programmer to have greater
transparency and control when writing programs to operate on them. Unfortunately, most
statically-typed languages do not have type systems advanced enough to capture all of
the structural information of shape-associated collections statically, even though this is
theoretically possible. However, some languages are able to capture some of this structure
statically, enabling programmers to reduce or eliminate the need for manual verification,
such as the fact that the arguments to a function are in fact regular collections, or that some
collection satisfies a function’s lower and/or upper bounds for rank[2][20][12]. Even when
these properties of regular collections cannot be captured statically, making this information
more transparent at run time should allow programmers to more easily verify that the
required properties hold, reducing programmer effort and increasing program safety.

Second, in most imperative languages with regular collections, applying functions to ele-

ments or sub-collections of a collection means writing the function call within nested looping



structures, typically a for loop Using this method to apply functions on these collections
usually means that the number of dimensions (also called data rank) of the collection deter-
mines the number of loops required to do a specific operation. To put it another way, if an
existing function that operates on regular collections needs to be extended to a collection
of higher rank, or if the function only operates on scalar values but needs to be extended to
some regular collection, the programmer usually must wrap the function in nested for loops.
Without abstractions in the language or a library to deal with the general cases of such ex-
tensions, this activity is tedious in the trivial cases, adding unnecessary syntactic overhead
to the programming process, and prone to error because programmers must instead write
boilerplate code in order to accomplish it. Moreover, in some cases these extensions are data
parallel, and can be done automatically and automatically exploit potential concurrency.
However, using nested for loops obfuscates, and requires the programmer make changes
to existing code in order to exploit, this inherent concurrency. Clearly it would be better
for programmers to express the potential concurrency directly, and thus hopefully exploit
potential concurrency directly, rather than expressing it as sequential for loop and either
hoping a compiler can reverse this transformation or writing additional code to exploit the
CONCUITEncy.

Functional programming languages, in contrast to imperative programming languages,
allow programmers to view and write programs at a higher level of abstraction. When
dealing with collections, this higher level of abstraction usually means that related types
of operations can be expressed as higher-order functions like map and reduce that take
functions as their arguments and return functions that operate on collections. These higher-
order functions can allow programmers to more easily understand what operations are being
done to regular collections than if the same operations were done imperatively using for loops

because they capture the essence of what the operations are, more than how the operations



are implemented. As a consequence, they also can allow programmers to see more easily
where there is inherent data parallelism in the algorithm, such as all calls to map, or calls
to reduce with associative operations, on large collections. The level of abstraction they
provide programmers, as well as their lack of side-effects (an thus most sources of race
conditions), make functional languages ideal for solving many kinds of parallel problems.
However, since the higher order functions most functional languages provide for operating
on collections are usually designed to operate on only one dimension at a time, they too
must be nested in order to extend existing functions to collections of higher rank, with
the same, though usually reduced, problem of unnecessary overhead and boilerplate code
mentioned above.

Function rank, first introduced by K. Iverson in 1978[10] and implemented in the pro-
gramming language J, is a functional abstraction that extends the notion of data rank to
functions. Like other functional language abstractions, function rank can allow the pro-
grammer to directly express the application and extension of functions on specific ranks of
regular collections through a higher-ordered function, called in J and in this paper the rank
operator[6]. Expressing these extensions as a higher-order function makes it easier for a pro-
grammer to make them safely, quickly, and at a higher level of abstraction. In some cases,
these extensions are so trivial that they can be done automatically, meaning the program-
mer need not modify the code at all[6] [8]. Furthermore, since multiple applications of the
rank operator are equivalent to the cases where nested loops or nested higher-order function
applications are inherently data parallel, it too is inherently data parallel. Consequently,
languages with both formalized function rank and a rank-operator allow the programmer
to exploit the inherent data parallelism of extending existing operations to collections of
higher rank safely, quickly, and in some cases automatically.

However, currently the languages that meet these criteria, such as J, Sharp APL, and



some others from the APL language family, are not in common use. One often-cited reason
for this lack of use is that these languages are difficult to read, because, in order to use
them effectively, a programmer must memorize dozens of 1 or 2 character functions each
with different, sometimes unrelated use cases depending on whether the function takes one
or two arguments[6][1]. These language design choices, however, are not required in order
for a language to support function rank. A proof-of-concept may be needed to demonstrate
that both the notions of function rank and associating collections with their shape are still
very helpful for exploiting data parallelism on regular collections when available in a more
modern, more popularly supported language.

The rest of the paper is organized as follows:

e The remaining sections of this chapter give the design plan (1.2) and implementation
(1.3) of our research. Unfortunately, the latter did not quite fulfill the full scope of the
former, so both a description of what was planned and what was actually accomplished

within the time constraints are given.

e Chapter 2 gives the necessary background information for understanding this work,
including a brief description of function rank and how it is equivalent to nested loops
or nested calls to map, a discussion of relevant parallel design patterns for the example
problem set, and a literature review of other attempts to solve the same or similar

problems

e Chapter 3 proposes two new operators for future parallel implementations of the J

programming language and illustrates how these operators might be used

e Chapter 4 gives the listing of our selection of example problems, giving briefly for

each a description, a discussion of the relevant parallel design patterns for exploit-



ing concurrency, and a description of how possibly to extend the problem to higher

dimensions.

e Chapter 5 compares example solutions to the problems listed in Chapter 4 in J, Scala
with Parallel-J, and C with OpenMP, and discusses the relative level of abstraction,

scalability and performance of each solution.
e Chapter 6 presents our conclusions of this research and discusses future work.

In addition, appendices and a glossary of J functions used throughout the remaining chapters

are given at the end of this paper, as aids to the reader.

1.2 Design Plan

The goal of this research was going to be to implement a parallel subset of the programming
language J, called Parallel-J. Based on the documentation of J’s current implementation[7],

this language subset would require:

e a J language lexer and parser

limited memory management

a look-up table for predefined and user functions

a read-evaluate-print-loop (REPL), and

a subset of the J primitives, including:

— global variable assignment

— most array operations (creating, indexing, restructuring)



— all of the basic arithmetic and logical operations

a limited selection of higher-ordered functions (composition, conditional, reduc-
tion)

— J’s function composition rules for sequences of functions (trains), and

the rank operator and function rank

The following language features would be excluded:

e namespaces (locales) and local variable assignment
e all existing environment-altering functions (the foreign operator, spelled !:)
e explicit scripts with imperative-style execution and control structure, and

e the J primitives which calculate complex algorithms (prime factorization, derivatives

of polynomial equations, etc.)

These choices would allow solutions to the sample problems written in as simple and “id-
iomatic” J as possible, thus clearly showing the advantages to exploiting data parallelism
when approaching these problems with function rank, without getting distracted with a
discussion of J’s more advanced or nuanced language features. Also to be included was
both a proposal and an implementation of two new operators (parallel rank and parallel
insert), and an extension to the existing foreign operator to allow for changing the parallel
environment. The former would allow for the equivalent of parallel map and reduce opera-
tions at the specified rank(s); the latter would allow the programmer to set environmental
parameters for parallelizing code, for example specifying the number of threads to use in
executing a piece of code, or setting thread scheduling schemes. Although not entirely
related to function rank, such environmental controls as would be included in the parallel

environment are to be expected from any serious parallel computing language or library.



Scala, a programming language developed by Odersky et al.[15], was chosen to imple-

ment this parallel subset of J for the following reasons:
1. Scala supports multiple programming paradigms, such as

e imperative, for the tasks of memory management and object creation,

e object oriented, for more structured encapsulation of the rank associated with

each function and data associated with arrays, and

e functional, to more easily capture J’s functional paradigm in the implementation

and thus facilitate development
2. Scala has a feature-rich library for collections, including

e support for many higher-order operations such as map and reduce, common to

many solutions to data parallel problems[14], and

e a library for parallel collections that exploits the concurrency in data parallel
operations[17], which, being similar to the use-cases in this research, promised

to make the parallel implementation relatively easy.

The performance of solutions written in Parallel-J to a suite of problems would be
compared to performance of the same solutions written in C with OpenMP, J, and Scala.
Also given for each problem would be a discussion of the relative level of abstraction,
scalability to similar problems of higher dimension, and performance of each. It was not
expected that Parallel-J would compare favorably to the raw performance of C or the current
implementation of J; the hoped for result was to show that the performance Parallel-J scales
relative to the number of threads, showing that this implementation does effectively exploit

potential concurrency.



1.3 Implementation

Unfortunately, the given time constraints did not allow for such an ambitious project,
leading to a change of focus. Rather than finishing a parallel subset of J, the J system
libraries developed are instead used as a prototype for a Scala regular collections library
that supports function rank. Taking the same set of parallel problems, this research shows
both how this library allows for uniformly extending these problems into higher dimensions
and how with future work it would be able to achieve good performance by automatically
parallelizing solutions to problems in the given and in higher dimensions. Results are also
compared with solutions written in C with OpenMP, along with a discussion of the relative
level of abstraction, scalability, and performance of each.

Not all of the work done towards producing a parallel implementation of J applies to
producing a Scala library with function rank. The majority of this work consists of the
proposals for the parallel rank and parallel insert operators and the parallel environment
library, given in Chapter 3, as well as a partial lexer for the J programming language, listed

in Appendix A.



Chapter 2

Background

2.1 Function Rank

This section provides background information necessary to understand the advantages func-

tion rank has in exploiting data parallelism over other approaches.

2.1.1 History and Definition

Function rank was first developed and described by Kenneth Iverson in a series of research
reports written at IBM[11][10]. In one such report, Iverson described it as “the most
important notion needed to provide a simple and systematic basis for the uniform treatment
of all ‘mixed’ or non-scalar functions”[11]. Since that time, the idea of function rank has
matured and found its way into many dialects of APL, including J.

J’s model of function rank is slightly different from what was first presented by Iverson[8][6].
The rank of a function f in J is a vector v of three values representing the data rank of
f’s expected arguments. Since in J functions take either one or two arguments, the first

value of v represents the expected data rank of f’s one-argument case (in J referred to as

10
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the monadic case); the second and third values in v represent the expected data rank of £’s
two-argument (dyadic) case. If £ has no restrictions on some or all of its arguments, this is
represented in v with the value for infinity, spelled _ ; if £ operates on scalar values, this is
represented as an entry in v of 0 (in J, scalars are collections of rank 0 and an empty shape
vector).

Thus, for example, most arithmetic functions, such as addition, fundamentally operate
on scalar values, and thus usually have the function rank 0 0 0. These arithmetic functions,
and all others which operate on scalar values, must be extended, whether manually by
the programmer or automatically by the J environment, to operate on collections of rank
n > 1. On the other hand, most collective operations, such as using an integer to index
into collection (which has rank 0 _), sorting a collection, and getting the shape of an array
(both of which have rank _), operate on whole collections at once. In the above example,
function ranks with only 2 elements represent the J primitive’s dyadic use cases; similarly

for the function ranks with only 1 element and J’s monads.

2.1.2 Shape Agreement

In the trivial cases, where a function f is given arguments with ranks matching £’s function

rank, J behaves much like any programming language without function rank.

1+1

2
show =: ] NB. Identity, used to display results
integers =: i. NB. creates array with shape of argument
NB. populated with an incrementing value
NB. starting at O
show mat2_3 =: integers 2 3

012

345
from =: { NB. Indexing into an array

NB. expressed as a function
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1 from mat2_3
345
In some cases, when the arguments to £ do not match its function rank, f is automatically
extended to the appropriate dimensions. For example, if x is a scalar, addition can always
be extended so that x is added to every element of a collection ¢ no matter c’s rank or

shape.

1 + mat2_3

o N
o W

L

In general, addition (and all other scalar functions) can be extended automatically over
two regular collections x and y if the shape of one collection prefizes the other. This is
called prefix shape agreement, or just shape agreement, and in this paper we will say when
this happens that “the shapes of x and y agree under addition” [8]. We also say that this
prefix is the frame for the two collections, and what remains of the shape vectors of x and
y after dropping the prefix are their respective cells.

Going back to the above example: a scalar, a vector of 2 elements, and another 2 by 3
matrix will agree with mat2_3 under addition, since the shapes of the scalar (empty shape),
the vector, and the other matrix would prefix the shape of mat2_3; any collection of rank
n > 2 whose shape begins with 2 3 will also agree with mat2_3 under addition, since the

shape of mat2_3 would prefix its shape.



100 200 + mat2_3
100 101 102
203 204 205
NB. agreement: visualizes
NB. how the cells of each
NB. collection are paired with each other
NB. before performing the desired operation
agreement =: ; "
NB. Show agreement of two collections above
NB. under adition
NB. The shape 2 is the frame;
NB. the scalars are expanded to
NB. vectors of 3 to match
NB. the shape of mat2_3
100 200 (+ agreement) mat2_3
e
[100]0]|
+o——t—+
11001
F=——t—t
[100]2]
+———t—+
+o——t-+
120013
e
12004
+-——t—+
120015
+e——t=t

Figure 2.1: Visualizing shape agreement, part 1

13



mat2_3 + mat2_3

4

02
6 8 10

NB. The frame is 2 3;

NB. the scalar cells of both collections
NB. are paired with each other

mat2_3 (+ agreement) mat2_3

+—+—+
o]0
+—+—+
[111]
+—+—+
2121
+—+—+

+-+—+
1313
+—+—+
[414]
+—+—+
5151
+-+—+

Figure 2.2: Visualizing shape agreement, part 2

14
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show arr2_3_2 =: integers 2 3 2

0 1
2 3
4 5
6 7
8 9
10 11
arr2_3_2 + mat2_3
0 1
3 4
6 7
9 10
12 13
15 16

Figure 2.3: Visualizing shape agreement, part 3. Continues in Fig 2.4

In this last example in Figure 2.3 and Figure 2.4, every scalar of mat2_3 was added to both
scalars of each vector in arr2_3_2. Another way to conceptualize this is that J made an
implicit map on the scalar elements of mat2_3, expanding each into a vector of 2 scalars. J
could do this because, with a frame of 2 3, mat2_3’s cells were scalars and arr2_3_2’s cells

were vectors of two scalars.

2.1.3 Rank Operator

With what we have developed so far, we are still unable to perform the operation of adding

a vector vec3 of 3 scalars to mat2_3, since shapes 3 and 2 3 have no non-empty prefix.

show vec3 =: i. 3
012
vec3 + mat2_3
|length error
| vec3 +mat2_3



NB.
NB.
NB.
NB.
NB.

The frame is 2 3;

The scalar cells of mat2_3
are expanded to vectors of 2
to match the shape of
arr2_3_2

arr2_3_2 + agreement mat2_3

+-—t—t
[0 10l
+——t—+
[1 10|
-t

+——t—+
(2 |1]
e
13 I1]
+-—t—t

+-—t—+
14 2]
+-—t—+
5 12]
+——t—t

+——t—+
16 131
+-—t—t
7 131
+——t—+

+-—t—+
I8 14|
+-—t—t
19 14|
e

+-—t—t
[1015]

+-—t—+
[11]5]

+-—t—+

Figure 2.4: Visualizing shape agreement, part 4

16
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However, it should be possible to add vec3 to each of the vectors of mat2_3, since each
vector has the same length. In order to accomplish this and many similar use cases where
the desired extension of a function is not the default extension, J also includes a rank
operator (which is spelled with double quotes: "). The rank operator is a higher order
function which takes as its first argument a function (not higher-ordered) and as its second
argument a vector of 1, 2, or 3 numeric values, and returns a function which performs the
same operation as the argument function but on the specified data rank[8].

Therefore, the following command,

vec3 +"1 mat2_3
024
357
is read “add the rank 1 items of vec3 to the rank 1 items of mat2_3.” In terms of frames,
cells, and implicit maps, we say that the frames of the rank 1 items in mat2_3 and vec3 are
2 and an empty frame, respectively, and they share a common cell size of 3. Because the
frame at rank 1 of vec3 prefixes the same frame mat2_3 (the empty frame prefixes every
frame), the shapes now agree, and there is an implicit map on the single vector element of

vec3 expanding to a matrix of two vectors.

2.1.4 The Application of a Function with Rank on its Arguments

For any function £ with function rank r and arguments x and y, the following steps give a

high level description of how f is applied to its arguments|8].

1. Calculate the cell shape at rank r of x and y by taking the r smallest dimensions
of the shape vector of each. E.g., the cell shape of mat2_3 at rank 1 is 3, since each

vector contains 3 items.
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2. Calculate the frame shape at rank r of x and y by removing from the shape vector of
each their respective cell shapes. E.g, at rank 1, the frame shape of mat2_3 is 2, the

frame shape of arr2_3_2 is 2 3, and the frame shape of vec3 is an empty frame.

3. If the frame shape of x and y do not agree, then return with an error. Otherwise,
extend the argument with the smaller frame shape via an implicit map on its cells at

rank r. If the frame shape of x and y are the same, do nothing.

4. Apply £ to every cell at rank r of x and y. If £ is a user defined function u with function
rank ru given with the rank operator, (i.e., f =: u ("ru)) repeat this process with

each of the cells of x and y, u, and ru

5. Reassemble the result cells of the previous step using the agreed frame shape.

2.1.5 Inherent Data Parallelism

While quite a few of these steps have some exploitable concurrency, step 4 has the most po-
tential for performance increases through parallelism. It is inherently data parallel because
each of the cells of x and y are operated on completely independently of each other. For
large computations, it is also the most computationally intensive because not only is this
step itself recursive, but also because these cells can themselves be large regular collections.

Finally, one consequence of having this common set of steps for applying all functions
with function rank is that all such functions can be parallelized in the library code. This
means that applications which uses a parallelized function rank library can automatically
exploit the inherent concurrency of their problem, provided this problem can be expressed

naturally in terms of function rank.
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2.2 Other Approaches

2.2.1 Regular Parallel Arrays in Haskel

In 2010, Keller et al. published a paper[12] describing work they had done creating a Haskell
library, which they named Repa, that implements and parallelizes regular arrays. There is
much to commend about their work, including “that it (1) is purely functional, (2) supports
reuse through shape polymorphism, (3) avoids unnecessary intermediate structures rather
than relying on subsequent loop fusion, and (4) supports transparent parallelization,” and
that it is a library for a functional language with relatively wide use. There are two features
of Repa specifically that influenced work on Parallel-J; these are index functions and static
capture of a collection’s shape information.

In order to achieve good performance on functions that fall into the family of operations
known as index transformations, such as transposing or shifting a rank 2 array, Repa formal-
izes the notion of an index function. An index transformation is an operation on a regular
collection that conceptually changes how the collection is indexed. For example, using a
C-style notation, transposition might be represented as transpose2D(matrix) [i] [j] &
matrix[j] [i], for all integers i,j. Index functions allow index transformations to be im-
plemented purely as a change to how a given collection is indexed, rather than by allocating
new memory for the transposed collection and copying every element. Parallel-J currently
lacks this feature, but a future Scala regular collections library could easily support index
functions.

Impressively, Repa also statically captures some of the effects functions have on the
shapes of their arguments. For example, the type signature of sum shows that, given a
numeric array of rank n, it returns an array of rank n — 1 which has the same shape as

the argument array except for the rightmost (smallest) dimension. Another way to state
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this is, their sum library function takes an arbitrary array of rank n > 0 and sums that
array’s vector elements, returning an array whose shape is the shape of the argument array
with the smallest dimension dropped off. Consequently, passing sum a rank 0 array is a
compile-time error. In general, this library “enables [the user] to track the rank of each
array in its type, guaranteeing the absence of rank-related runtime errors”[12].

Repa’s static capturing of the rank of a function’s arguments is equivalent to J’s notion of
function rank. It is implemented as a list of the type Int and uses Haskell’s pattern-matching
capabilities and some language extensions to analyze the structure of this list. However,
unlike J, Repa appears to lack a rank operator. Instead, functions must be extended
manually in order to operate on arrays of higher rank. While Repa’s manual extensions
are safer from error than extending through nested maps or for loops due to its type safety
and due to reducing some of the boilerplate code of the latter in functions like replicate
and backpermute, because it does not express these extensions as higher-ordered functions,
programmers using Repa must still work at a conceptually lower-level of abstraction, and
still must write more boilerplate code, than using J’s rank operator would require of them.

For example, while in J the idiom for sum (spelled +/) automatically operates on the
rank n — 1 items of a rank n array, in Repa, sum by default operates only on scalar values
in each vector of a collection. In order to scale the existing sum function in Repa to any
array of rank n > 1, a new function must be written for each dimension which manually
extends sum[12]. In contrast, in order to get the same behavior in J of Repa’s sum function,
no manual extension is required; it is +/ " 1, which in English reads rather intuitively as
“apply sum to the vector elements of its argument.”

Finally, although both J and Repa support some notion of function rank, it seems
conceptually easier to understand, for example, that £ (" 3) means “apply f on the rank

3 items”, than it is to understand Repa’s equivalent, (sh.:Int.:Int.:Int) as it would



21

appear in the function declaration below:

f :: (Shape sh, Elt e) => Array (sh :. Int :. Int :. Int) e -> Array sh

Reap’s greater verbosity is partially due to Haskell being statically typed, which is what
also allows Repa to capture the effects operations have on data rank at compile time. J, in
contrast, is dynamically typed, and while this means J does not provide any mechanisms
for catching errors before runtime, its functions also do not need to statically document

their effects on data, simplifying the way programmers write and use code.

2.2.2 SA-C, Boost MultiArray

While we believe that Repa is the best of the solutions we have found so far, due to being
already parallelized, capturing the effects functions have on the rank of their data, and
reducing boilerplate code, it is appropriate to mention other influential work in the subject
of data parallelism on regular collections. Our analysis is mostly in agreement with the
developers of Repa[12].

Single-Assignment C (SA-C) is a functional, C-like language that has many of the same
advantages as Repa[12][20]. Unfortunately, this also means that it has the same limitations,
most notably the lack of a rank operator. Additionally, unlike Repa and our own research
(but like J), it is a special purpose array programming language and not an extension to
an existing, general purpose programming with a broad user base and with access to large
and well developed libraries.

In contrast, the C++ library Boost.MultiArray is a library for a general purpose and

widely used programming language[2]. However, its ability to analyze and operate on the
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structure of regular collections is limited compared to SA-C or Repa. Furthermore, it
does not benefit from a naturally parallel implementation, its arrays are operated on in a
conceptually lower (imperative) level, and it also does not have an equivalent to the rank

operator.



Chapter 3

Proposed Operators for a Parallel

Implementation of J

3.1 Rationale

Ideally, using a parallel library would automatically reduce a program’s runtime without
requiring the programmer to write a single line of parallelizing code. However, this is often
not the case. Frequently, programmers must use domain knowledge of the problem or
platform to achieve good run-time results.

In order to grant this flexibility in future parallel implementations of J, we propose
introducing two new operators, called the parallel rank operator and the parallel insert
operator. The parallel rank operator, described in Section 3.2, would allow the programmer
to specify the ranks on which to parallelize code. The parallel insert operator, described in
Section 3.3, would allow the programmer to parallelize reduction operations with associative
functions. Additionally, we propose a new system library that would allow the programmer

to give annotations or force changes in the underlying parallel environment, described in

23
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Section 3.4

The spellings ":: and /:: for the two parallel operators were chosen for mnemonic and
compliance reasons. Mnemonically, each uses the same base character as their sequential
analogs, (" and /), as well as two “parallel” colons, making it easier to remember their
functions. They also require no changes be made to the existing J lexer|[7], as demonstrated

below:

NB. The J Lexer as a primitive
NB. Takes a character string and
NB. puts each lexeme in a ‘box’

jlexer =: ;:

jlexer ’+/::("1) mat2_3 +("::1)("2) arr2_2_3’
e e e L s
(#1701 Imat2 31+ (1" (2D 1" 121D larr2_2_3]
e L St T e S St S

For the purposes of this discussion, the important result the above example demonstrates
is that the string of characters ":: is read as a whole lexeme, and is placed entirely in a
box, rather than being interpreted as several lexemes, which would result in the characters
being split into several boxes. For more detail on the behavior of the J language, consult
Appendix A.

For the parallel environment library, it seemed best to augment the existing “foreign”
operator (spelled ! :). The foreign operator was designed to allow the programmer to change
environmental parameters such as print precision, file I/O, etc[6], and so fits conceptually
with the idea of changing the state of a parallel environment. We chose 111 as the numeric
encoding for the parallel environment library, again for mnemonic reasons: 111 looks like

three parallel lines (11 was already taken).
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3.2 Parallel Rank Operator: "::

3.2.1 Usage

The proposed parallel rank operator is a conjunction whose first argument is a function
and whose second argument is the ranks to both apply the function and to parallelize it. It

would be functionally equivalent to the rank operator, i.e.

f(:: nyef "oy

and

xf (":: r)yexf ")y

for all f,r, s, and y

Its purpose would be to override other parallel system defaults for automatic paral-
lelization to guarantee that the resulting function would create parallelizable tasks from the
operations on sub-arrays of the given rank that would then be distributed to the available
threads. To illustrate, consider the examples in Fig 3.1. Incrementing numeric values al-
ways applies to scalars, so the function increment always gives the same result, regardless
of the rank of the sub-collections to which it is applied. Using the parallel rank operator,
the behavior increment of always having the same result regardless of the rank applied
would remain; however, as the last example visually illustrates, specifying increment ("::
1) would result in the environment parallelizing the operation of incrementing each of the
vector elements of mat2_3. In this example, a programmer could create parallelizable tasks

from incrementing the six scalars, the two vectors, and the one matrix.
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NB. increment: increments the values of a numeric array

increment =: >:

increment mat2_3
123
456

NB. Link places both its arguments in ‘boxes’

NB. This demonstrates that incrementing a collection

NB. is the same regardless of the rank applied

(increment"0 link increment"1l (link =: ;) increment"2) mat2_3
+-———- +-———- o +

[1 23|12 3|12 3]

|4 5 6/45 6|45 6|

+-——= o +
NB. showTasks visualizes how the subcollections of mat2_3
NB. would be broken up into tasks that would then be
NB. concurrently operated on ny threads

showTasks =: agreement (< Q)
(increment (" 1) showTasks) mat2_3
o o= +
[0 1 2|3 4 5]
o o +

Figure 3.1: Visualizing tasks created by the parallel rank operator

A more complex example involving functions of two arguments, as well as repeated
applications of the rank operator, is given in Fig 3.2. Using the parallel rank operator,
the line of code mat2_3 +("::2) arr2 2 3 would create parallelizable tasks for adding the
elements of each of the two matrices, whereas mat2_3 +("::1) ("2) arr2_2_3 would create
parallelizable tasks for adding the elements of each of the four vectors.

Some open questions remain, most notably the behavior of the parallel environment
when multiple applications of the parallel rank operator are used. For example, should
multiple applications of the parallel rank operator result in multiple levels of parallelizable
task creation, leading to increased overhead from thread creation and scheduling, or should

the outermost application determine the only level at which parallelizable tasks are created,



show arr2_2_3 =: integers 2 2 3
1 2
4 5

w o

(@)

7 8
10 11
mat2_3 +"2 arr2_2_3
2 4
8 10

©

o O

6 8 10
12 14 16
mat2_3 +("1)("2) arr2_2_3
0 2 4
6 8 10

6 8 10

12 14 16
mat2_3 (+("2) showTasks) arr2_2_3

[101 2]0 1 2[|l012]6 7 8]
13 4 5|3 45113459 10 11]]

Figure 3.2: Visualizing tasks created by the parallel rank operator for two collections
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leading to unparallelizing previously parallelized programs when they are used in larger
functions? Either possibility could have significant impact on program run time. One
solution may be to allow the programmer to chose which behavior best suites their needs

using the parallel environment libary, described in Section 3.4.

3.3 Parallel Insert Operator: /::

3.3.1 Rationale

Frequently, programmers need to perform some sort of reduction operation on an entire
collection, for example finding the sum, product, maximum, minimum, etc. of a collection
of numbers. It’s well known that when the reducing operation f is associative, i.e. when
f(z,y) = f(y,z) for all f,z,y (and for a sufficiently tolerant comparison, when dealing with
floating point values), then the reduction can be carried out in a parallel fashion with little
effort on the programmer’s part. Therefore, a future parallel implementation of J should
allow the programmer to explicitly state that a specific associative function should be used
to reduce an array in parallel, since in the general case the default insert operator does not
assume its argument function is associative, nor is it immediately obvious how to determine

if a user-defined function is associative.

3.3.2 Usage

As a unary, higher ordered function (adverb), the parallel insert operator would be equiv-
alent to the sequential insert operator for all associative operations. Thus, the J session
depicted in Fig 3.3 would have the same results for every line of code executed, regardless
of whether insert was assigned to be /:: or /

An open question remains about how the parallel insert operator should behave on
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insert =: /
show veclO =: integers 10
0123456789
+ insert veclO
45
NB. greater0f takes two numbers
NB. and returns the greater of them
100 (greater0f =: >.) 10
100
greater0f insert veclO

+ insert mat2_3
357
NB. Flatten takes any array
NB. and converts it to a vector
+ insert (flatten =: ,) mat2_3
15
NB. sum each of the vectors
NB. in mat2_3
+ insert ("1) mat2_3
3 12

Figure 3.3: Using the parallel insert operator

non-associative functions. Without associativity, the results of reducing an array with a
function depend on the order by which the function is applied, destroying the possibility
of concurrent operations. One possible way to deal with non-associativity is to define
the domain of parallel insert to be only the associative primitives. This would prevent
logical errors such as radically different results for the same calculations on the same data,
depending on the thread scheduling scheme. However, this approach would likely require
adding an additional table of information that would store whether or not the given primitive
was associative. This approach would also exclude the possibility of user-defined functions
that are associative from benefiting from parallelization.

Another possibility would be ignore the question of whether or not a function f is



30

associative, and try to parallelize f as if it were associative. Using this approach could lead
to errors that might be difficult for a novice parallel programmer to debug and may even go
unnoticed, since those errors would be at the logic-level and not during run-time. Finally,
a middle solution could be taken in which the programmer chooses to switch between these

approaches using the parallel environment library, discussed below.

3.4 Parallel Environment Library: 111 !:

3.4.1 Conventions of the Foreign Operator

The foreign operator is a two-argument higher order function, or in J a conjunction, whose
arguments are always numeric. Conceptually, these arguments serve as an index into system
libraries and functions. The left argument indexes the desired library. E.g., 2 indexes the
library for functions which affect the host machine, 9 indexes the library for viewing and
setting global J parameters (such as print precision), and etc. The second argument indexes
a specific function. For example, 9!:6 is the function which displays the print characters

for J’s box type.

3.4.2 Usage

There are many options to consider for implementing a full suite of functions for a par-
allel environment library. A more full review of the functionality of other shared-memory
parallel libraries, such as OpenMP[16], is required to make sure such a library provides all
the functionality parallel programmers expect. However, two types of functionality would

almost certainly be required. They are:

1. Getting and setting the total number of threads available in the parallel environment,
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(111 !': 0) ’’ NB. Get number of threads.

1
(111 ': 1) 4 NB. Set number of available threads to 4.
(111 !': 2) ’’ NB. Get numeric encoding of thread scheduling scheme.
0
(111 !: 3) 1 NB. Set thread scheduling to, for example, round robin.
(111 ': 4) ’’ NB. Get parallel rank nested thread creation flag
° (111 !: 5) 1 NB. Enable nested thread creation
(111 !: 6) ’’ NB. Get parallel insert restriction flag
’ (111 !: 7) 1 NB. Enable restrictions on insert
+/::("1) mat2_3 +("::1)("2) arr2_2_3
6 24
24 42

Figure 3.4: A hypothetical J session using the parallel environment library

with an extension for J’s value for infinity to mean no user-specified limit on the

number of threads, and

2. Getting and setting the thread scheduling schemes (such as static, round-robin, etc.).
These would be encoded as numeric values, in keeping with the conventions of the

foreign libraries.

Additionally, as discussed in Sections 3.4 and 3.3, it may be desirable to change the default
behavior of the parallel rank operator and/or parallel insert operator, in order to parallelize
on user-defined associative operators.

The example given in Fig 3.4 is not based on any existing J REPL, but an illustration of
how programmers might use this proposed library. The last line would parallelize addition

on the row elements of mat2_3 and arr2_2_3, then parallelize the sum operation on each of
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the vectors of the resulting array, using 4 threads with a round-robin scheduling scheme.



Chapter 4

Example Parallel Problems

4.1 Rationale

The solutions to each of the following problems illustrate how the notion function rank both
provides advantages in approaching different forms of exploitable concurrency, as well as
allows for extensions to similar problems in higher dimensions easily, safely, and often auto-
matically. For each of these problems, there is a trivial extension into a higher dimension:
gather several rank n inputs to the problem into a rank n+ 1 collection and use the parallel
rank operator to evaluate each of these inputs concurrently. By specifying that the original
function operates on rank n elements, this extension is done automatically. However, each
section also discusses, when appropriate, the usefulness of function rank when the extension
is more complicated. Solutions for each of the problems in the following sections using the
partial implementation of the Parallel-J system are given in Appendix C.

To demonstrate the usefulness of function rank, the problems were chosen so as to
illustrate different kinds of parallel design patterns. Design Patterns are general, reusable

solutions to a common class of problems. Software design patterns were first made popular
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for object-oriented programming through the work of the “Gang of Four”[4], and are now
seeing interest for applications in parallel computing[13]. This research has chosen to focus
on the pattern language developed by Mattson et al. presented in their book, Patterns for
Parallel Programming[13]. Using parallel design patterns to guide the choices and discussion
of these problems should allow this limited selection of problems to better represent families

of parallel problems.

4.2 Calculating Pi with Numerical Integration

4.2.1 Description

One method of calculating 7 is to find the area under the curve of the equation fracll + z?

on the interval [0, 1]. This can be done with the integral in Eq 4.1.

Ly
= 4.1
" /0 1422 da (41)

One way to approximate this integral is using a left-handed Riemann sum. This method
works by dividing the desired interval into n sub intervals, evaluating the function of concern
at the left hand side of the interval, called z; (where 0 < i < n), and approximates the are
underneath the curve by finding the area of a rectangle whose width is the width of the

interval and height the value of the function at x;.

: i: . :

—_ . ":U:—

n =14 z2 n
=0
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4.2.2 Relevant Design Pattern

This problem was chosen to represent the Task Parallelism pattern, in which “the problem
is decomposed into a collection of tasks that can execute concurrently”[13]. In this problem,
the concurrent tasks are calculating Hi% for the different values of x. There is also a task
dependency: the multiplication of % and the sum of the values produced by each task
cannot occur until all tasks have finished. This task, which is a reduction on addition,
can also be executed in parallel, with sub-tasks summing the resulting areas concurrently.
Each individual task of calculating the area of a rectangle takes roughly the same amount of
time, as well, meaning no sophisticated scheduling is required in order to exploit concurrency

effectively for large n.

4.2.3 Solutions
C with OpenMP

A parallel solution to this problem using C with the OpenMP libraries is given below. It is

based on the solution given in Appendix A of Mattson et al.[13].

#include <stdio.h>
#include <omp.h>
#define NUM_STEPS 100000000

int main(int argc, char *argv[]) {

double x, pi;
double sum = 0.0;
double step = 1.0/(double) NUM_STEPS;

#pragma omp parallel for private(x) reduction(+:sum)
for (int i=NUM_STEPS-1; i >= 0; --i) {

X = ixstep;

sum = sum + 4.0/(1.0+x*x);
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pi = step * sum;
printf ("pi %1f\n", pi);
return O;

This solution parallelizes the for loop; i.e., it distributes iterations of the loop among threads
to execute concurrently. The program specifies both that x is a temporary work variable
and so should not be shared among threads, and that there is to be a reduction on the
variable sum with addition. Since the entire body of the for loop is parallelized, including
the update of sum, the annotations notifying the compiler of the reduction and private work

variable is critical; otherwise, there could very well be race conditions.

J

A sequential J solution to this problem is given below, with some definitions to facilitate
a discussion of the behavior of a solution in the proposed Parallel-J. The operators p_rank
and p_insert are defined as the normal rank and insert operators, respectively, but are

included to demonstrate where parallelism would be exploited in a parallel implementation

of J.

p_rank =: " NB. Would be "::
p_insert =: / NB. Would be /::
integers =: 1i.

func =: (4 (div =: %) (1 + (square =: *:))) p_rank O
xs =: integers div (n =: ])
num_int_pi =: (sum =: + p_insert)@:func@xs div n
This solution works conceptually by taking the for loop from the previous C solution
and expanding it into an array, generated by xs. Operations which were done in the body

of the C for loop are instead expressed as operations on the whole array. Because J is

functional, and because it allows the programmer to express collective rather than item-by-
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item operations, the need for the temporary work variable x used in the previous solution,
a potential source of race conditions and thus error, is eliminated.

Similarly, whereas the C solution required protecting against race conditions when re-
ducing on the sum variable by giving compiler annotations, in the J solution race conditions
could be avoided altogether. Either the sum operation would be safely parallel with : or it
would be sequential with /.

A solution using the Parallel-J system which takes exactly the same approach as the J

program can be found in Section C.1.

4.2.4 Extensions

The problem of calculating 7w by finding the area under a specific curve generalizes to
calculating any useful value by finding the value of an integral. In general, the domain over
which an integral takes place need not be 1-dimensional, as it was in this example (over
the closed interval [0,1]). Instead, the desired value may most naturally be expressed as
a volume or hyper-volume. For this example problem, the extension to higher dimensions
would be calculating 7 by finding a volume or hyper-volume.

The following discussion will focus on generalizing the creation of the set of points in n-
dimensional space over the interval [0, 1]”. The choice of function f to apply to the points in
n-space is entirely based upon the value to be calculated, and while it is possible to extend
the generation of points in n-space to arbitrary intervals, doing so would only complicate
the example without significant insight into the use of the rank operator.

The most immediate extension of the C solution to any specific rank n would be to wrap
the program in the appropriate number of for loops. In C, the function f would probably
take both an array of coordinate values as well as a parameter size specifying the current

dimension, so the programmer would also have to make sure to change this parameter in
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xs =: (n (base=:#:) integers@: (* insert)) div("1) n

NB. Divide [0,1]1x[0,1] into 4x4 grid
xs 4 4
0 0
0 0.25
0 0.5
0 0.75
0.25 0
0.25 0.25
0.25 0.5
0.25 0.75
0.5 0
0.5 0.25
0.5 0.5
0.5 0.75
0.75 0
0.75 0.25
0.75 0.5
0.75 0.75
xs 10
00.10.20.30.40.50.60.70.80.9

Figure 4.1: Extending the creation of coordinates to arbitrary rank

each version for a new dimension.

While this extension only involves changing two parts of the code, it is tedious and must
be done for every such extension. On the other hand, finding a general solution could be
somewhat involved as it is perhaps not clear at first sight how to begin such an approach.
The solution to this aspect of the problem along with some example uses is given in J in
Fig 4.1:

The function xs now takes a vector vn of length n specifying how to break up the inter-
val [0,1]™. To calculate the appropriate coordinates to do the Riemann sum, the function
first calculates the total number of points required (reducing vn with multiplication). Then

it finds, for each of the integers i between 0 and one less than this total, the array repre-
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sentation of ¢ in base vn. Finally, like the above example, xs divides each of these values by
the original input so that the resulting points are in the appropriate bounds. (For more on
the behavior of the function base, see Appendix E).

Because of the way xs is defined, no matter the dimension on which the programmer
desires to calculate their integral, the points for applying the desired function can always

be represented by at most a rank 2 array

shapeOf xs vn;<; (* insert vn), n

To approximate the desired integral, apply the appropriate function (in an inherently
parallel fashion) to each of the vector elements (which represent the coordinates to calculate
the Riemann sum), then multiply the sum of the results by the appropriate value (1 div

(x insert wvn)).

4.3 Conway’s “Game of Life”

4.3.1 Description

Conway’s “Game of Life”[5] is a cellular automaton which is “played” on an infinite or
bounded 2-dimensional grid. Every location on this grid represents a cell, which is either

alive or dead. At each iteration, every cell is updated by applying the following set of rules:

1. If the chosen cell is dead, then

(a) If this cell has exactly 3 neighbors that are alive, this cell becomes alive on the

next iteration

(b) Otherwise, the cell remains dead
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2. If the chosen cell is alive, then

(a) If this cell has either 2 or 3 neighbors that are alive, this cell remains alive on

the next iteration

(b) Otherwise, this cell becomes dead on the next iteration

It is often convenient to represent each cell with a numeric value that is 0 when the cell
is dead, and 1 when the cell is alive. Then, to calculate the number of alive neighbors for

each give cell, one need only sum the values of all of the neighbors.

4.3.2 Relevant Design Patterns

This problem represents the Geometric Decomposition design pattern,[13] in which “the
algorithm [is] organized around a data structure that has been decomposed into concurrently
updatable ‘chunks’.” For the bounded version of this problem, the data structure is a regular
rank 2 array with shape n, m, and the concurrently updatable chunk can be any subregion
of the grid, with the limiting case that each cell is a chunk. While there are no data

dependencies in this problem, care must be taken when using an imperative approach, as

cells must be updated by reading their neighbors’ current, and not future, values.

4.3.3 Solutions

C with OpenMP

A fragment of a parallel solution in C with OpenMP for the Game of Life is given below. The
solution was work done by the author for an undergraduate course in parallel computing.
The fragment contains the function which updates each cell, which is where most of the

computational concurrency for the game of life is found. Notice the two arguments to the
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function, board and new_board. In the main program loop (not shown), these parameters

are swapped every iteration, avoiding the potential race condition mentioned above.

#include <stdlib.h>
#include <omp.h>

/* data structure for two-dimensional array */
typedef struct twoD_array {

int rows;

int cols;

int *x elems;
} twoD_array_t;

void update_board(twoD_array_t *board, twoD_array_t *new_board);

/*
* updates board configuration
*/
void update_board(twoD_array_t *board, twoD_array_t *new_board) {
int i, j;

#pragma omp parallel for private(j) schedule(static)
for (i = 1; i <= board->rows-2; ++i) {
for (j = 1; j <= board->cols-2; ++j) {

int neighbs = 0;

int mycell = board->elems[i] [j];

int k, 1;

/*count neighbors*/
for (k =1 - 1; k <= i+1; ++k) {
for (1 =3 - 1; 1 <= j+1; ++1) {
if Mk ==1&1==7)){
neighbs += board->elems [k] [1];
}
}
}
/*Logic of gamex*/
if (mycell) {

if (!(neighbs == || neighbs == 3))
mycell = O;

else {



if (neighbs == 3)
mycell = 1;
3

/*Update board*/
new_board->elems[i] [j] =

¥
}

mycell;
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In the code given above, the tasks given to threads are the iterations of the outermost

for loop, i.e. the operations on each of the row elements, indexed by i. Again, we see that

a safeguard for the index j is required in order to avoid race conditions. This safeguard,

as well as the swapping back and forth of grids (which would be required in a sequential

solution similar to this), are changes in code which have to be made not because of the

nature of the computation itself, but because of the imperative, low-level nature of the

tools to express it.

J

Like above, the J code below includes only the fragment responsible for updating the cells

of the Game of Life.

p_rank =: "

p_insert =: /

NB. No neighbors at edge
shift =: |. !. O

NB. Specifies neighbors

NB. D=Down, U=Up, R=Right, L=Left
NB. UL U
shiftBy =: 8 2 § _1 _1 10

UR
1

1

0

1

NB. Generates higher-rank array for counting neighbors

neighborArray =: shiftBy&(shift "

1

)
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NB. Reshape: binds a shape vector to a rank 1 array
reshape =: §
show board =: 3 3 reshape 011 010 100

= O O
O = =
O O =

NB. The up-left, up, and up-right neighbors
0 1 2 from neighborArray board

000

1

001

o o
= o
[N

-
= O
o

Figure 4.2: Neighbors of cells in the Game of Life expressed as a 3D array

NB. Sums the neighbor values, finding how many are alive
listNeighbors =: (+ p_insert)@: neighborArray

NB. Rules of the game, as an array
NB. 0 (cell dead) 1 (cell alive)
rules =: (3 =1]) ¢ ([: +./23=1)

NB. Uses cell state to index into rule to apply

NB. appliedBy =: Q.

nextState =: rules @. (cell =: [)("0)(p_rank 1) listNeighbors

One important difference between this solution and the OpenMP version is the approach
to calculating the number of neighbor cells that are alive. Instead of using array indexing
at an item by item level, the neighbors are represented as a rank 3 array of shifted versions
of the original board. In order to represent that cells near the edges do not have neighbors,

Os are shifted in the appropriate places.
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Calculating the number of live neighbors of a cell by using a rank 3 array is a data
parallel approach to the problem, since now the sum acts on every cell in the same position
in every rank 2 item. This approach is a safer alternative to requiring that the location
of the cell is known to evaluate its neighbors, which potentially causes race conditions on
thread-local variables. Similarly, instead of specifying a reduction on a work variable sum,
the parallel insert operator parallelize the operation in an automatically safe fashion.

One objection to this approach would be the potentially dramatic increase of memory
use in the J approach compared to C with OpenMP. This increase in memory use can be
avoided by using index functions, described in Section 2.2.1. With an index function, only
one copy of the original rank 2 would be kept, and instead of direct indexing into a rank 3
array, an index function is used to determine what the direct index into the rank 2 array
would be.

A solution using the Parallel-J system which takes a similar approach as the J program

(but includes a non-J for loop for the iteration) can be found in Section C.2.

4.3.4 Extensions

Of the listed problems, the Game of Life perhaps best demonstrates the utility of generaliz-
ing the application of functions to higher rank arrays using function rank, not only because
the problem is expressed in a data parallel fashion; in general, simulations of cellular au-
tomata need not be restricted to two dimensions, but can occur on arbitrary dimensions.
This discussion of extending the Game of Life to higher dimensions will focus on calculat-
ing the number of neighbors in any dimension. While it is possibly desirable that the rules
governing the life of a cell would also change depending on the dimension, the particular
set of rules used is omitted from the discussion because the decision of which rules govern

the life of a cell is dependent on the results the programmer wishes to achieve, and not the
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general method for achieving them.

In the C solution with OpenMP, the obvious extension of the problem to any specific
rank is to nest the existing for loops with additional for loops. Since for loops are used
for both examining each cell, as well as examining each neighbor of the given cell, this
involves writing 2 for loops with 2 extra variables for every additional dimension desired.
Additionally, if the convenience of the C structure twoD_array is desired, the structure
must be rewritten for every rank desired. Again, on the other hand, it is may not be easy
for a programmer to see how to begin an approach which handles the problem in the general

case. The solution to the general approach in J is given below.

NB. General algorithm for finding
NB. shifts of board of arbitrary rank

decr =: <: NB. decrement

integers =: 1.

dim =: #Q$

base =: #:

n=:1]

copies =: #

shiftVals =: decr@(n base integers@(* insert))

shiftBy =: shiftVals@:(dim copies 3:)

NB. Updated to use shiftBy as function, not data
neighborArray =: shiftBy (shift"1l _) n
listNeighbors =: (+ p_insert)@:neighborArray - n

NB. Rules of the game, as an array
NB. 0 (cell dead) 1 (cell alive)
rules =: (3 =1) C ([: +./23=1)

NB. Uses cell state to index into rule to apply
NB. appliedBy =: @.
nextState =: rules @. (cell =: [)("0)(p_rank 1) listNeighbors

The most significant change from the previous approach is changing shiftBy to a func-

tion that calculates the appropriate values based on the dimension of the board, rather than
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show board3D =: 2 2 2 reshape 00 01 10 11
00
01

0 1 13 24 25 from shiftBy board3D
11
1 0
0 0
11
1 0
NB. Box places its arguments in a box
NB. This displays each 3D array

NB. the shift values from above

box =: <

box ("3) 0 1 13 24 25 from neighborArray board3D
et S B
[0 0l0 010 010 1]1 1]
[0 0l0 010 110 0]0 O
| | | | | |
[0 0l0 0]1 010 0l0 O
[0 0l0 0l1 110 Ol0 O
ot — -t

Figure 4.3: Neighbors in “Game of Life”, extended to any dimension

hard coding them like before. This change accomplished with the base function using much
the same approach as found with the previous problem in Section 4.2.4, so the details of its
behavior will be glossed with a simple illustration, found in Fig 4.3:

There is one additional change necessary: since the values to shift always include the “no
shift” vector (a vector with only Os as entries), without additional logic live cells will always
be counted as having one additional neighbor. The listed code handles this by subtracting
from the sum of the values the value of the cell itself. No other changes to the code are
necessary for this extension to work, and thus the inherent parallelism of the solution for

fixed rank is preserved without additional logic.
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4.4 Merge Sort

4.4.1 Description

Conceptually, sorting an array using merge sort is fairly easy to describe.
o If the array has fewer than 2 elements, it’s sorted
e Otherwise, divide the array into two halves and sort each of these

e Take the two sorted halves and merge them such that the resulting array remains

sorted.

To simplify the discussion of the problem, we will be concerned with sorting arrays
whose lengths are of the form 2", where n is a positive integer. This way the nature of
the parallelism in the problem can be discussed without going into the detail of handling
special cases.

Unfortunately, merge sort does not have a very intuitive extension into higher dimen-
sions, since comparing collections is not similar to comparing numbers. However, it will
be shown that an advantage of function rank in approaching this problem will be easily

extending a given vector to sort into an arbitrarily high dimension.

4.4.2 Relevant Design Patterns

This problem represents the “Divide and Conquer” design pattern, in which, like its sequen-
tial equivalent, “the problem is solved by splitting it into a number of smaller sub-problems,
solving them independently [concurrently]|, and merging the sub-solutions”[13]. Normally,
problems that fit this design pattern are difficult to approach with data parallelism. Given
the constraints mentioned above, however, merge sort will always the same number of sub-

problems each with the same size, allowing for a data parallel approach.
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4.4.3 Solutions
C with OpenMP

A parallel merge sort in C with OpenMP is given below. The solution, as well as the de-

scription of its workings, was taken from an article on parallelism in OpenMP and MPI[18].

void mergesort_parallel_omp
(int a[], int size, int temp[], int threads) {
if ( threads == 1) {
mergesort_serial(a, size, temp);
}
else if (threads > 1) {
#pragma omp parallel sections

{
#pragma omp section
mergesort_parallel_omp(a, size/2, temp, threads/2);
#pragma omp section
mergesort_parallel_omp(a + size/2, size-size/2,
temp + size/2, threads-threads/2);
}

merge(a, size, temp);
} // threads > 1

The sections compiler directive specifies that the following blocks of code (each beginning
with a section directive) are to be executed independently of each other[16]. Then, after
each sub-array is sorted, each thread (spawned by a different section directives) recursively
merges (in-order) its sub-arrays in parallel, resulting in the original array being sorted.
While this solution is expressed very imperatively, most likely for performance reasons,
it need not have been. Instead, each thread could have allocated memory and returned
a new array with all the elements of the previous array in sort order. However, in either
of these cases the programmer must explicitly work around the imperative nature of the

programming language, either by manually requesting new memory safe for the stateful
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operations, or by manually keeping track of memory locations to avoid operating on data
in use by other threads. However, this added effort would remain regardless of whether the
solution were sequential or parallel, since it comes from the C programming language, and

is typical of many imperative programming languages.

J

In the following J code, the function merge and its helper functions were omitted. The full
solution can be found in Appendix D

p_rank =: "

NB. If the two items are in order, return them
NB. otherwise, reverse their order

inOrder_2 =: <:/

reverse =: |.

identity =: ]

sort2 =: reverse‘identity@.inOrder_2

NB. Turn rankl array with 2°n elements

NB. Into rank n array, shape n copies of 2
NB. e.g., array of 8 => array of 2 2 2
divide =: $~ 2 #7 2 ~. #

NB. Divide into different rank 1 cells (rows of 2 each)
NB. Sort each of these rank 1 cells

NB. Then, merge the rank 1 cells pairwise

NB. as many times as 1 less than the dimension of the rank
dim =: #0$

repeated =: ~:

repeatedMerge =: merge/(p_rank 2) repeated (dim - 1:)
mergeSort =: repeatedMerge@: (sort2 p_rank 1)@:divide

This solution takes advantage of the constraints on the length of the array (it must be
an integral power of two), expressing the regularity of the sizes of sub-problems through a

regular array whose rank grows as the number of sub-problems does. For example, consider

the code in Fig 4.4:



NB. Deal: Create a list of integers
NB. from the argument, and shuffle them
deal =: 7~
show vec8 =: deal 8
05123476
show vecl6 =: deal 16
1183101211594 137 146520
NB. Converts v8 into a 2 by 2 by 2 array
divide vec8

= O
N O

4
6

~N W

NB. Converts v16 into a 2 by 2 by 2 by 2 array
divide vecl6

11 8

3 10

12 1
15

Figure 4.4: Divide and conquer by reshaping to an arbitrary rank array
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Unlike the high level description of the problem given at the beginning of this section
(but equivalently), this solution first sorts each two item vector, expressing the recursive
base-case of the merge sort algorithm as a data parallel operation. Then, vectors are
repeatedly merged via an insert of the merge function on the rank 2 items (which always
consist of two vector elements). Again, while repeated function application doesn’t quite
fall into the bounds of data parallelism, each merge operation on the rank 2 items is itself
data parallel, since the operation acts on the two-dimensional sub-collections concurrently.
The example in Fig 4.5 illustrates this possibly unintuitive result of finding data parallelism

in a traditionally divide and conquer problem.



NB. Visualizing the application of the first
NB. merge operation on vecl6
‘merging’ link ("2) sort2 ("1) divide vecl6
e +-———+
Imerging|8 11|
I I3 10|
+o——— +-———+
[merging|1 12|
I 9 15]

Imerging|4 13|
| |7 14|
oo oot
Imerging|5 6 |
| [0 2 |
o ot
NB. Visualizing the application of the second
NB. merge operation on vecl6
‘merging’ link ("2) (merge insert) (p_rank 2) sort2 ("1) divide vecl6
o pomm o +
Imerging|3 8 10 11|

| [1 9 12 15|
o o +
Imergingl4 7 13 14|
| 02 5 6l
o e +

Figure 4.5: Merging each of the vector elements of every matrix
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Chapter 5

Results

5.1 Methodology

Each Parallel-J solution to the problems listed in Chapter 4 was timed running on varying
problem sizes using 1, 2, and 4 threads For comparison, the performance of the solutions
in C with OpenMP for the same problems is also listed. These C solutions were run on
larger problem sizes in order to demonstrate their scaling more effectively (see Section 6.1
for more details). The Scala API Benchmark object was used to measure the performance
of the Parallel-J solutions, which allowed for ease of use from the command line, automatic
timing, and forcing the Java garbage collector to run between program runs. For the C
programs, timing had to be done manually for each program. For all program results, the
run time is given in seconds.

All solutions were run (and in the case of the C solutions, compiled) on a workstation
with 16 1.0GHz AuthenticAMD processors each with 512 KB cache size. For the Parallel-J
solutions (all of which can be found in Appendix C), a single trial consisted of running each

program on a specific problem size with a specific number of threads a total of 6 times and
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measuring their execution time. the results of the latter 5 program runs were averaged. The
first program run was omitted in order to account for the Java Just-In-Time (JIT) compiler
making optimizations on the running Parallel-J code. For the solutions in C with OpenMP,
a single trial consisted of running each program with a specific number of threads a total

of 5 times. The performance for all the program runs for the C trials were averaged.

5.2 Calculating Pi using Numerical Integration

The number of operations performed in this problem scales as the number of divisions n
between the interval [0, 1] grows. For our tests, we measured performance for n = 10,000,

n = 20,000, ..., n = 100,000. Table 5.1 below gives the outcomes.

n = 10,000 n = 20,000 n = 30,000 n = 40,000
Threads | 1 [ 2 | 4 | 1 | 2 [ 4 [ 1 ]2 4] 1 ] 2 [ 4]
| Parallel-J | 10.1 [ 10.1 | 10.2 || 31.5 [ 38.4 | 38.5 [ 70.6 | 90.8 | 91.0 [| 126.2 | 152.5 | 152.8 |
n = 50,000 n = 60,000 n = 70,000
Threads | 1 | 2 [ 4 1 | 2 | 4 [ 1 [ 2 ] 4]
| Parallel-J | 173.7 | 236.0 | 235.6 || 251.0 | 361.0 | 361.0 [ 342.2 | 490.2 | 491.3 |
n = 80,000 n = 90,000 n = 100,000
Threads | 1 | 2 | 4 [ 1 | 2 | 4 | 1 [ 2 [ 4 |
Parallel-J | 651.6 | 653.7 | 653.3 | 826.1 | 769.3 | 814.5 || 1017.5 [ 1020.0 | 10215 ||
x = 1,000,000
Threads 1 ‘ 2 ‘ 4 ‘

| C with OpenMP | 0.0233465 | 0.0117569 | 0.01764 |

Table 5.1: Performance results for calculating =

5.3 Game of Life

For the two-dimensional version of the “Game of Life”, the number of operations performed

in this problem scales as the dimensions x and y grow larger, and also as the number of
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desired iterations ¢ grows. The latter, however, is fundamentally sequential, so i was fixed
to be relatively small with value 10. In order to simplify the benchmarking process, trials
were only run on square boards (x = y). Table 5.2 below gives the outcomes for x and y

ranging from 100 to 300 by increments of 25.

| OpenMP with C || 1.22818 | 0.684292 | 0.683609 |

Table 5.2: Performance results for the Game of Life

5.4 Merge Sort

The number of operations required for this problem grows as the number n of values to sort
increases. Because of the problem constraint listed in Section 4.4, problem sizes of the form
2" were chosen, where 14 < n < 16. The reader should note that due to time constraints,
the Parallel-J version of this solution uses a merge function implemented imperatively in
Scala, rather than implementing it in an equivalent way to the J idiom given in Appendix

D. Table 5.3 below gives the outcomes.

z =100 x =125 x =150
Threads | 1 [ 2 | 4 [ 1 | 2 [ 4 [ 1 | 2 [ 4 |
| Parallel-J || 66.4 | 66.5 | 66.4 [| 159.8 [ 159.6 | 159.9 | 326.8 | 335.5 | 348.1 ||
x =175 z = 200 x =225
Threads | 1 [ 2 | 4 | 1 | 2 [ 4 [ 1 | 2 [ 4 |
| Parallel-J || 725.8 | 728.3 [ 726.1 || 1234.2 | 1231.2 | 1233.5 | 1979.8 | 1973.1 | 1973.3 |
x = 250 x =275 T =
Threads 1 2 ] 4] 1 [ 2 [ 4] 1 ] 2
| Parallel-J || 2.45014¢6 | 3.00412¢6 | 2.62603¢6 || 3.79871e6 | 3.79696e6 | 4.37458e6 || 5.36684¢6 | 5.368
x = 1000
Threads 1] 2 | 4 ]



n =21 n =20 n =216
Threads | 1 | 2 [ 4 [ 1 [ 2[4 1 [ 2 | 4]
| Parallel-J [ 2.9 [ 2525 [ 10.6 [ 9.2 9.2 [ 41.1 [ 35.5 | 35.7 |
z = 1000
Threads 1 ‘ 2 ‘ 4 ‘

| OpenMP with C [ 0.413132 | 0.218665 | 0.222577 ||

Table 5.3: Performance results for merge sort



Chapter 6

Conclusion

6.1 Discussion of Results

There are several potential reasons for the underwhelming results for the Parallel-J solutions
given in Section 5. Probably the most significant reason for these results is that the body of
code being parallelized (see Appendix B) potentially creates a large number of permanent
and temporary objects, meaning that there are multiple requests for memory from the
Java run-time heap. For example, since this work was originally intended to be a parallel
implementation of J, several wrapper classes for were created to hold the same kind of
information the current version of J[7] maintains about arrays and the primitive values, like
reference counts and bit flags for type information, and so where in a normal Scala library
there would have been operations on primitive values, in Parallel-J these operations were
encumbered by having to work on instances of wrapper classes. The constant creation of
new objects for every single integer likely lengthened program run-time significantly.

Also, operations that took existing collections and turned them into collections of higher

rank were implemented by copying whole collections, operating on them, then concatenat-
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ing each sub-result to return the final result. This constant copying of sub-arrays could have
been avoided through the use of index transformation which have been described in Sec-
tion 2.2.1, potentially improving performance significantly by removing these unnecessary
operations.

Additionally, the large number of wrapper classes for primitive values increased each
Parallel-J solution’s memory requirements such that even comparatively modest problem
sizes would not fit in cache, degrading performance significantly. This was first discovered
when analyzing the performance results in Section 5.2, in which increasing the problem
size by a factor of 10, from 10,000 to 100,000, caused the program’s run time to increase
by a factor of 100. The solutions in C with OpenMP, in contrast, did not display this
behavior, and instead only began showing significant improvements from parallelism in the
same problem at a problem sizes of 1,000, 000.

Finally, this research did not make use of the macros introduced by Scala 2.10[21] because
Scala 2.10 was released too late in the research’s development to be incorporated. These
macros have the potential to improve performance by replacing at compile time source
code expressions that appear to be acting on objects with lower-level expressions acting on

primitives, thus avoiding new object creation.

6.2 Future Research

6.2.1 Parallel Implementation of J

This research would be useful for future work towards a parallel alternative of J. Regardless
of the language chosen for implementing a parallel J, researchers must still consider which
language features to include first in their prototype (Section 1.2) and must still understand

the inherently data parallel nature of the rank operator (Section 2.1.4) Also, the forces that
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lead to the choice of Scala as the language for this research (also listed in Section 1.2), should
suggest to future researchers the kinds of language features desirable for implementing a
parallel J. If future work is done in this area in Scala or another language with suitable
programming paradigms and libraries for developing a parallel implementation of J, then
this research should be used as a prototype to help guide development.

Alternatively, a future parallel implementation of J could be done in the C programming
language, based on the current implementation of J[7]. In order to begin this approach,
it is strongly recommended that researchers first familiarize themselves with Roger Hui’s
documentation, “An Implementation of J.” Both this documentation and the full source
code (under open sources licenses) are available freely on the J Programming web site[9].
In addition, it seems that there are at least two viable options in such an approach which are
possibly not mutually exclusive. One option is to use a shared memory parallel environment
such OpenMP to parallelize operations within a single instance of a parallel J. Another
is to take advantage of the fact that the current implementation of J already includes
functionality to allow for multiple instances of J to be running in the same process without
race conditions and approach future work using a distributed memory parallel environment,

such as MPI[3].

6.2.2 Sequential and Parallel Scala Libraries for Regular Arrays using

Function Rank

Another possible extension to the work presented here is the development of a Scala library
for arbitrary dimensional collections that uses function rank. This library would ideally sup-
port parallelism in much the same way Scala’s current collections library does[17], through
conversions between sequential and parallel implementations of each collection type. How-

ever, it should be clear that even a purely sequential version of such a library would be
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useful for solving problems which requires operations on several different dimensions, or
which are naturally expressed in a higher dimension than the original problem description.

At the time this research was conducted, the author was not aware of current work
being done in generic and polytipic programming in Scala by Miles Sabin. In particular
this work, which is collectively called “Shapeless”[19], supports collections whose sizes are
known statically. This functionality would be useful for future work in developing a library
of collections whose dimensions are known statically, possibly granting some or all of the
advantages give when discussing the Haskell library Repa in Section 2.2.1[12]. Combining
these advantages with functions supporting function rank into a single Scala library would
lead to significant expressiveness and reduced boiler-plate code, and could lend itself to a

future parallel implementation for good performance, as well.

6.2.3 Implications for Other Work in Data Parallelism

This paper demonstrates that, conceptually, the formalization of function rank found in the
functional and collections oriented J programming language and Parallel-J Scala library can
help programmers exploit potential concurrency in the form of data parallelism, because it
allows programmers a take existing functions and, in an inherently data parallel fashion,
both apply them to specific ranks of a collection and extend them to similar problems
in higher dimensions. There may be other, equivalent models of function rank expressed
in other programming paradigms, such as object oriented programming, used in Parallel-
J to express the rank operator; developments in type theory may lead to elegant static
expressions of the shape of regular collections and a function’s shape (instead of just rank)
requirements and transformations of its data. Whatever the future holds in the field of
parallel computing, this paper hopes to make researchers aware that an elegant (and race-

condition safe) solution already exists to an entire class of data parallel problems and is
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waiting for its time to be acknowledged as, and used in conjunction with, other great ideas

in the field.
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Appendix A

A Partial J Lexer Written in Scala

package j.lang
import scala.annotation.tailrec
object JLexer {

class JLexeme(val chars: String, val state: JState.State) {
def +:(str: String) = JLexeme(this.chars + str, state)
override def toString = "JLexeme("+chars+","+state+")"

}

object JLexeme {
def apply(chars: String, state: JState.State) =
new JLexeme(chars, state)
def apply(chars: Seq[Char], state: JState.State) =
new JLexeme(chars.mkString(""), state)

}

object JState extends Enumeration {
type State = Value

val Space = Value(0)
val Other = Value(1)
val AlphNum = Value(2)
val N = Value(3)
val NB = Value(4)
val ‘NB.°¢ = Value(5)
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val Numeric = Value(6)

val Quote = Value(7)
val EvenQuotes = Value(8)
val Comment = Value(9)

object JCharClass extends Enumeration {
type CharClass = Value

val Other = Value(0)
val Space = Value(1)
val AlphNotNB = Value(2)
val N = Value(3)
val B = Value(4)
val Numeric = Value(5)
val Period = Value(6)
val Colon = Value(7)
val Quote = Value(8)

import JState._

object SMFuncCode extends Enumeration {
type FuncCode = Value
val Pass = Value(0)
val NextWord = Value(1)

val EmitWord = Value(2)
val EmitWErr = Value(3)
val EmitVect = Value(4)
val EmitVErr = Value(5)
val Stop = Value(6)

import SMFuncCode._
object SMFuncRes {

def apply(s: Int, c: Int) = new SMFuncRes(JState(s),SMFuncCode(c))
}

class SMFuncRes(val state: JState.State, val code: FuncCode) {
override def toString = "(" + state + "," + code + ")"

}

// Taken from the J Vocabulary page for Sequential Machine
val smLookUpTable = """
> X S A N B 9 D C Q ’Jo
11 00 21 31 21 61 11 11 71 NB. O space
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12 03 22 32 22 62 10 10 72 NB. 1 other
12 03 20 20 20 20 10 10 72 NB. 2 alp/num
12 03 20 20 40 20 10 10 72 NB. 3N

12 03 20 20 20 20 50 10 72 NB. 4NB

90 90 90 90 90 90 10 10 90 NB. 5NB.

14 05 60 60 60 60 60 10 74 NB. 6 num

T0 70 70 70 70 70 70 70 80 NB. 7’

12 03 22 32 22 62 12 12 70 NB. 8"’

90 90 90 90 90 90 90 90 90 NB. 9 comment

e gplit("\n") .drop(2) .map(_.drop(1) .split(" ").dropRight (1) .map(entry =>{
val Array(s,c) = entry.split(" ").map(_ tolnt)
SMFuncRes (s, c)

1))

import JCharClass._

class CharWClass(val char: Char, val charclass: CharClass) {
override def toString() = "(" + char + "," + charclass + ")"

}
object CharWClass {
def apply(char: Char, charClass: CharClass) =
new CharWClass(char,charClass)

def apply(char: Char) = new CharWClass(char, charClassify(char))

val charClasses = (0 until 256) .map((i:Int) =>
initCharClassify(i.toChar)) .toArray

def initCharClassify(c: Char)= {
import JCharClass._

if (c =="7) Space
else if (c.isDigit

[l ¢ =="_?) Numeric
else if (c == "N’) N
else if (c == ’B’) B
else if (c.isLetter) AlphNotNB
else if (c == .7) Period
else if (c == 2:7) Colon
else if (c == *\"?) Quote
else Other

}

def charClassify(c: Char) = charClasses(c.tolInt)
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private object SMRunningState {
case class EmitState(r: State, k: Int)

def apply(i: Int, j: Int, state: State) = {
new SMRunningState(i,j,state, List(), Nomne)
}
}

private class SMRunningState private(
private var ip: Int, private var jp: Int,
private var sp: State, private var ap: List[JLexeme],
private var vp: Option[SMRunningState.EmitState]) {

def i = ip
def j = jp
def accum = ap
def state = sp

def evState = vp

private def ev(line:Seq[CharWClass]) = {
import SMRunningState._
evState match {
case None =>
JLexeme(line.slice(j, i).map(_ char),
state) +: accum
case v: Some[EmitState] => {
if (v.get.r == state) {
accum.head.+: (line.slice(v.get.k,i) .map(_
char) .mkString) +: accum.drop(1)
}
else {
JLexeme(line.slice(j, i).map(_ char),state) +: accum

}

}

def ew(line:Seq[CharWClass]) =
JLexeme(line.slice(j, i).map(_ char),state) +: accum

import SMRunningState._
def next(fr: SMFuncRes, line:Seq[CharWClass]) = {



ap = fr.code match {
case Pass => accum
case NextWord => accum

case EmitWord => ew(line)
case EmitWErr => ew(line)

case EmitVect => ev(line)
case EmitVErr => ev(line)
}
vp = fr.code match {
case Pass => evState
case NextWord => evState

case EmitWord => None
case EmitWErr => None

case _ => Some(EmitState(state,i))
}
sp = fr.state
jp = fr.code match {

case EmitWErr => -1
case EmitVErr => -1

case Pass => j
case _ => i
X
ip += 1

private val endState = smLookUpTable(JCharClass.Space.id)
def finalize(fr: SMFuncRes, line:Seq[CharWClass]) = {
ap = ev(line)
}
}

def sequentialMachine(line: String): List[JLexeme] =
sequentialMachine (SMRunningState(0,-1,JState.Space),
line.map(CharWClass(_)))

@tailrec def sequentialMachine(runState: SMRunningState,
line:Seq[CharWClass]): List[JLexeme] = {
import runState._



if (line isEmpty)
accum.reverse
else if (i >= line.length) {
val funcRes = smLookUpTable(state.id) (JCharClass.Space.id)
runState.finalize(funcRes,line)
accum.reverse
}
else {
val funcRes = smLookUpTable(state.id) (1ine(i).charclass.id)
runState.next (funcRes, line)
sequentialMachine (runState,line)

3
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Appendix B

An Implementation of Function

Rank in Scala

package j.lang.datatypes.function
/*Imports*/

abstract class JVerb[M <: JArrayType : Manifest,

D1 <: JArrayType : Manifest, D2 <: JArrayType : Manifest,
MR <: JArrayType : Manifest, DR <: JArrayType : Manifest]
(rep: String, val ranks: List[JFuncRank],
mdomain: JTypeMacro,
dldomain: JTypeMacro, d2domain: JTypeMacro) extends
JFunc [JArray[M], JArray([D1], JArray[D2],

JArray[MR], JArray[DR]](rep, jVERB,

mdomain, dldomain, d2domain) {

def applyl[T <: JArray[M]](y: T) = monad(y)

override def monad[T <: JArray[M]](y: T) = {
val jaf = JArrayFrame(ranks.map(_ rl), y)

val newCells = if (!JVerb.parallelFlag) {

(0 until jaf.frameSize) map { fr =>
monadImpl (JArray(jaf.jar.jaType, jaf.cellShape,
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jaf.jar.ravel.slice(fr*jaf.cellSize,
(1+fr)*jaf.cellSize)))
3}
else {
(0 until jaf.frameSize).par map { fr =>
monadImpl (JArray(jaf.jar.jaType, jaf.cellShape,
jaf.jar.ravel.slice(fr*jaf.cellSize,
(1+fr)=*jaf.cellSize)))
1}

val newShape = jaf.frames.dropRight (ranks.length
) .foldLeft(List[Int] ()) (_ ++ _) ++ newCells(0).shape
JArray(newCells(0) . jaType, newShape,
newCells.foldLeft(Vector [MR] ()) (_ ++ _.ravel))
}

def apply[T1 <: JArray([D1], T2 <: JArray([D2]](x: T1, y: T2) = dyad(x,y)

override def dyad[T1 <: JArray[D1], T2 <: JArray[D2]](x: T1, y: T2) = {
val jafx = JArrayFrame(ranks.map(_ r2), x)
val jafy = JArrayFrame(ranks.map(_ r3), y)

jafx.shapeAgreement (jafy) match {
case None => throw new Exception()
case Some(agree) => {
val xreframed = jafx.shapeToNewFrame (agree)
val yreframed = jafy.shapeToNewFrame (agree)

val xcellShape = jafx.frames.last

val xcellSize = xcellShape.foldLeft(1)(_ * _)

val ycellShape = jafy.frames.last

val ycellSize ycellShape.foldLeft (1) (L * _)

val frameSize agree.init.foldLeft (1) (_ * _.foldLeft(1)(_ * _))

val newCells = if (!JVerb.parallelFlag) {
(0 until frameSize) map { fr =>
dyadImpl(
JArray(jafx.jar.jaType, xcellShape,
xreframed.ravel.slice(fr*xcellSize,
(1+fr)*xcellSize)),
JArray(jafy.jar.jaType, ycellShape,
yreframed.ravel.slice(fr*ycellSize,
(1+fr)*ycellSize)) )
3}
else {



(0 until frameSize).par map { fr =>
dyadImpl(
JArray(jafx. jar.jaType, xcellShape,
xreframed.ravel.slice(fr*xcellSize,
(1+fr)*xcellSize)),
JArray(jafy.jar.jaType, ycellShape,
yreframed.ravel.slice(fr*ycellSize,
(1+fr)*ycellSize)) )

3

val newShape = agree.dropRight(1).foldLeft(
List[Int] ) (_ ++ _) ++ newCells(0).shape
JArray(newCells(0) . jaType, newShape,
newCells.foldLeft (Vector[DR] ()) (_ ++ _.ravel))
}
}
}

def addRanks(r: JFuncRank) = {
val outerRef = this
new JVerb[M,D1,D2,MR,DR] (
rep + "(\"" +r + ")",
ranks :+ r,
mdomain, dldomain, d2domain) {

override def monadImpl[T <: M : Manifest](y: JArray[T]) = {

outerRef (y)

3
override def dyadImpl[T1 <: D1 : Manifest,
T2 <: D2 : Manifest] (x: JArray[T1], y: JArray[T2]) =

outerRef (x, y)

protected def monadImpl[T <: M : Manifest] (y: JArray[T]): JArray[MR]
protected def dyadImpl[T1 <: D1 : Manifest,
T2 <: D2 : Manifest] (x: JArray[T1], y: JArray[T2]): JArray[DR]

}

object JVerb {
var parallelFlag = false

}



Appendix C

Using the Parallel-J System as a

Scala Library

Below are the solutions to the problems listed in Chapter 4 using the Parallel-J system as

a Scala library.

C.1 Calculating Pi with Numerical Integration

package j.test.benchmark.NumInt
/*Imports*/
abstract class NumIntBench extends Benchmark {

var numSquares: JInt = null
private var pi: JArray[JNumber] = null

override def setUp(Q)
//modified from scala.testing.Benchmark

override def main(args: Array[Stringl) {
//command line argument parsing, setting value for numSquares
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def run() {
val recip = JArray.scalar(numSquares.recip)
signumMultiply(integersIndex (JArray.scalar (numSquares)),
recip)
val yvals = recipricalDivide(
conjugatePlus(JArray.scalar (JReal.One),
squareNotand (xvals)))

val xvals

pi = (conjugatePlus insert).apply(signumMultiply(
yvals,
signumMultiply(
JArray.scalar[JInt,Int] (4),
recip)
))
¥

override def tearDown() {
println("Pi is " + pi)

super.tearDown ()

3

C.2 Game of Life

package j.test.benchmark.GameOfLife
/*Imports*/

abstract class GOLBench extends Benchmark {
var boardShape: JArray[JInt] = null
val steps = 10
val ratioAliveDead = new JFloat(0.5)

//helper verbs
val equals3 = new JVerblType[JInt] (
"(3=1",
List (JFuncRank(0)),
FINT){
override def monadImpl[T <: JArrayType : Manifest](
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y: JArray[T]) =
throw new NotImplementedException()

override def dyadImpl[T1 <: JArrayType : Manifest,
T2 <: JArrayType : Manifest](
x: JArray[T1], y: JArray[T2]) = {
equal (JArray.scalar[JInt,Int] (3),
y)
}
}
val equals2_or_3 = new JVerbiType[JInt](
“([: +./23=0D",
List (JFuncRank(0)),
FINT){
override def monadImpl[T <: JInt : Manifest](
y: JArray[T]) =
throw new NotImplementedException()

override def dyadImpl[T1 <: JInt : Manifest,
T2 <: JArrayType : Manifest] (
x: JArray[T1], y: JArray[T2]) = {
(realOr insert).apply(equal(
JArray.vec2(2,3),
y)) .asInstance0f [JArray [JInt]]
}
}

override def main(args: Array[Stringl) {
//command line argumen parsing, setting value for boardShape

}

override def setUp()
def run() {

val numCells = (signumMultiply insert).monad/(
boardShape) .asInstanceOf [JArray [JInt]]

val lifeThreshold =
signumMultiply (
JArray.scalar(ratioAliveDead),
numCells) .asInstance0f [JArray [JReal]]

val board = shapeReshape(
boardShape,
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incrementGreaterthanequal (
lifeThreshold,
rollDeal [JArray[JInt],JArray[JInt]] (
numCells,
numCells))) .asInstanceOf [JArray[JInt]]

val shiftBy = shapeReshape(

JArray.vec2(8, 2),// DR D DL
JArray.auto[JInt, Int](
//DR D DL

-1,-1, -1,0, -1,1,

//R L UR U UL
0,-1, 0,1, 1,-1, 1,0, 1,1)
) .asInstanceOf [JArray[JInt]]

val neighborArray = (y: JArray[JInt]) =>
reverseShift(shiftBy, y).asInstanceOf [JArray[JInt]]

val listNeighbors = (y: JArray[JInt]) =>
(conjugatePlus insert) .monad(neighborArray(y)
) .asInstance0f [JArray [JInt]]

val nextState = leftIdentity.asInstanceOf [
JVerb[JInt, JInt, JInt, JInt, JInt]] agenda(

equals3, equals2_or_3)
var boardvar = board
for (i <- O until steps) {
boardvar =

nextState(boardvar, listNeighbors(boardvar)
) .asInstance0f [JArray [JInt]]

C.3 Merge Sort

package j.test.benchmark.MergeSort

/*Imports*/



abstract class MergeSortBench extends Benchmark {

var y: JArray[JInt] = null
var res: JArray[JInt] = null

override def main(args: Array[Stringl) {
//command line argument parsing, setting value for y

}

override def setUp()

def run() {
val jtwo = JArray.scalar(JInt(2))
val j16 = JArray.scalar(JInt(16))

val intReverse = reverseShift.asInstanceOf[
JVerb[JInt, JInt, JInt, JInt, JInt]]

val sort2 = (decrementLesserthanequal insert) agenda(
reverse,
rightIdentity.asInstanceOf [JVerblType [JInt]])

val divide = (y: JArray[JInt]) => {
shapeReshape (
tallyCopies(
naturalLog(
jtwo,
tallyCopies(y)) .asInstanceOf [JArray[JFloat]].toJInt,
jtwo) .asInstanceOf [JArray [JInt]],
y) .asInstance0f [JArray [JInt]]

val dim = (y: JArray[JInt]) => {
tallyCopies(shapeReshape(y))
}

val sortBase = (sort2 addRanks(JFuncRank(1)) )
val merger2 = (merge insert) addRanks(JFuncRank(2))

val repeatedMerge = (y: JArray[JInt]) => {
merger?2.power (decrementLesserthanequal (dim(y)
) .asInstanceOf [JArray[JInt]]) .apply(y)
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def mergeSort = (y: JArray[JInt]) => {
repeatedMerge (sortBase(divide(y)))

}

res = mergeSort(y)

3

override def tearDown() {
println("Array is sorted: " +
(decrementLesserthanequal insert).apply(res) )
super.tearDown ()

3
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Appendix D

Merge Sort in J

For the sake of simplicity some of the functions used in the J implementation of merge sort

lised in 4.4.3 were elided. The full program is given below.

NB. ‘mrg’ Taken from the J Phrase Book
mrg =: 1 : ’/:¢/:@m" _) { ,’

merge =: 4 : 0

b =. x interleaveOrdered y

y (b mrg) x

)

interleaveOrdered =: i.Q@:+&# e. (+ 1.Q@:#)Q@:(+/"10:>("0 1))
sort2 =: |.‘J@.(<:/)

sort2 =: |.‘J@.(<:/)

divide =: $~ 2 #~ 2 . #

dim =: #0$

mergeSort =: (merge/("2) ~: (dim - 1:))@:(sort2"1)@:divide
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Appendix E
J #: (Base) Primitive

The J primitive #: is a function that allows programmers to easily convert numeric values
into different number bases. For its one argument (monadic) usage, the primitive defaults
to converting values into base 2. The result of applying this function as a monad is a vector

of Os and 1s, with the indicies giving the appropriate place value.

base =: #:
base 2
10
base 3
11
base 65
1000001

For its two argument (dyadic) use case, #: takes as its left argument a vector represent-

ing the place values of the desired base, shown below.

2 2 base 3
11

22222 2 2 base 65
1000001

10 10 base 65
6 5
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One advantage of taking a vector for a numeric base representation, instead of a more
traditional scalar (base 2, 8, 10, 16, etc.), is that that #: can also represent numbers in irreg-
ular numeric bases. The example below shows how #: can be used to represent 100,000,000
milliseconds in the most familiar of the irregular numeric bases, time as measured in days,

hours, seconds, and milliseconds.

365 24 60 60 1000 base 100000000
1 346 40 0

In the discussion of extending the Game of Life to higher dimensions in Section 4.2.4, the
dyadic case of #: is used in the function xs, which takes a vector vn of length n specifying
how to divide the interval [0, 1]™. #:’s purpose in xs is to convert scalar values to a vector
vcn representing coordinate values, where each scalar ¢ at index i in ven lies in the interval
[0,i from vn]. Finally, each vector element in vcn is divided by vn so that the resulting
coordinate values all lie in the interval [0, 1]”. This process is illustrated step by step in the
following example.

intergers =: i.

insert =: /
(* insert) 4 4
16
integers (* insert) 4 4
123456789 10 11 12 13 14 15
4 4 base integers (* insert) 4 4

o

NNMNNMNNRP,r P, P, PR, OOOO
WNF,OWNEFE, O WNERO



W w ww
wWw N = O

(4 4 base integers (* insert) 4 4) %(" 1) 4 4

0
0
0
0
.25
.25
.25
.25

o O O O

0
0.25
0.5
0.75
0
0.25
0.5
0.75
0
0.25
0.5
0.75
0
0.25
0.5
0.75
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Glossary

agreement (Spelled: ; ") Higher order function that takes a function and returns a func-
tion that visualizes the shape agreement of its arguments under the argument function.

12

base (Spelled: #:) When given one argument, converts a number into binary, with output
an array of bits. When given two arguments, left argument is a vector used as the

base (radix) for representing the right argument; output is again an array. 38

deal (Spelled: ?7) Function that creates a list of numbers like when “integers” is given a

scalar argument, only randomly shuffled. 49

foreign (Spelled: !:) Higher order function taking two arguments that index, from left to

right, a library and a function.. 24

from (Spelled: {) Function that takes from the right argument the items specified by the

right argument. 11

increment (Spelled: >:) Function that takes an array of numbers and increments them

(adds 1 to each number). 26
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insert (Spelled: /) Higher order function that takes a function and inserts it between the
items of an array, starting from the right. Equivalent to reduceRight or foldRight in
Scala. 28

integers (Spelled: i.)Function that creates an array of integers with the shape of the

argument array. Populated by incrementing values, starting at 0. 11

NB. Nota bene. Begins a comment spanning a line. 11

reshape (Spelled: $) Function that creates an array by associating the left argument as

the shape of the right argument. 43

shape (Spelled: $) Function that takes one argument and returns a vector specifying its

shape. 39

show (Spelled: 1) Identity function for the right (as opposed to left) argument. Used to
display the a value that has been assigned a name, which by default would not display.
11

showTasks (Spelled: (; ") (< @) Higher order function that takes a function and re-
turns a function that visualizes the parallelizable tasks that would be created from

the parallel rank operator. 26
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