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An Extension of Sharkovsy’s Theorem to

Periodic Difference Equations

Ziyad AlSharawi a,1, James Angelos a, Saber Elaydi b,∗, and
Leela Rakesh a

aCentral Michigan University, Mount Pleasant, MI 48858
bTrinity University, San Antonio, TX 78212

Abstract

We present an extension of Sharkovsky’s Theorem and its converse to periodic
difference equations. In addition, we provide a simple method for constructing a
p-periodic difference equation having an r-periodic geometric cycle with or without
stability properties.

1 Introduction.

Consider the nonautonomous p-periodic difference equation

xn+1 = F (n, xn) (1)

where F : Z
+ × X → X is a continuous map, X is a metric space such that

F (n + p, .) = F (n, .) for all n ∈ Z
+. The period p ≥ 2 is assumed to be

minimal. Equation (1) may be written in the more convenient form

xn+1 = fn(xn) (1′)

where the map fn = F (n, .) for each n ∈ Z
+. Thus fn+p = fn for all n ∈ Z

+.

The study of periodic difference equations was initiated in the mathematical
biology literature almost a quarter century ago by Coleman [3], Jillson [19],
and Kapral and Mandel [20]. The subject stayed moribund until it picked up
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steam in the late 90’s and early 2000 with the appearance of the papers by
Cushing and Henson [4–6], Henson [18], Clark and Gross [2], Grinfeld, Knight
and Lamba [17], Frank and Selgrade [15], Frank and Yakubu [16], Selgrade and
Roberds [28], Jia Li [25], Kon [23,24], Kocic [21], Elaydi and Sacker [11–13].

The main objective here is to extend the well-known Sharkovsky’s Theorem
and its converse (Sharkovsky [30], Li and Yorke [26], Elaydi [9,10]) to peri-
odic difference equations (Section 3). To accomplish this task we introduce
a new ordering of the positive integers which will be given the name of “p-
Sharkovsky’s ordering.” But before embarking on this task we need to discuss
the notion of periodic orbits or cycles of Equation (1). In [11], the notion of
geometric cycles was introduced as a natural extension of the simple notion
of periodic cycles in autonomous systems. It is the authors’ point of view that
the notion of geometric cycles is better understood via the construction of an
associated skew-product dynamical systems. As the notion of geometric cycles
has not yet taken root, we revisit it again. Given two positive integers r and
p with r|p (r divides p), Elaydi and Sacker [11] constructed a p-periodic dif-
ference equation that has a globally asymptotically stable r-periodic cycle. In
Section 2 we present a simpler construction for p-periodic difference equations
with a globally asymptotically stable r-periodic cycle, a locally asymptotically
stable r-periodic cycle, or an unstable r-periodic cycle. In addition, we indi-
cate how to construct p-periodic difference equations with multiple attracting
periodic cycles.

2 Geometric cycles and skew-product dynamical systems

Let Y = {f0, f1, . . . , fp−1}. Consider the map π : X×Y ×Z
+ → X×Y defined

by π((x0, fi), n) = (Φn(fi)x0, fi+n), with

Φn(fi) = fi+n−1 ◦ cdots ◦ fi+1 ◦ fi. (2)

Then π is a skew-product semidynamical system [11] on the product space
X × Y , as depicted in the following diagram.

X × Y × Z
+ π−−−→ X × Y⏐⏐⏐�p×id

⏐⏐⏐�p

Y × Z
+ σ−−−→ Y

Fig. 1. σ is the shift map σ(fi, n) = fi+n, and p is the projection map

For each fi, 0 ≤ i ≤ p − 1, the set p−1(fi) = Fi is called the ith fiber in the
product space X × Y , where p(x, y) = y is the projection map.
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We are now ready to introduce the notion of “geometric cycles”

Definition 1 Let Cr = {x̄0, x̄1, . . . , x̄r−1} be a set of points in the state space
X, with r ≥ 1. Then Cr is said to be a geometric r-cycle if for i = 0, 1, . . . , r−
1,

f(i+nr)modp(x̄i) = x̄(i+1)modr, n ∈ Z
+. (3)

The associated s-cycle in the skew-product space π is given by
(x̄0, f0), (x̄1, f1), . . . , (x̄(s−1)modr, f(s−1)modp), where s = lcm(p, r) denotes the
least common multiple of p and r.

Standing Notation. Let s = lcm(p, r) denote the least common multiple of
p and r, d = gcd(p, r) denote the greatest common divisor of p and r, � = s

p
,

and m = p
d
. Then it is easy to see that � = r

d
.

Both integers � and d play a fundamental role in ourunderstanding of geometric
cycles. It was shown in [13] that Cr is a geometric r-cycle if and only if

f(i+nd)modp(x̄i) = x̄(i+1)modr, 0 ≤ i ≤ d − 1. (4)

Furthermore, the orbit of (x̄0, f0) in the skew-product space π intersects each
fiber Fi in exactly � points [11,13]. Hence the fiber Fi, 0 ≤ i ≤ p − 1,
“contains” the � points x̄i mod r, x̄(i+d) mod r, x̄(i+2d)modr, . . . , x̄i+(�−1)dmodr.

3 Construction of geometric cycles

Given two positive integers r ≥ 1 and p > 1 with r|p (r divides p), Elaydi and
Sacker [11] constructed a p-periodic difference equation that has a globally
asymptotically stable geometric r-cycle. The condition that r|p is based on
Elaydi-Sacker Theorem which we now state for convenience of the reader.

Theorem 2 Consider the difference equation (1) with a minimal period p
such that each fi : X → X is a continuous function on a connected metric
space. If Cr is a geometric r-cycle which is globally asymptotically stable, then
r|p.

In this section we will present a more general construction of p-periodic dif-
ference equations with geometric r-cycles with or without stability properties.
Moreover, our construction procedure is simpler than that reported in [11].

Theorem 3 For any given positive integers p > 1 and r ≥ 1, there exist poly-
nomials f0, f1, ..., fp−1 of degree at most � := lcm(p,r)

p
such that the p-periodic

difference equation xn+1 = fn(xn) has a geometric r-cycle.

3



PROOF. Assume the geometric r-cycle to be constructed is

x̄0 → x̄1 → x̄2 → · · · → x̄r−1,

with distinct x̄i’s if necessary. For each 0 ≤ i ≤ d − 1 find the unique inter-
polating polynomial fi of degree at most � − 1 passing through the points
(x̄i, x̄i+1), (x̄i+d, x̄i+d+1), . . . , (x̄i+(�−1)dmodr, x̄i+1+(�−1)dmodr) (see [22] for back-
ground information on interpolation). fi(x) can be written as

fi(x) =
�−1∑
j=0

x̄i+1+jdmodr�j(x), (5)

where �j(x) satisfies �j(x̄i+kdmodr) = 0, j �= k and �j(x̄i+jdmodr) = 1. �j(x)
are the Lagrange bases polynomials associated with the nodes {x̄i, , x̄i+d, ...,
x̄i+(�−1)dmodr}, which can be written as

�j(x) =
�−1∏
k=0
k �=j

x − x̄(i+kd)modr

x̄(i+jd)modr − x̄(i+kd)modr

. (6)

Clearly,

fi(x̄(i+kd)modr) = x̄(i+1+kd)modr, 0 ≤ k ≤ � − 1.

If p = d, then the above defined functions produce the desired geometric r-
cycle. However, if p �= d, we fix an i, 0 ≤ i ≤ d − 1, and for each 1 ≤ j ≤ m−1
build the mappings fi+jd(x) as

fi+jd(x) = fi(x) + λj

�−1∏
k=0

(x − x̄i+kdmodr), (7)

where the parameters λj, 1 ≤ j ≤ m−1 can be manipulated freely to keep the
system in nonautonomous form. Observe that the polynomials fi(x), 0 ≤ i ≤
d − 1 are of degree at most �−1, and for all 0 ≤ i ≤ d − 1 and 1 ≤ j ≤ m−1,
fi+jd(x) are of degree at most �. Also, it is a straight forward substitution to
find that for all n ∈ Z

+,

fnmodp(x̄nmodr) = x̄n+1modr.

Remark 4 (i) Polynomial interpolation was used in Theorem 3. In fact,
piecewise linear interpolation or Splines can be used as well.

(ii) Since polynomials of lower degree are best used in calculations, we con-

fined ourselves with polynomials of degree at most lcm(p,r)
p

in the proof
of Theorem 3. However, by neglecting the degree of the constructed poly-
nomials, the algorithm provided can be made simpler. We define f0(x)

4



as

f0(x) =
r−1∑
j=0

x̄j+1modr

r−1∏
i=0,i�=j

x − x̄i

x̄j − x̄i

(8)

and for all 0 ≤ n ≤ p − 1 define

fn(x) := f0(x) + λn

r−1∏
i=0

(x − x̄i). (9)

Corollary 5 For any positive integers r ≥ 1 and p > 1, there exists a p-
periodic difference equation with the following properties

(i) there exists a geometric r-cycle,
(ii) there are no k-cycles for any k �∈ B := {r, mp : m ∈ Z

+}.

PROOF. To simplify the work, we follow the above remark, and without loss
of generality, assume the r-cycle to be constructed is

0 → 1 → 2 → · · · → r − 2 → r − 1.

Then

f0(x) =
r−1∑
j=0

(j + 1)
r−1∏

i=0,i�=j

(x − i)

(j − i)
,

fn(x) = f0(x) +
1

n

r−1∏
i=0

(x − i), 1 ≤ n ≤ p − 1,

fn(x) = fnmodp(x), n ≥ p.

Now, for r > 1 it is obvious that no equilibrium points exist. To show the
non existence of k-cycles for k �∈ B, suppose there exists a nontrivial k-cycle,
k �∈ B, say

x̄0 → x̄1 → x̄2 → · · · → x̄k−2 → x̄k−1.

As before, let s := lcm(p, k). We then require that the following s equations

x̄n+1modk = fn mod p(x̄nmodk), 0 ≤ n ≤ s − 1

to be satisfied.

But at n = 0 and n = k, x̄1 = f0(x̄0) and

x̄1 = fkmodp(x̄0) = f0(x̄0) +
1

k mod p

r−1∏
i=0

(x̄0 − i),

5
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Fig. 2. A 4-cycle in a 3-periodic difference equation. Since � = 4, there are 4 points
from the cycle on each fiber.

which implies x̄0 = i for some i ∈ {0, 1, ..., r−1}. Repeating the same argument
at n = j and n = k + j, 1 ≤ j ≤ k − 1 we get a contradiction.

Example 6 We construct a 3-periodic difference equation, which has the 4-
cycle 1 → 2 → 3 → 4. Define

f0(x) = 2 + (x − 1) − 2

3
(x − 1)(x − 2)(x − 3)

f1(x) = 2 + (x − 1) − 2

3
(x − 1)(x − 2)(x − 3) + (x − 1)(x − 2)(x − 3)(x − 4)

f2(x) = 2 + (x − 1) − 2

3
(x − 1)(x − 2)(x − 3) − (x − 1)(x − 2)(x − 3)(x − 4).

Then define

fn := fnmod3, n ≥ 3.

Observe that f0(1) = 2, f1(2) = 3, f2(3) = 4, f3(4) = f0(4) = 1, and by
Corollary 5 there are no k-cycles for all k ∈ Z \ {4, 3, 6, 9, 12, ....} (Fig. 2).

To this end we have constructed a p-periodic difference equation with a geo-
metric r-cycle for any given positive integers r ≥ 1 and p > 1. Now we will
shift our attention on constructing asymptotically stable geometric r-cycles.

Although one may find the definitions of various notions of stability of nonau-
tonomous difference systems in many books (see [8]), nevertheless we found it
pedagogically valuable to simplify these notions for periodic systems.

Definition 7 Let Cr = {x̄0, x̄1, . . . , x̄r−1} be a geometric r-cycle in X. Then
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(i) Cr is uniformly stable if given ε > 0, there exists δ > 0 such that for any
n0 = 0, 1, . . . , p − 1, and x ∈ X,

|x − x̄n0modr| < δ implies |Φn(fn0)x − Φn(fn0)x̄n0modr| < ε

for all n ∈ Z
+, where Φn(fn0) = f(n0+n−1)modp ◦ · · · ◦ f(n0+1)modp ◦ fn0.

(ii) Cr is uniformly attracting if there exists η > 0 such that for any n0 =
0, 1, . . . , p − 1, and x ∈ X,

|x − x̄n0modr| < η implies lim
n→∞Φns(fn0)x = x̄n0modr,

where s = lcm(r, p).
(iii) Cr is uniformly asymptotically stable if it is both uniformly stable and

uniformly attracting.

Remark 8 In (i) once you pick n0, then x is located on the fiber Fn0 along
with x̄n0. In (ii) each point x̄n0 in Cr is a fixed point under the map gn0 =
Φs(fn0) = f(n0+s−1)modp ◦ · · · ◦ f(n0+1)modp ◦ fn0. It should be noted that we have
adopted a uniform notion of stability. Hence a geometric cycle Cr is uniformly
asymptotically stable if and only if the associated s-cycle in the skew-product
space is asymptotically stable.

Hence x̄n0 is asymptotically stable [8,9] if |g′
n0

(x̄n0)| < 1. Consequently, x̄n0 is
asymptotically stable if

∣∣∣∣∣
s−1∏
i=0

f ′
(n0+i)modp(x̄(n0+i)modr)

∣∣∣∣∣ < 1.

Moreover, x̄n0 is unstable [8,9] if

∣∣∣∣∣
s−1∏
i=0

f ′
(n0+i)modp(x̄(n0+i)modr)

∣∣∣∣∣ > 1.

If however,

∣∣∣∣∣
s−1∏
i=0

f ′
(n0+i)modp(x̄(n0+i)modr)

∣∣∣∣∣ = 1,

then we appeal to Theorems 1.15 and 1.16 in [8].
Using construction (8)-(9), we have the following criterion for stability.

Proposition 9 The geometric r-cycle Cr is asymptotically stable if

∣∣∣∣∣f ′
0(x̄0)

s−1∏
i=1

⎛
⎜⎜⎝f ′

0(x̄imodr) + λimodp

r−1∏
j=0

j �=imodr

(x̄imodr − x̄j)

⎞
⎟⎟⎠

∣∣∣∣∣ < 1. (10)
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This inequality is satisfied if we choose

λi = − f ′
0(x̄imodr)

r−1∏
j=0

j �=imodr

(x̄imodr − x̄j)
, for some i = 1, 2, . . . , p − 1

or if we put f ′
0(x̄0) = 0. The latter condition (f ′

0(x̄0) = 0) can be obtained

if we use the Hermite interpolation to define f0(x): f0(x) =
r−1∑
i=0

x̄(i+1)modr[1 −
2(x − x̄i�

′
i(x̄i)]�

2
i (x) where the �is are the Lagrange bases given in (6) at the

nodes {x̄0, x̄1, ..., x̄r−1}.

To summarize, we have the following result.

Theorem 10 For any given positive integers p > 1 and r ≥ 1, there exists
a p-periodic difference equation xn+1 = fn(xn), which has an asymptotically
stable r-cycle. Furthermore, in our construction there are no k-cycles for any
k �∈ B := {r, mp : m ∈ Z

+}.

Remark 11 It is worth mentioning that in Theorems 3 and 10 we confined
ourselves with the construction of one cycle, but in fact, the methods in both
theorems can be generalized to any finite number of cycles.

Example 12 (i) Suppose r and p > 1 are positive integers, and let d =
gcd(r, p). Consider Cr = {c0, c1, ..., cr−1}, where cis are different whenever
necessary, and define the map f0(x) as

f0(x) =
r−1∑
i=0

ci+1modr(1 − 2(x − ci)�
′
i(ci))�

2
i (x), �i(x) :=

r−1∏
j=0,j �=i

(x − cj)

ci − cj

.

For 1 ≤ i ≤ p − 1, define

fi(x) = f0(x) +
1

i

r−1∏
j=0

(x − cj).

Then xn+1 = fnmodp(xn), n ∈ Z
+ has d geometric cycles of minimal period

r, namely

{c0, c1, ..., cr−1}, {c1, c2, ..., cr−1, c0}, ..., {cd−1, cd, ..., cr−1, c0, ..., cd−2},

and each of which is an attractor.
(ii) Given positive integers r1, r2 and p > 1, we construct a p-periodic differ-

ence equation with two attractors

{x̄0, x̄1, ..., x̄r1−1} and {ȳ0, ȳ1, ..., ȳr2−1}.

8



Assume x̄is and ȳis are different whenever necessary, and define

ci :=

⎧⎪⎨
⎪⎩

x̄i 0 ≤ i ≤ r1 − 1

ȳi−r1 r1 ≤ i ≤ r1 + r2 − 1.

Construct a polynomial f0(x) such that

f0(ci) :=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ci+1modr1 0 ≤ i ≤ r1 − 1

ci+1 r1 ≤ i ≤ r1 + r2 − 2

cr1 i = r1 + r2 − 1,

and f ′
0(ci) = 0 for all 0 ≤ i ≤ r1 + r2 −1. Such a polynomial can be given by

f0(x) =
r1−1∑
j=0

cj+1modr1Lj(x) +
r1+r2−2∑

j=r1

cj+1Lj(x) + cr1Lr1+r2−1(x),

where

Lj(x) := (1 − 2(x − cj)L′
j(cj))L2

j(x) and Lj(x) :=
r1+r2−1∏
i=0,i�=j

x − ci

cj − ci
.

Finally, define

fn(x) := f0(x) +
1

n

r1+r2−1∏
i=0

(x − ci) for all 1 ≤ n ≤ p − 1.

Remark 13 (A simple construction of globally asymptotically stable
geometric cycles)
Given two positive integers p > 1, r ≥ 2, let Cr = {x̄0, x̄1, . . . , x̄r−1} be a set
of points in X. Define the p functions f0, f1, . . . , fp−1 as follows:

fi is defined as the line passing through the point (x̄imodr, x̄(i+1)modr) and

with slope mi = 1
p+1

[
i
r

]
, where [·] is the greatest integer function.

Then every point in X is eventually periodic relative to Cr, and thus Cr is
(trivially) globally asymptotically stable in the p-periodic difference equation
xn+1 = fn(xn).

4 Sharkovsky’s Theorem for periodic difference equations

In this section we will extend the fundamental theorem of Sharkovsky [7,9,27]
to p-periodic difference equations. Let us start with the Sharkovsky’s ordering

9



of the set of positive integers.

3 ≺ 5 ≺ 7 ≺ . . .

2 × 3 ≺ 2 × 5 ≺ 2 × 7 ≺ . . .
...

2n × 3 ≺ 2n × 5 ≺ 2n × 7 ≺ . . .
...

. . . ≺ 2n ≺ 2n−1 ≺ · · · ≺ 2 ≺ 1.

Theorem 14 (Sharkovsky) Let f : I → I be a continuous map on a closed
interval I. If f has a periodic point of minimal period k, then it has a periodic
point of minimal period m for all m with k ≺ m.

Given two positive integers p > 1 and q ≥ 1, then we can write the prime

factorization of p and q as follows: p =
∏k

i=1 psi
i , q =

(∏k
i=1 pti

i

) (∏m
i=1 q

t∗i
i

)
,

where the pi s are the distinct prime factors of p and the qi s are the distinct
prime factors of q that are not in common with p. Define the set

Aq(p) =

{
q

k∏
i=1

p
s∗i
i : s∗i = 0, 1, . . . , si if ti = 0, and s∗i = si if ti �= 0

}
. (11)

If we fix p during our discussion, then we write Aq(p) simply as Aq.

The next lemma gives a simple description of the sets Aq.

Lemma 15

Aq = {n : lcm(n, p) = pq}.

PROOF. From Definition (11) it follows that Aq ⊆ {n : lcm(n, p) = pq}.
Conversely, let m be a solution of lcm(m, p) = pq. Then mp

gcd(m,p)
= pq and

hence m = q · gcd(m, p). This implies that m ∈ Aq and the lemma is proved.

The algebra of Aq(p) for a fixed p ≥ 1 is summarized in the following three
statements.

Proposition 16 For a fixed positive integer p > 1, we have

(i) pq ∈ Aq for all q ∈ Z
+,

(ii) Aq1 ∩Aq2 = φ if and only if q1 �= q2,
(iii) ∪q∈Z+Aq = Z

+.

10



Now to each positive integer p ≥ 1, we associate the following ordering, which
we call the p-Sharkovsky’s ordering.

A3 ≺ A5 ≺ A7 ≺ ...

A2·3 ≺ A2·5 ≺ A2·7 ≺ . . .
...

A2n·3 ≺ A2n·5 ≺ A2n·7 ≺ . . .
...

· · · ≺ A2n ≺ ... ≺ A22 ≺ A2 ≺ A1.

In this ordering, we mean by Aq1 ≺ Aq2, q1 ≺ q2 in the original Sharkovsky’s
ordering and each element of Aq1 precedes each element of Aq2 in the p-
Sharkovsky’s ordering.

Example 17 (i) If p = 1 then the 1-Sharkovsky’s ordering reduces to the
original Sharkovsky’s ordering.

(ii) If p = 2m for some positive integer m then the 2m-Sharkovsky’s ordering
simplifies to

3, 3 · 2, . . . , 3 · 2m ≺ 5, 5 · 2, . . . , 5 · 2m ≺ 7, 7 · 2, . . . , 7 · 2m ≺ . . .

3 · 2m+1 ≺ 5 · 2m+1 ≺ 7 · 2m+1 ≺ . . .
... (12)

3 · 2m+n ≺ 5 · 2m+n ≺ 7 · 2m+n ≺ . . .
...

· · · ≺ 2m+n ≺ · · · ≺ 2m+2 ≺ 2m+1 ≺ 2m, 2m−1, . . . , 22, 2, 1

Now we are ready to state Sharkovsky’s Theorem for periodic difference equa-
tions.

Theorem 18 (Sharkovsky’s Theorem for periodic difference equa-
tions) Suppose that the p-periodic difference equation xn+1 = fn(xn) has a

geometric r-cycle, and let � := lcm(p,r)
p

. Then each set Aq, such that A� ≺ Aq,
contains a period of a geometric cycle.

PROOF. Suppose the p-periodic difference equation xn+1 = f(n, xn) has
a geometric r-cycle. There are � distinct points in each fiber Fi, 0 ≤ i ≤
p − 1. Furthermore, the � points in F0 forms a cycle of period � under the
autonomous map h(x) = fp−1 ◦ ...◦f1 ◦f0(x). Applying Sharkovsky’s Theorem

11



for autonomous maps to h(x), we conclude that h(x) has cycles of periods q
for all � ≺ q in the p-Sharkovsky’s ordering. Now the q points of the cycle of
period q are in the intersection of the fiber F0 and a geometric r∗-cycle for
some r∗ satisfying the equation lcm(p, r∗) = pq. By Lemma 15, r∗ ∈ Aq and
from the definition of the p-Sharkovsky’s ordering each set A� ≺ Aq contains
a period of a geometric cycle.

Example 19 We construct the geometric 6-cycle {0, 1, 2, 3, 4, 5} in a 4-periodic
difference equation. Since the calculations in high degree polynomials can cause
overflow on computers, we depend on Theorem 3 to have polynomials of de-
gree at most 3. Thus we construct f0(x) as an interpolating polynomial of the
points (0, 1), (2, 3) and (4, 5), and f1(x) as an interpolating polynomial of the
points (1, 2), (3, 4), (5, 0). Simple calculations reveal that f0(x) = x + 1, and
f1(x) = −1

4
(3x − 1)(x − 5). Then construct

f2(x) = f0(x) + λ2x(x − 2)(x − 4), λ2 �= 0,

f3(x) = f1(x) + λ3(x − 1)(x − 3)(x − 5), λ3 �= 0.
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Fig. 3. The graphs of f0(x), f1(x),
f2(x), f3(x), where λ = 1

4 and λ3 = −1
8 .
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3

4

5

20 40 60 80 100

Fig. 4. The plot of the sequence
fn(xn), 0 ≤ n ≤ 100 for some starting
points in the basin of attraction.

Now Eq. xn+1 = fnmod4(xn) has the following properties.

(1) {0, 1, 2, 3, 4, 5} is a unique 6-cycle.
(2) By an argument similar to that in Corollary 5, there are no k-cycles for

all k �= {6, 4m : m ∈ Z
+}.

(3) By the stability criterion in Proposition 9, we pick λ2 = 1
4

and λ3 = −1
8

so the constructed 6-cycle is stable.
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(4) By Sharkovsky’s Theorem for periodic difference equations, 6 ∈ A3 im-
plies each set Aq contains the period of a geometric cycle. From this fact
and the fact in Corollary 5, this example has geometric cycles of periods
6, 4, 8, 16, 20, 24, 28, . . . .

5 A converse of Sharkovsky’s Theorem for periodic difference equa-
tions

A converse to Sharkovsky’s Theorem for autonomous maps states that if r ≺ k
in the 1-Sharkovsky’s ordering, then there is a continuous function defined on
a closed interval, which has a point of period k, but does not have any points
of period r [10]. We depend heavily on this fact to prove the converse of
Sharkovsky’s Theorem for periodic difference equations.

Theorem 20 (A converse of Sharkovsky’s Theorem for periodic dif-
ference equations) Given positive integers r ≥ 1 and p > 1, and denote

� := lcm(r,p)
p

. There exist a p-periodic difference equation xn+1 = fn(xn) that
has a geometric r-cycle, but no r∗-cycles for all r∗ ∈ Aq for q ≺ �.

PROOF. By Elaydi’s construction [10], there exists a piecewise linear con-
tinuous map f(x) : [a, b] → [a, b] that has a periodic point of minimal period
�, but no periodic points of period �∗ for all �∗ ≺ � in the 1-Sharkovsky’s
ordering. Now we define f1, f2, . . . , fp−1 to be any bijections on the interval
[a, b], and define

f0(x) = f−1
1 ◦ f−1

2 ◦ ... ◦ f−1
p−1 ◦ f(x).

One simple way to do it is by defining fn(x) = x, 1 ≤ n ≤ p− 1, and f0(x) =
f(x). Then the p-fold composition function fp−1 ◦ fp−2 ◦ ... ◦ f0(x) = f(x),
has no periodic points of any period �∗ for any �∗ ≺ �, and consequently, the
difference equation xn+1 = fn(xn) has no r∗-cycles for all r∗ ∈ Aq ≺ A�.

Corollary 21 Suppose that p = 2m for some positive integer m, and r ≥ 1.
Let � = lcm(r,2m)

2m . Then there exists a p-periodic difference equation xn+1 =
fn(xn) that has a geometric r-cycle, but no r∗-cycle for all r∗ ≺ k := min≺A�

in the 1-Sharkovsky’s ordering.

PROOF. Define the set A := {x : x ≺ k in the 1-Sharkovsy’s ordering}.
We show A ⊆ ∪q≺�Aq by investigating the following three cases.

13



(i) If � = 2j for some integer j ∈ Z
+ then min≺A2j = k = 2j+m, and

from the 1-Sharkovsky’s ordering and the p-Sharkovsky’s ordering we get
A = ∪q≺�Aq.

(ii) If � = 2j(2t+1) for some positive integers j, t ∈ Z
+ then k = 2j+m(2t+1),

and as in (i) A = ∪q≺�Aq.
(iii) Finally, if � = (2t + 1) for some t ∈ Z

+ then k = 2t + 1, and from
the 1-Sharkovsky’s ordering and the p-Sharkovsky’s ordering we get A ⊂
∪q≺�Aq.

Now the assertion follows from Theorem 20.

Corollary 22 Suppose that p is odd and r = 2kq, where q is a factor of
p and k is a positive integer. If there exist a p-periodic difference equation
xn+1 = fn(xn) having a geometric r-cycle but no r∗-cycle for all r∗ ≺ 2kq∗,
where q∗ is the smallest prime factor of p, then xn+1 = fn(xn) has geometric
cycles of minimal periods 2k−1, 2k−2, . . . , 22, 2, 1.

PROOF. Observe that � = lcm(p,r)
p

= 2k. Hence by Theorem 18 , for each

2j, with 2k ≺ 2j , there exists a geometric r∗-cycle for some r∗ ∈ A2j . Now
all the elements in the set A2j , with the exception of 2j, precede 2kq∗ in the
p-Sharkovsy’s. The given assumption forces the geometric r∗-cycle to be a
2j-cycle, for 0 ≤ j ≤ k.
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