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Social Network Analysis Using a Multi-agent System: A 

School System Case 

Lizhu Ma 

 

Abstract 

The quality of k-12 education has been a major concern in the nation for years. 

School systems, just like many other social networks, appear to have a hierarchical 

structure. Understanding this structure could be the key to better evaluate student 

performance and improve school quality. Many researches have been focusing on 

detecting hierarchical structure by using hierarchical clustering algorithms. Compared 

to existing methods, we design an interaction-based similarity measure to accomplish 

hierarchical clustering in order to detect hierarchical structures in social networks (e.g. 

school district networks). This method uses a Multi-agent System for it is based on 

agent interactions. With the network structure detected, we also build a model, which 

is inspired by the MAXQ algorithm, to decompose funding policy task into subtask 

and then evaluate these subtasks by using funding distribution policies from past 

years and looking for possible relationships between student performances and 

funding policies. For experiment, we use real school data from Bexar county’s 15 

school districts. The first result shows that our interaction based method is able to 

generate meaningful clustering and dendrogram for social networks. And our policy 

evaluation model is able to evaluate funding policies from past three years in Bexar 

County and conclude that increasing funding does not necessarily have a positive 

impact on student performance and it is generally not the case that the more spend the 

better.  
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Chapter 1 

Introduction 

 

1.1 Motivation 

The quality of K-12 education has been a very big concern for years. Many 

researches have been conducted in the field. Some of them focus on school district 

performance. For example, Färe et al. (1989) built a model to analyze individual 

school district achievement. Bidwell and Kasarda (1975) examined determinants of 

school district organizational effectiveness and concluded that student achievement 

could be affected by school district organization. Some of them studied school choice 

(Bettinger 1999; Lubienski & Lubienski 2006). Generally, students in each school 

district face at least two school choices – public and private. Some also have charter 

school as a third option. Some researchers have studied whether and how these three 

types of schools affect each other.  For example, Hoxby (1994) studied whether 

private schools provide competition for public schools. These are just some examples. 

There are also many others factors have been studied, such as, school size (Slate & 

Jones 2005), teacher quality (Rockoff 2004; Harris & Sass 2007), school/school 

district administrator quality (Meier et al. 2003; Clark et al. 2009), funding 

(Crampton 2009; Anderson 2011), etc. 

As it can be seen from above, previous researches in this field mostly studied 

the impact of one or two of those factors on school performance. And the approaches 
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they used are mostly statistical methods (Bohte 2002; Meier et al. 2003). Only a few 

have used computational simulations (Sklar et al. 2004). 

 

1.2 Background 

A social network is a set of people (or organizations or other entities) 

connected by a set of socially-meaningful relationships (Wellman 1996). School 

system, which is a set of many different actors such as students, teachers, etc., is a 

social network. There might be underlying community structure within a network, 

which is the division of network nodes into groups within which network connections 

are dense (Newman and Girvan 2003). Thus finding community structure is very 

important for understanding inherent structures for complex networks (Wakita and 

Tsurumi 2007). 

Social network analysis has been an emerging field in recent years. It views 

social relationships in terms of nodes and edges (ties). Researches have shown that 

social networks play a critical role in determining the way problems are solved, 

organizations are run, etc. (SNAMAS-09 2009). 

A multi-agent system (MAS) is a set of autonomous and interactive entities 

called agents (Guessoum et al. 2003). Multi-agent system and social network analysis 

share some similarities (e.g. agents, relationships, etc.). Many researches have 

successfully combined these two together (Grant 2009; Ma et al. 2009). 

Social networks often have an underlying hierarchical structure. Thus 

hierarchical clustering algorithms can often be useful and appropriate methods to 

detect the multilevel structure of the network (Fortunato 2010). 
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Based on how the hierarchical dendrogram is formed, hierarchical clustering 

algorithms are divided into two classes: agglomerative algorithms and divisive 

algorithms. Agglomerative or bottom-up algorithms start with each node in its own 

singleton cluster, and at each step merge these clusters into larger ones until all 

clusters are merged into one big cluster (Schaeffer 2007). 

Reinforcement learning algorithms address the problem of how an agent can 

learn to take actions that maximize reward while interacting directly with its 

environment (Dietterich 2000). In order to meet the need for large-scale and complex 

problems, hierarchical reinforcement learning has been introduced. Hierarchical 

reinforcement learning (HRL) is a technique in which reinforcement learning 

methods are augmented with prior knowledge about the high-level structure of 

behavior (Marthi et al. 2005). 

 

1.3 Research Goals 

The major purpose of this work is to study social networks with a focus on 

social interactions by using a multi-agent approach. There are mainly two goals: 

The first one is to detect hierarchical community structure in social networks 

by using an agglomerative hierarchical algorithm. Existing agglomerative hierarchical 

algorithms usually calculate similarity or dissimilarity between two clusters by using 

some measure of distance between pairs of observations. We, however, develop a 

method that calculates similarity based on social interactions, which is ideal for social 

networks. 
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The second goal is to study how policies can possibly affect organization 

performance. In the school system network, how funding is distributed in school 

system is a very important matter; however, researches in the field have not been able 

to draw any sound conclusions yet. Inspired by the MAXQ method developed by 

Dietterich (2000), we develop a model that study funding policies from past years. 

We also implement school system as an example. 

 

1.4 Our Approaches 

Our goal is to study social networks (e.g. school network) and focus on agent 

interactions within the networks. This work mainly has two parts. The first one is to 

detect hierarchical community structure in social networks by using an interaction-

based agglomerative hierarchical clustering algorithm. We use interaction between 

two agents to be the similarity measure for clustering. This algorithm has been 

applied to several school districts in Bexar County, and it provides satisfying results 

on generating the hierarchical structure of school district.  

The second part is on funding policy evaluation. We study funding policies 

for 15 Bexar county school districts in 3 years and evaluate these policies. This model 

first decomposes the whole funding distribution task into several subtasks and then 

evaluates these subtasks separately.  

This thesis has multiple contributions. First, we design a hierarchical 

clustering method that is suitable for interaction based social networks. Second our 

funding evaluation system helps to evaluate policies in a complex social network 

system by decomposing a complex task into several subtasks. 
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In addition, this research contributes to the field of Multi-agent system by 

showing how a multi-agent system can help in social network structure detection. 
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Chapter 2 

Related Work 

 

There are two problems I would like to focus. The first one is to find 

underlying hierarchical structure of school networks. The second one is to study 

funding policies in the past years and look for optimal policy. So I look into literature 

on social network analysis and reinforcement learning. They are presented in the two 

following sections. 

 

2.1 Social Network Analysis 

Social network analysis has been a fast growing field in recent years. It helps 

to provide explanations for social phenomena or problems, from individual creativity 

to corporate profitability (Borgatti et al. 2009). Many of the social networks that have 

been studied appear to be very complex. Examples of such include World Wide Web 

(Barabasi et al. 2000; Wellman 2001), citation network (Newman 2001; Rangeon et 

al. 2010), email exchange network (Creamer et al. 2009), etc.  

Social networks are often represented by graphs, which are structures formed 

by a set of nodes and a set of edges that connect pairs of nodes. Nodes represent 

agents and edges are connections between agents. There might be underlying 

community structure within a network, which is the division of network nodes into 

groups within which network connections are dense (Newman and Girvan 2003). 
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Thus finding community structure is very important to understanding inherent 

structure for complex networks (Wakita and Tsurumi 2007).  

 

2.1.1 Clustering 

Clustering is a widely used way to detect potential structure within a network. 

Clustering is the process of grouping objects into a set of classes, called clusters, so 

that objects within a class have high similarity to each other (Jiang et al. 2004).  

Graph clustering is the task of grouping the nodes into clusters in such a way that 

there should be more edges within each cluster than between the clusters (Schaeffer 

2007). Graph clustering, therefore, can used to detect communities in a network.  

Clustering algorithms can generally be divided into two categories: 

hierarchical and partitional. Hierarchical clustering algorithms recursively find nested 

clusters either in a top-down mode or a bottom-up mode. Partitional clustering 

algorithms find all the clusters simultaneously as a partition of the data (Jain 2009). 

Because the former is good at finding hierarchical structure in a network, this review 

will focus on it. 

Hierarchical clustering algorithms produce multi-level clustering. A 

hierarchical clustering process is generally constructed by generating a sequence of 

partitions or grouping, where each subcluster belongs to one supercluster in its entity. 

The root cluster contains at most all of the nodes, and each of the leaf clusters 

contains at least one node. The process can be can be graphically represented by a 

tree, called dendrogram (Schaeffer 2007). The branches of a dendrogram not only 
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record the formation of the clusters but also indicate the similarity between the 

clusters. An example of dendrogram is shown below: 

Figure 1 Dendrogram example. This is an example dendrogram that groups 23 elements into 

clusters (Schaeffer 2007). 

Hierarchical clustering is a good way to represent communities in social 

network because it has several advantages. For instance, it is a discrete method that 

provides a partition of the nodes into clusters. The procedure is explicit and clear and 

there exist a wide range of programs and applications for hierarchical clustering 

(Wasserman and Faust 1994). 

The starting point of any hierarchical clustering algorithm is to define a 

similarity measure between nodes. After a measure is chosen, the similarity for each 

pair of nodes is computed. Then at each step clusters are either merged together or 

split, which depends on using top-down or bottom-up method, by optimizing a certain 

criterion on the data set. A stopping condition may be imposed on the algorithm to 

select the best clustering with respect to a quality measure on the current cluster set 

(Schaeffer 2007; Fortunato 2009). 
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Based on how the hierarchical dendrogram is formed, hierarchical clustering 

algorithms are divided into two classes: agglomerative algorithms and divisive 

algorithms. 

 

2.1.2 Agglomerative algorithms 

Agglomerative or bottom-up algorithms start with each data element (node) in 

its own singleton cluster, and at each step merge these clusters into larger ones until 

all clusters are merged into one cluster. 

For agglomerative approaches, different criteria of cluster similarity provide 

various merge strategies. They can further be divided into two kinds. The first one is 

that of linkage methods (e.g. single linkage, complete linkage, average linkage, etc.). 

They focus on calculating similarity between clusters. The second kind are methods 

which allow the cluster centers to be specified (e.g. as an average of the member 

nodes of the cluster). This kind includes the centroid, median and minimum variance 

methods (Schaeffer 2007). 

Müllner (2011) says that, among them, the seven most common methods are 

single, complete, average (UPGMA), weighted (WPGMA, McQuitty), Ward, centroid 

(UPGMC) and median (WPGMC) linkage. Agglomerative clustering has received 

many attentions since the 1960s. Some recent surveys on it include (Murtagh and 

Contreras 2011), (Müllner 2011), and (Xu & Wunsch 2005). 

 

2.1.3 Divisive algorithms 
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Divisive or top-down or algorithms start with one cluster containing all 

elements and split the cluster iteratively into smaller clusters.  

For divisive approaches, the essential problem is to decide how to split 

clusters at each step. Some are based on heuristic methods such as the deterministic 

annealing algorithm, while many others are based on the graph theoretical methods 

(Jiang et al. 2004). In order to decide which cluster to be split, some combined Bi-

Section k-means with divisive clustering together (Savaresi et al. 2002; Steinbach et 

al. 2003; Cimiano et al. 2004). They initiate Bi-Section-KMeans with the overall 

cluster containing all nodes. Then the cluster with the largest variance is selected and 

KMeans is called to split this cluster into two subclusters (Cimiano et al. 2004). 

Divisive algorithms were rarely used in the past but they have becoming 

popular in recent year because Girvan and Newman proposed their famous divisive 

algorithm in 2002, which is regarded as very important and the beginning of a new 

era in the field of community structure detection (Fortunato 2009). Their method split 

clusters by removing edges that has low “betweenness”, which is a variable 

expressing the frequency of the participation of edges to a process (Fortunato 2009). 

Their method has provided some very good results on a variety of networks 

(Boccaletti et al. 2006). 

 

2.1.4 Comparisons  

Surveys on the comparison of the two algorithms provide detailed reviews 

into them. Gutierrez-Osuna’s review (2002) believes that divisive clustering has 

received much less attention because divisive algorithm is a computationally 
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intensive task. The reason is that it must tentatively split all clusters to decide which 

cluster to be split, although it is believed that divisive clustering actually is more 

likely to produce meaningful results than agglomerative methods for small number of 

clusters (Ripley 1996). 

However, the complexity of divisive clustering can be reduced if there are 

good ways to select which cluster to be split. Cimiano et al. (2004) compared divisive 

and agglomerative algorithms. They compared hierarchical agglomerative clustering 

algorithm and Bi-Section-KMeans as an instance of a divisive algorithm. They found 

that the time complexity of naive implementations of hierarchical agglomerative 

clustering algorithms is       where n is the number of terms. Optimized 

implementations can achieve          . The time complexity of Bi-Section-

KMeans algorithms is       where n is the number of terms and k is the number of 

clusters. 

 

2.2 Hierarchical Reinforcement Learning 

Reinforcement learning algorithms address the problem of how an agent can 

learn to take actions that maximize reward while interacting directly with its 

environment (Dietterich 2000). In order to meet the need for large-scale and complex 

problems, hierarchical reinforcement learning has been introduced. Hierarchical 

reinforcement learning (HRL) is a technique in which reinforcement learning 

methods are augmented with prior knowledge about the high-level structure of 

behavior (Marthi et al. 2005). 
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Barto and Mahadevan (2003) explained HRL using the idea of a “macro-

operator”, which is a sequence of operators or actions that can be invoked by name as 

if it were a primitive operator or action. Macros form the basis of hierarchical 

specifications of action sequences because a macro-operator can “call" other macros. 

Most of the current research on hierarchical RL focuses on action hierarchies that 

follow roughly the same semantics as hierarchies of macro. 

Barto and Mahadevan (2003) reviewed three major approaches to hierarchical 

RL: the Options by Sutton et al., the hierarchies of abstract machines (HAMs) 

approach by Parr and Russell, and the MAXQ method by Dietterich. 

 

2.2.1 Options 

Sutton et al. (1998) formalized an approach to including activities in RL with 

their notion of an option, which are closed-loop policies for taking action over a 

period of time. Starting from a Markov decision process (MDP), a set of options 

defined over an MDP constitutes a semi-Markov decision process (SMDP). The 

simplest kind of option consists of a policy, a termination condition, and an input set. 

If the option is executed, then actions are selected until the option terminates. When 

the option terminates, the control goes back to the agent and another option can be 

selected. The policy learned for an option depends upon the rewards in the option’s 

SMDP (Uther 2002). 

 

2.2.2 Hierarchies of Abstract Machines (HAMs) 
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Parr (1998) developed an approach to hierarchically structuring MDP policies 

called Hierarchies of Abstract Machines or HAMs. The emphasis is on simplifying 

complex MDPs by restricting the class of realizable policies rather than expanding the 

action choices. The idea of the HAM approach is that with the MDP, a user provides 

a series of state machines. These state machines can refer to each other, and hence 

form a hierarchy. The state machines partially specify a policy. Only policies 

consistent with the state machines are allowed. Then the original MDP can be turned 

into a new and smaller MDP, which can be solved using traditional methods (Uther 

2002). 

 

2.2.3 MAXQ 

Dietterich (2000) developed another approach of hierarchical RL called the 

MAXQ Value Function Decomposition, or MAXQ. Unlike options and HAMs, the 

MAXQ approach does not rely directly on reducing the entire problem to a single 

SMDP. Instead, a hierarchy of SMDPs is created whose solutions can be learned 

simultaneously. The MAXQ approach starts with a decomposition of a core MDP M 

into a set of subtasks. All the tasks form a task graph hierarchically. As the task graph 

decomposes the action space of the problem, the MAXQ graph decomposes the value 

function of the problem (Uther 2002). Dietterich also proposed two ways to achieve 

optimal rewards. The first one is that a hierarchically optimal policy is a policy that 

achieves the highest cumulative reward among all policies consistent with the given 

hierarchy. The second is a recursively optimal policy that for each subtask Mi, the 
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corresponding policy is optimal for the SMDP defined by the set of states, the set of 

actions, the state transition probability function, and the reward function. 

 

2.2.4 Other Approaches 

Andre (2002) developed ALisp, which is a language based on Lisp to write 

partial program that coupled with an environment results in a semi-Markov decision 

process over the joint choice states, and finding the optimal policy in this SMDP is 

equivalent to finding the optimal completion of the partial program in the original 

MDP (Andre 2002; Marthi et al. 2005). Several other approaches have been 

developed in recent years. For instance, Hengst (2002), inspired by MAXQ, 

developed HEXQ, which is an algorithm that automatically attempts to decompose 

and solve a model-free factored MDP hierarchically. Dethlefs and Cuayahuitl (2011) 

combined hierarchical reinforcement learning and Bayesian networks together for 

natural language generation in situated dialogue. Cao and Ray (2012) incorporated 

Bayesian priors in the MAXQ framework for hierarchical reinforcement learning 

(HRL).  
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Chapter 3 

The Approach 

 

Community detection in social network analysis has attracted many attentions 

in recent years. The idea is to divide network nodes into groups within which the 

network connections are dense, but between which they are sparse (Newman & 

Girvan 2003).  Because social networks are usually represented by graphs, 

community defection algorithms for graphs can often be applied to social networks. 

Many algorithms have been introduced.  For instance, there are modularity-based 

methods (e.g. modularity optimization), clustering methods (e.g. partitional 

clustering), dynamic algorithms (e.g. random walk), etc. (Fortunato 2009). Among 

them, hierarchal clustering has been regarded as an effective way to detect 

community structure in social networks because social networks often have a 

hierarchical structure (Fortunato 2009). Therefore hierarchical clustering algorithms 

can reveal the multilevel structure of the graphs.  

The major method for hierarchical clustering is the agglomerative approach 

(bottom-up) (Fortunato 2009). The basic idea of agglomerative algorithm is that it 

iteratively merges the two nodes or clusters with highest similarity, until there is only 

one big cluster left. So at the end of the process, the root cluster contains at most all 

of the nodes, and each of the leaf clusters contains at least one node. The process can 

be can be graphically represented by a tree, called dendrogram (Schaeffer 2007).  
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Most existing algorithms either use real physical distance or some shared 

property between two nodes to calculate similarity.  Here I present an agglomerative 

clustering algorithm called interaction-based similarity measure clustering algorithm 

and introduce a method that use social interaction to calculate similarity between 

pairs of nodes or clusters.  

 

3.1 Overall Algorithm 

The overall algorithm for the model is that it first takes the whole network as 

the input. Then by using the hierarchical clustering algorithm, the hierarchical 

structure of the network is detected. Once the hierarchical structure is obtained, the 

funding evaluation algorithm is called to decompose funding distribution task into 

subtasks and study policies for each subtask by calculating reward for each policy. 

Algorithm 1 Hierarchical Structure Detection and Analysis. 

function run () 

s = similarity_matrix (number_of_agents, interactions) 

structure = hierarchical_clustering (s) 

policy_evaluation (policies, tasks, student_performance) 

end 

These two functions (hierarchical_clustering and policy_evaluation) will be 

introduced in 3.2 and 3.3.  

 

3.2 Interaction-based Similarity Measure Algorithm  

3.2.1Input  

Suppose there is a set of   of   nodes. The input to the algorithm can be 

defined as a similarity matrix (Müllner 2011; Day 1984).  
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Definition 1 Similarity Matrix. A     similarity matrix   on a set   is 

       where        .        is a quantitative measure of the similarity 

between two nodes   and  .        is both reflexive and symmetric, i.e. we 

have            and                 for all        . 

If the set   has   nodes, there should be (
 
 
) pairwise similarities. 

 

3.2.2 Similarity Measure 

The network is essentially built up by a multi-agent system, where agents 

interact with each other and these interactions have different levels because some 

agents interact more closely while others have more loose interactions. So first we 

define what interaction is in a social network: 

The first step of the interaction-based similarity measure algorithm is to 

calculate similarity between each pair of nodes. This similarity measure depends on 

specific problem. For instance, in biological studies, it could be real physical distance 

between two nodes. In film actors’ collaboration networks, the similarity could be 

calculated by how many films actors have appeared in together (Marchiori & Latorav 

2000). 

In interaction-based social networks, it would be different because there is no 

real physical distance measure in the system.  

Therefore we propose a way to define similarity       . Because nodes in our 

system are agents and agents have interaction with each other, we use their interaction 

level to be the similarity measure. Agents (nodes) that share more frequent interaction 

have higher similarity while agents that share less frequent interaction have lower 
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similarity. For instance, in our school system, student-teacher pair should have higher 

similarity than student-principal pair.  

Definition 2 Social Interaction (Znaniecki 1965). Social interaction between 

two agents A and B occurs usually when (1), A initiates it by performing a 

social action intended to influence B; then B ‘reacts’, i.e., performs an action 

in consequence of A’s action. Or when (2) each of them independently starts a 

social action bearing upon the other, and each reacts to the other’s action.  

Definition 3 Similarity Measure. The similarity        between nodes a and 

b is the interaction level between a and b. 

 

3.2.3 Output 

The output of a hierarchical clustering procedure is a dendrogram.  

Definition 4 Dendrogram (Müllner 2011). Given a finite set    (initial set) 

with cardinality         , a dendrogram is a list of       triples           , 

           –   , such that           is the distance between    and    and 

         , where      is recursively defined as                   , and 

                    is a label for a new cluster. 

The set    are the initial data points. In each step,    is the new cluster which 

is formed by joining the clusters   and   at the distance   . The order of the clusters 

within each pair         does not matter. “  ” represents relative complement. 

            is the set of elements in    but not in        . The procedure contains 

  –    steps, so that the final state is a single cluster which contains all   initial nodes. 

The dendrogram represents a recursive procedure where at each step a new 

cluster    is formed from two clusters    and    based on their distance   . In every 

step, a new cluster is added to the set and the previous two individual nodes that 

formed the cluster are eliminated from the set.  
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3.2.4 Algorithm 

Algorithm 2 Interaction-based Similarity Measure Algorithm.  

1. Initially each node       is in its own cluster         , where    

       –   , and   is the size of  . 

2. Iteratively merge the two clusters with highest similarity  , say    and   , 

until there is only one cluster left. 

After the step that nodes are clustered into their first cluster, which uses node 

similarity d, we deal with clusters directly. We use average linkage, which is the 

average similarity between all pairs of nodes in the two clusters, to calculate cluster 

similarity: 

           
∑     ∑             

         
         

 

where    and    are the cluster pair and   and   are nodes within them.  

  

3.3 Funding Evaluation 

Some of the problems of reinforcement learning tend to be very large in scale. 

So the hierarchical approach to reinforcement learning has been developed to 

decompose complex problems by using temporal abstraction and hierarchical control 

(Barto & Mahadevan 2003). Among hierarchical reinforcement learning algorithms, 

the MAXQ approach is considered one of the most effective methods (Mirzazadeh et 

al. 2007). Here I present the MAXQ approach as a way to decompose complex 

reinforcement learning problems and the MAXQ-Q approach as a learning algorithm 

(Dietterich 2000). 
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3.3.1 MAXQ Method 

Definition 5 MAXQ Task. The overall MAXQ task is to solve a Markov 

Decision Problem (MDP)  , which is defined over a set of states   and 

actions   with reward function           (the reward received upon entering 

state    after performing action   in state  ) and transition probability function 

          (the probability of entering state    as a result of performing   in  ). 

 

The basic idea of the MAXQ approach is that it decomposes the whole task 

into a set of subtasks, which may further be decomposed into smaller subtasks 

(Mirzazadeh et al. 2007). This structure forms a hierarchy tree whose leaves are 

primitive actions. Primitive actions return the rewards for performing the actions. 

Each subtask has some termination conditions, which are the conditions that once 

fulfilled the control of program returns to the parent subtask.  

We say that hierarchical policy for a MAXQ graph is a set of policies    

            , one for each subtask. 

As the action space of the problem is decomposed by the task graph, we 

decompose the action-value function         , i.e. the total expected reward of 

performing action   in subtask   and then following the hierarchical policy   

             into two components (Mirzazadeh et al. 2007). 

The first component         is the expected total reward received while 

executing action   in state   , and the second component, which is called as the 

completion function,           is the expected total reward of completing parent task 

  following policy   after   has returned. Thus we have the MAXQ decomposition 

equations: 
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                     +                                     (2) 

where          {
                                                         
∑                                                     

 

and             ∑                                     . 

Note:   here stands for time steps and   is the time discount factor which determines 

the importance of future rewards.    is the new state that is entered after performing 

action   instate  .         is the expected total reward received while executing 

action   in state  . The completion function           is the expected total reward of 

completing parent task   following policy   after   has returned. 

 

3.3.2 Policy Evaluation Model 

 The MAXQ algorithm is further developed into MAXQ-Q by combining Q-

learning together.  However, because of our current limitation on data, I am not able 

to implement a learning algorithm in the model.  

 Instead, I build a funding policy evaluation system by using the idea of 

MAXQ decomposition. 

 Funding is usually distributed into several areas therefore the model breaks 

the major task into several subtasks. Then each subtask can be accomplished by 

several primitive actions. Subtasks could be different funding distribution areas, 

which can be accomplished by different primitive actions (distribution methods).  A 

reward that is evaluated by student performance is returned to each finished action. 

Then once different funding policies are inputted into the model, it will evaluate them, 

compare the rewards and finally return the one with highest reward. 
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Chapter 4 

Experiments and Results 

 

In order to test the model presented in Chapter 3, I implement a school system 

network in the experiment by using real school data provided by Texas Education 

Agency
1
. 

The quality of k-12 education has been a big concern in the nation for years. 

There are many factors that may affect school performance, such as school size (Slate 

& Jones 2005), school choice (public, private, or charter) (Hoxby 1994; Bettinger 

1999; Lubienski & Lubienski 2006), teacher quality (Rockoff 2004; Harris & Sass 

2007), school/school district administrator quality (Meier et al. 2003; Clark et al. 

2009), funding (Crampton 2009; Anderson 2011), etc. Previous researches in this 

field mostly studied the impact of one or two of those factors on school performance. 

And the approaches they used are mostly statistical methods (Bohte 2002; Meier et al. 

2003). Only a few have used computational simulations (Sklar et al. 2004). Ours 

differs from previous ones because ours observe the emergence of school system 

performance based on a comprehensive list of agents and the interactions between 

them. 

School funding is a very important matter surrounding education. There is 

conflicting evidence on whether or not an increase in school funding will truly 

                                                             
1
 http://ritter.tea.state.tx.us/perfreport/snapshot/ 

http://ritter.tea.state.tx.us/perfreport/snapshot/
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produce an increase in student achievement or whether it is not the amount of funding 

but how funding is spent that is truly important. 

The general understanding is that schools are underfunded and require more 

funding in order to function properly. Crampton (2009) indicates this when he states 

that investment in the human, social, and physical capital of a school can have a 

strong positive impact on student achievement. However, Anderson (2011) thinks that 

the effects of increasing per-pupil spending on student achievement are not 

necessarily positive. Although school funding has been steadily increasing over the 

years since 1970, American schools are still falling behind schools in other countries. 

There are many concerns these days on school quality. For one, there are concerns 

that money is not being spent in the right ways that schools really need. Also, people 

have been wondering whether funding is a key feature issue in the failing education 

system or not (Anderson 2011). 

Therefore our system is designed to be a decision aid system that analyzes 

funding distribution records and their relations to student performance in the past year 

based on a hierarchical decomposition.  

 

4.1School System Structure 

Most of the school districts in the United States are composed of public 

schools, private schools, and charter schools. For each school district, there is a 

school board, which appoints a superintendent. Each school has its own principal and 

teachers. 
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We designed a multi-agent system to model school system. Our system 

includes many actors/agents such as students, teachers, principals, superintendent, etc. 

Our method is different from existing ones because ours observe the emergence of 

school system performance based on a comprehensive list of agents and the 

interactions between them.  

The data is obtained from the Texas Education Agency. Bexar County is the 

geographical area we focus on. According to the snapshot report provided by the 

Texas Education Agency, there are 15 public school districts in Bexar as of 2011. 

Bexar County is used because it is a representative area. It consists of mixed type 

school districts. In the snap shot of year 2011, among the 15 school districts, 11 of 

them were rated as “academically acceptable” and the rest 4 were rated as 

“recognized”.  

An abstract representation of one school can be presented as the following 

graph: 
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Figure 2 School example. 

Note: this graph is generated by Gephi
2
, an open source graph visualization and 

manipulation software. This graph only presents one school as an example of the 

organization because of space limit. These should be other schools also connected to 

the central administrative staff in the graph. 

Each node in the graph represents one type of agents. Edges represent 

interaction between nodes. Students are the largest group in the school system. They 

interact with each other. They also learn from the teachers. Teachers teach students 

and report to school administrative staffs (e.g. principal). School administrative staffs 

report to central administrative staffs (e.g. superintendent).  

The simulation is based on individual agents. So here I also present a graph of 

a sample school district, where there are 10 students, 2 teachers, 1 other staff, 1 

                                                             
2 https://gephi.org/ 

https://gephi.org/
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central administrative staff, and 1 school administrative staff. The graph is generated 

by a free and open-source application called NodeXL
3
. 

Figure 3 School district agents and interactions figure. 

The following table shows the number of students, teachers, central 

administrative staffs, school administrative staffs and other staffs in the 15 school 

districts as of October 29, 2010
4
. 

                                                             
3 http://nodexl.codeplex.com/ 
4 http://ritter.tea.state.tx.us/perfreport/snapshot/2011/itemdef.html 

http://nodexl.codeplex.com/
http://ritter.tea.state.tx.us/perfreport/snapshot/2011/itemdef.html
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Table 1 School district profiles 2011. 

 

4.2 Experiment Settings I: clustering 

The experiment is composed of two parts: hierarchical structure detection and 

funding policy evaluation. In the first part, I use a hierarchical clustering algorithm to 

detect hierarchical structure in the network. Then in the second part I use the structure 

detected to help to evaluate previous funding policies. 

As shown in Figure 3, the system has many agents connecting with each other. 

However the structure of the network cannot be seen directly from the graph 

visualization, so it needs to be found. Therefore here I use the agglomerative 

hierarchical clustering algorithm presented in Chapter 3 to detect underlying 

hierarchical community structure in the school system. 

Students and teachers are further divided into 10 groups: regular education 

students, special education students, ESL education students, career education 

students, gifted education students, regular education teachers, special education 

teachers, ESL education teachers, career education teachers, and gifted education 

DISTRICT NAME # of schools Total students Total teachers Total Central Admin Total School Admin Total other staffs Total agents

Alamo Heights 6 4744 335 6.04 12.08 253.68 5350.8

Harlandale 30 14846 970 20.86 62.58 1022.14 16921.58

Edgewood 22 11904 788 0 34.82 905.32 13632.14

Randolph Field 3 1167 86 5.04 3.36 72.24 1333.64

San Antonio 99 54894 3437 76.31 152.62 3968.12 62528.05

South San Antonio 18 9860 687 29.36 44.04 719.32 11339.72

Somerset 7 3779 258 5.89 17.67 318.06 4378.62

North East 73 66364 4377 0 171.14 3936.22 74848.36

East Central 15 9571 573 12.06 24.12 603 10783.18

Southwest 14 11779 735 15.02 45.06 720.96 13295.04

Lackland 2 985 80 1.68 3.36 80.64 1150.68

Ft Sam Houston 2 1427 118 2.31 6.93 103.95 1658.19

Northside 107 94632 6117 0 255.5 6387.5 107392

Judson 30 22016 1437 0 89.37 1459.71 25002.08

Southside 9 5310 375 7.49 22.47 352.03 6066.99
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teachers. The following table shows the number for each group as of October 29, 

2010: 

Table 2 Student and teacher groups data. 

Note: for “special student”, “ESL student”, “career student”, and “gifted student”, the 

number at each cell represents the number of students who receives this kind of 

education. All students should receive regular education. The number of “regular 

education” is intended to represent the number of students who only received regular 

education, and it is calculated by total number of students minus number of students 

who receive non-regular education. However, because some students might receive 

more than one kind of non-regular education, there should exist some inaccuracies on 

the number. 

Before we start, similarity between each pair of nodes must be calculated. 

Because nodes in the system are agents, and agents have interactions with each other, 

the similarity measure is set to be their interaction levels. The higher the interaction 

level, the higher the similarity is. We define the interaction level as a function of the 

time length of agents’ interaction: 

                                  (3) 

So the more time the two agents spend on interaction, the higher the 

interaction level is. 

DISTRICT NAME TOTAL STUDENTS Special student ESL student Career student Gifted student Regular student TOTAL TEACHER Regular teacher Special teacher ESL teacher Career teacher Gifted teacher

Alamo Heights 4744 284.64 237.2 284.64 759.04 3178.48 335 234.5 30.15 16.75 3.35 33.5

Harlandale 14846 1336.14 2375.36 3711.5 890.76 6532.24 970 727.5 116.4 58.2 38.8 29.1

Edgewood 11904 1190.4 2261.76 2261.76 952.32 5237.76 788 543.72 94.56 94.56 23.64 23.64

Randolph Field 1167 81.69 0 93.36 93.36 898.59 86 72.24 6.02 0 0.86 4.3

San Antonio 54894 5489.4 8783.04 10978.8 3293.64 26349.12 3437 2199.68 378.07 343.7 137.48 240.59

South San Antonio 9860 788.8 1479 1972 394.4 5225.8 687 377.85 68.7 116.79 27.48 68.7

Somerset 3779 340.11 377.9 718.01 151.16 2191.82 258 196.08 25.8 20.64 10.32 5.16

North East 66364 6636.4 5972.76 9954.6 4645.48 39154.76 4377 3107.67 437.7 218.85 131.31 393.93

East Central 9571 1052.81 861.39 1627.07 574.26 5455.47 573 338.07 63.03 40.11 17.19 40.11

Southwest 11779 1295.69 1413.48 2473.59 471.16 6125.08 735 536.55 73.5 73.5 29.4 22.05

Lackland 985 98.5 19.7 157.6 49.25 659.95 80 61.6 6.4 0.8 3.2 0.8

Ft Sam Houston 1427 171.24 57.08 199.78 85.62 913.28 118 92.04 12.98 2.36 2.36 5.9

Northside 94632 11355.84 6624.24 17033.76 9463.2 50154.96 6117 3914.88 795.21 489.36 183.51 428.19

Judson 22016 2201.6 1541.12 5504 1761.28 11008 1437 1120.86 129.33 28.74 71.85 57.48

Southside 5310 531 637.2 1274.4 318.6 2548.8 375 258.75 41.25 18.75 15 18.75
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The following table represents interaction levels between all kinds of agents 

except interactions within and between students and teachers, which are shown in the 

next table. Interaction levels are represented by a scale from 0 – 9. 0 means lowest 

interaction, while 9 means highest interaction level.   

 

Table 3 Interaction levels (1). 

Central and school administrative staffs generally do not interact with students 

directly very often, but they can still have an effect on student performance and 

school quality (Meier et al. 2003; Clark et al. 2009). However, they should work with 

each other and teachers more directly (through recruiting, training, and rewarding 

high-quality principals and teachers) (Meier et al. 2003).  

The following table shows interaction within and between students and 

teachers. All students should receive regular education from regular education 

teachers, so they interact with each other frequently. There are also 4 other kinds of 

education: special, ESL, gifted, and career education. Students who also receive these 

4 kinds of education interact with teachers of these 4 kinds of education directly. 

Students Teachers 
Other 

staffs

School 

admin 

staffs

Central 

admin 

staffs

Students / / 5 2 0

Teachers / / 5 4 2

Other 

staffs
5 5 9 4 2

School 

admin 

staffs

2 4 4 9 8

Central 

admin 

staffs

0 2 2 8 9
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Table 4 Interaction levels (2). Note: res - regular education student, sed - special education 

student, ees - esl education student, ges - gifted education student, ces - career education 

student, ret - regular education teacher, set - special education teacher, eet - esl education 

teacher, get - gifted education teacher, and cet - career education teacher. 

This table is implemented as the input matrix for the clustering algorithm. The 

output is a dendrogram that shows out the underlying structure. I write the simulation 

code in Python and use the fastcluster library and its interface to Python to 

accomplish the clustering process because it has proven to be performing well in 

terms of complexity
5
. Because fastcluster uses dissimilarity rather than similarity 

between nodes as the input, the matrix for the simulation program is calculated 

by      .   is the similarity measure presented in Table 3 and 4. 

 

4.3 Experiment Settings II: funding policy evaluation 

The second setting part of this chapter is on evaluating funding policy. The 

snapshot report provides data on annual funding expenditure for regular education, 

special education, bilingual education, career and technical education, and gifted 

education.  

                                                             
5 http://math.stanford.edu/~muellner/fastcluster.html 

res ses ees ges ces ret set eet get cet

res 9 7 7 7 7 9 6 6 6 6

ses 7 9 7 7 7 8 9 6 6 6

ees 7 7 9 7 7 8 6 9 6 6

ges 7 7 7 9 9 8 6 6 9 6

ces 7 7 7 7 9 8 6 6 6 9

ret 9 8 8 8 8 9 7 7 7 7

set 6 9 6 6 6 7 9 7 7 7

eet 6 6 9 6 6 7 7 9 7 7

get 6 6 6 9 6 7 7 7 9 7

cet 6 6 6 6 9 7 7 7 7 9

http://math.stanford.edu/~muellner/fastcluster.html
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The following figure represents the funding allocation:

Figure 4 Funding allocation. 

Inspired by the hierarchical reinforcement learning algorithm presented in 

chapter 3, we design a model that evaluates funding policies from past years.  

The MAXQ algorithm introduces the idea of task decomposition. The root task is 

divided into subtasks. Then each subtask can be accomplished by several primitive 

actions. 

In our experiment, the task is decomposed into several subtasks, which are 

regular education area, special education area, bilingual education area, career and 

technical education area, and gifted education area. “Primitive actions” are the 

different funding distribution methods. After each subtask chooses an action, the 

reward for that action is returned. Each subtask will iterate over all actions and 

rewards will be compared in the end and the action that returns highest reward will be 

chosen.  
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It should be noted that not every school district has all five subtasks. The 

following is the task decomposition graph: 

 School district level 

funding policy 

Regular ed Special ed ESL ed Gifted ed 

Distribution 1 Distribution 2 Distribution 3 

Career ed 

Figure 5 Task decomposition. 

The reward that is returned for each action is a function of student 

performance and agent interaction quality.  

                          
                 ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅   

   
   (4) 

The student performance is evaluated by the TAKS tests passing out rate each 

year as shown in Table 5. 
                 ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅   

   
 is inspired by Joseph et al. (2013) and Du 

et al. (2009), which represents the limit in the amount of capital gained by agents on 

an interaction.    is set to 0.8 in our experiment. And               ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ is the average 

interaction level between agents involved in this subtask. 

The following table shows TAKS tests passing out rate for students enrolled 

as of October 29, 2010 and specific amount of money spent on each area for the year 

2009-2010: 
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Table 5 Funding data for the year of 2010. TAKS is the total number of students who passed 

all the TAKS tests they attempted expressed as a percentage of the total number of students 

who took one or more tests. 

Data for 2008 and 2009 can be found in Appendix A.  

 

4.4 Results 

4.4.1 Hierarchical Clustering 

The following is the output dendrogram for Lackland school district. I choose 

this one to present here because it is one of the best-performing school districts in 

Bexar County, which will be discussed in the next section. The dendrogram is 

generated by Python’s matplotlib library.   

DISTRICT NAME  TAKS: % PASSING ALL TESTS TAKENTOTAL EXPENDITURES (2009-10)Regular educationSpecial educationESL education Career educationGifted education

Alamo Heights 87 43715556 29726578.08 6994488.96 0 437155.56 874311.12

Harlandale 71 127324400 68755176 16552172 8912708 3819732 0

Edgewood 59 111248406 50061782.7 13349808.72 7787388.42 3337452.18 0

Randolph Field 91 12701043 9525782.25 1397114.73 0 127010.43 508041.72

San Antonio 62 504207177 226893229.7 90757291.86 40336574.16 15126215.31 5042071.77

South San Antonio 63 93898291 41315248.04 14084743.65 11267794.92 3755931.64 1877965.82

Somerset 65 33487386 15739071.42 4688234.04 1674369.3 1339495.44 669747.72

North East 81 559721134 347027103.1 123138649.5 5597211.34 16791634.02 5597211.34

East Central 70 74311079 41614204.24 14862215.8 2229332.37 2229332.37 1486221.58

Southwest 67 99087846 59452707.6 14863176.9 990878.46 3963513.84 0

Lackland 87 11806204 7674032.6 2361240.8 118062.04 236124.08 118062.04

Ft Sam Houston 75 19322253 11013684.21 6376343.49 0 386445.06 193222.53

Northside 80 761630471 472210892 167558703.6 0 22848914.13 7616304.71

Judson 69 174658801 104795280.6 33185172.19 5239764.03 6986352.04 0

Southside 68 46849510 26704220.7 6090436.3 2810970.6 1873980.4 0
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 Regular students and 
teachers 

Students and teachers in 
non-regular education 
areas 

School/school district 
admin 

D
istan

ce o
f clu

sters 

Figure 6 Lackland (1). The number on the y axis shows the distance of the two clusters that 

are formed together. 

Students and teachers are first clustered into each subgroups. Then it is 

clustered together with other staffs (these are shown in red). School and school 

district staffs are clustered together as shown in green on the left. Then they are 

clustered into one final cluster as shown in blue. Because of the large size of data, it is 

not easy to tell how the individual cluster looks like. Therefore here I present another 

dendrogram generated for Lackland school district whose agent numbers are all 

divided by 10 for the sake of display (after the dividing, for all the numbers between 

0-1, they will be rounded up to 1 rather than 0): 
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 School/school 
district admin 
staffs  

Regular students and teachers 

From left to right: Career teacher, career 
students, special students, ESL students, 
gifted students, special teacher, ESL teacher, 
gifted teacher 

Other 
staffs 

D
istan

ce o
f clu

sters 

Figure 7 Lackland (2). Note: each group of nodes has its description underneath it. 

As the graph shows, agents are first clustered into its own groups. Then each 

student group is clustered together with its corresponding teacher group. Following 

that, all students and teachers are formed into on cluster. Then it is clustered with 

other staffs. These clustering processes are in color red. School and school district 

staffs are clustered together as shown on far left in green. The cluster that forms all 

agents together is done in the end, which is shown in color blue. 

 

4.4.2 Funding Evaluation 
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 The data we obtained only contains student performance for the whole school 

district. It does not provide specific performance evaluation on subgroups (e.g. 

special education group). Because of this, the result outputted from our model would 

be the same for all five subareas for each school district. 

Our funding policy evaluation model shows the following result: 

 

Table 6 Funding evaluation result. 

In order to compare the results, here I provide a table of total expenditure per pupil of 

2008, 2009 and 2010. 

School district
Most effective funding

policy year

Alamo Heights 2009

Harlandale 2010

Edgewood 2008

Randolph 2008

San Antonio 2009

South San Antonio 2010

Somerset 2009

North East 2008

East Central 2010

Southwest  2009

Lackland 2009

Ft Sam Houston 2008

Northside 2009

Judson 2009

Southside 2010
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Table 7 Total Expenditure per pupil. 

 

Figure 8 Total Expenditure per pupil. 

 2008 2009 2010

Alamo Heights 8644 9138 9230

Harlandale 8710 8494 8809

Edgewood 9039 9451 9050

Randolph Field 14787 9309 10620

San Antonio 8745 8743 9153

South San Antonio 8581 8978 9426

Somerset 8185 8196 9036

North East 8328 8544 8582

East Central 7830 8033 8028

Southwest 8155 8179 8650

Lackland 13179 11946 12640

Ft Sam Houston 11514 11849 13135

Northside 7943 8028 8327

Judson 7864 7886 8051

Southside 7936 8830 9023
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Figure 9 Relations between TAKS passing out rate and expenditure per student of all three 

years. Note: the three points on each line represents the three years: Left point – 2008, 

middle point – 2009, right point – 2010. 

From the above figure 8 and 9, one can make the following observations: first, 

for some school districts, when expenditure per pupil increases, they show some 

decrease on student performance (e.g. Northside and Southwest). But for some other 

districts, when there is a decrease on expenditure per pupil, their student 

performances tend to increase (e.g. Alamo Heights and Ft Sam Houston). There is 

also another kind of school districts, whose students perform better while their 

expenditures increase (e.g. Somerset and Southside). Therefore we can conclude that 

it is not necessarily the case that the more spend the better. The data on Bexar County 
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does not show a consistent relation between changes in funding and student 

performance.  

 

Figure 10 Relations between best TAKS passing out rate in all three years and expenditure 

per student. 

Figure 10 shows the results of comparing all school districts together. For 

school districts that have their total expenditure per student under 10000, more 

funding does not seem to make them perform better than other schools. However, Ft 

Sam Houston, Lackland and Randolph field districts have relatively high expenditure 

per pupil and they do seem to perform a lot better. Most of their expenditures are 

above 11000. Randolph field, which is the best performing district, even has 

expenditure per pupil above 14000. However, these three all appear to be military 

base school districts, which might be the reason for their possibility of high 

expenditure. This could not be the case for all school districts. 
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Therefore it can be concluded that our model shows that increasing funding 

does not necessarily have a positive impact on student performance and there is not a 

very consistent relation between student performance and increasing funding. 

However three school districts show that when the expenditure per pupil reaches a 

certain high level, it does appear to have a very positive impact on student 

performance. 
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Chapter 5 

Conclusion and Future Work 

 

5.1 Conclusion 

In recent years, many efforts have been devoted into Multi-agent system and 

social network analysis. Many works have proved that Multi-agent system is a good 

tool for social network analysis.  

This work contributes to both social network analysis and Multi-agent system. 

We focus on modeling social networks using multi-agent system with a focus on 

social interactions. By implementing a school network, even with the limited data, 

this work has shown some very promising results. With the hierarchical structure 

generated, we are able to evaluate funding polices for past 3 years for Bexar county 

school districts and conclude that increasing funding does not necessarily have a 

positive impact on student performance. However for some types of school district, 

when the expenditure per pupil reaches a certain high level, it does appear to have a 

very positive impact on student performance. 

 

5.2 Further Work 

There are many potential works could be done in the future.  

First our current similarity measure use interaction level between agents and 

the simulation data is defined by us. If one use real data (e.g. using questionnaire to 

gather interactions information from actual human agents in the network), then the 
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model should provide a more real-world result. In addition, the hierarchical clustering 

algorithm could be further revised to reduce computational complexity.  

In the funding policy evaluation part, the current reward function is limited by 

the data we could get. We only have data for student performance of the whole school 

district. The ideal situation would be to have performance data on each “subtask” (e.g. 

special education). In addition, the reward function could also be re-designed 

depending on what kinds of data are available.  

The current policy evaluation model is applied to funding policy only. One 

could also use this model to study other kinds of policies. Our model is inspired by 

the MAXQ algorithm, which is a hierarchical reinforcement learning technique. 

However, due to the limitation of data, the reinforcement learning part is not fully 

implemented. If one has more future actions available, one could further develop the 

model by implementing a learning algorithm. 
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Appendix A 

 

 
Table 5 Funding data for the year of 2010 (This is the same table as the one shows on page 
33). 

DISTRICT NAME  TAKS: % PASSING ALL TESTS TAKENTOTAL EXPENDITURES (2009-10)Regular educationSpecial educationESL education Career educationGifted education

Alamo Heights 87 43715556 29726578.08 6994488.96 0 437155.56 874311.12

Harlandale 71 127324400 68755176 16552172 8912708 3819732 0

Edgewood 59 111248406 50061782.7 13349808.72 7787388.42 3337452.18 0

Randolph Field 91 12701043 9525782.25 1397114.73 0 127010.43 508041.72

San Antonio 62 504207177 226893229.7 90757291.86 40336574.16 15126215.31 5042071.77

South San Antonio 63 93898291 41315248.04 14084743.65 11267794.92 3755931.64 1877965.82

Somerset 65 33487386 15739071.42 4688234.04 1674369.3 1339495.44 669747.72

North East 81 559721134 347027103.1 123138649.5 5597211.34 16791634.02 5597211.34

East Central 70 74311079 41614204.24 14862215.8 2229332.37 2229332.37 1486221.58

Southwest 67 99087846 59452707.6 14863176.9 990878.46 3963513.84 0

Lackland 87 11806204 7674032.6 2361240.8 118062.04 236124.08 118062.04

Ft Sam Houston 75 19322253 11013684.21 6376343.49 0 386445.06 193222.53

Northside 80 761630471 472210892 167558703.6 0 22848914.13 7616304.71

Judson 69 174658801 104795280.6 33185172.19 5239764.03 6986352.04 0

Southside 68 46849510 26704220.7 6090436.3 2810970.6 1873980.4 0
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Table 8 Funding data for the year of 2009. 

 

Table 9 Funding data for the year of 2008. 

 

DISTRICT NAME  TAKS: % PASSING ALL TESTS TAKENTOTAL EXPENDITURES (2009-10)Regular educationSpecial educationESL education Career educationGifted education

Alamo Heights 87 42201000 28696680 6752160 0 422010 844020

Harlandale 70 121900873 68264488.88 17066122.22 8533061.11 3657026.19 0

Edgewood 58 109710502 54855251 14262365.26 9873945.18 2194210.04 0

Randolph Field 90 11198699 8287037.26 1343843.88 0 111986.99 447947.96

San Antonio 62 475712598 209313543.1 90385393.62 38057007.84 14271377.94 4757126

South San Antonio 63 89483843 40267729.35 12527738.02 9843222.73 3579353.72 1789676.9

Somerset 62 28349875 14174937.5 4252481.25 1700992.5 1417493.75 283498.75

North East 82 539863507 345512644.5 118769971.5 10797270.14 16195905.21 5398635.1

East Central 69 72919493 42293305.94 13854703.67 2187584.79 2916779.72 1458389.9

Southwest 67 92692917 57469608.54 13903937.55 926929.17 2780787.51 0

Lackland 88 11504425 7477876.25 2300885 115044.25 230088.5 115044.25

Ft Sam Houston 76 17038811 10052898.49 5452419.52 0 340776.22 170388.11

Northside 81 708054393 460235355.5 148691422.5 0 21241631.79 7080543.9

Judson 71 167623416 105602752.1 28495980.72 5028702.48 6704936.64 1676234.2

Southside 67 44867400 27817788 5384088 2243370 1794696 0

DISTRICT NAME  TAKS: % PASSING ALL TESTS TAKENTOTAL EXPENDITURES (2009-10)Regular educationSpecial educationESL educationCareer educationGifted education

Alamo Heights 85 39519675 27268575.8 6323148 0 395196.75 790393.5

Harlandale 67 122823357 70009313.5 17195270 8597635 3684700.7 0

Edgewood 60 106068921 51973771.3 14849648.9 9546202.9 2121378.4 0

Randolph Field 91 17137802 13881619.6 1542402.18 0 171378.02 514134.06

San Antonio 58 478572444 220143324 90928764.4 38285796 14357173 4785724.4

South San Antonio 60 84130593 37858766.9 11778283 9254365.2 3365223.7 2523917.8

Somerset 61 29063485 15113012.2 4650157.6 1453174.3 1162539.4 581269.7

North East 82 515611617 329991435 113434556 10312232 20624465 5156116.2

East Central 66 68671384 41202830.4 12360849.1 2060141.5 2060141.5 1373427.7

Southwest 64 88978363 53387017.8 14236538.1 889783.63 2669350.9 0

Lackland 87 11320981 7585057.27 2377406.01 113209.81 226419.62 113209.81

Ft Sam Houston 79 16407048 9680158.32 5086184.88 0 328140.96 164070.48

Northside 80 679468526 441654542 142688390 0 20384056 6794685.3

Judson 67 162002348 106921550 27540399.2 1620023.5 6480093.9 1620023.5

Southside 62 39610696 23766417.6 4753283.52 1980534.8 1584427.8 0
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