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Abstract

We show that for a k-periodic difference equation, if a periodic orbit of period r
is globally asymptotically stable (GAS), then r must be a divisor of k. In particu-
lar sub-harmonic, or long periodic, oscillations cannot occur. Moreover, if r divides
k we construct a non-autonomous dynamical system having minimum period k and
which has a GAS periodic orbit with minimum period r. Our method uses the tech-
nique of skew-product dynamical systems. Our methods are then applied to prove two
conjectures of J. Cushing and S. Henson concerning a non-autonomous Beverton-Holt
equation which arises in the study of the response of a population to a periodically
fluctuating environmental force such as seasonal fluctuations in carrying capacity or de-
mographic parameters like birth or death rates. We show that the periodic fluctuations
in the carrying capacity always have a deleterious effect on the average population, thus
answering in the affirmative the second of the conjectures. Independently Ryusuke Kon
[9], [10] discovered a solution to the second conjecture and in fact proved the result for
a wider class of difference equations including the Beverton-Holt equation. The work
of Davydova, Diekmann and van Gils, [6] should also be noted. There they study non-
linear Leslie matrix models describing the population dynamics of an age-structured
semelparous species, a species whose individuals reproduce only once and die after-
wards. See also the work of N.V. Davydova, [5] where the notion of families of single
year class maps is introduced.
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1 Non-autonomous difference equations

A periodic difference equation with period k

xn+1 = F (n, xn), F (n + k, x) = F (n, x) x ∈ Rn

may be treated in the setting of skew-product dynamical systems [14], [13] by considering
mappings

fn(x) = F (n, x) fi : Fi → Fi+1 mod k

where Fi, the “fiber” over fi, is just a copy of Rn residing over fi and consisting of those x
on which fi acts, fig.1. Then the unit time mapping

(x, fi) −→ (fi(x), fi+1 mod k)

generates a semi-dynamical system on the product space

X × Y where Y = {f0, . . . , fk−1} ⊂ C, X = Rn (1.1)

where C is the space of continuous functions, fig.1. We thus study the k-periodic mapping
system

xn+1 = fn(xn), fn+k = fn (1.2)

It is then not difficult to see that an autonomous equation f is one that leaves the fiber over
f invariant, or put another way, f is a fixed point of the mapping fi −→ fi+1 mod k.

In Elaydi and Sacker [8] the concept of a “geometric r-cycle” was introduced and defined.
The definition says essentially that a geometric r-cycle is the projection onto the factor X
in the product space (1.1) of an r-cycle in the skew-product flow.

A geometric cycle is called globally asymptotically stable if the corresponding periodic
orbit in the skew-product flow is globally asymptotically stable in the usual sense. The
example in figure 1 is clearly not globally asymptotically stable. Globally asymptotically
stable geometric r-cycles may be constructed using the following simple device. On R define
g(x) = 0.5x. Then for r = 3 any k ≥ 5 define

f0 = f1 = · · · = fk−4

fk−3 = g(x) + 1

fk−2 = g(x− 1) + 2

fk−1 = g(x− 2)

The geometric 3-cycle consists of {0, 1, 2}. However if one watches the progress of “0” in R
alone one will observe the (minimum period) k-cycle

x0 = 0 → 0 → · · · → 0 → 0 → 0 → 1 → 2 → 0 = x0,

even though “0” seems at first to be fixed (imagine k very large). This can easily be gener-
alized to
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Figure 1: Skew-product flow. Example shown with n=1.

Theorem 1 Given r ≥ 1 and k > r + 1 there exists a k periodic mapping system having a
globally asymptotically stable geometric k-cycle one of whose points “appears” fixed, i.e. it
is fixed for k − r iterations.

In general, when we have a geometric r-cycle with r ≤ k, one has the following

Theorem 2 [8] Assume that X is a connected metric space and each fi ∈ Y is a continuous
map on X. Let cr = {x̄0, x̄1, . . . , x̄r−1} be a geometric r-cycle of equation (1.2). If cr is
globally asymptotically stable then r|k, i.e. r divides k.

Thus the geometric 4-cycle in fig.1 cannot be globally asymptotically stable.

The next theorem shows how to construct such a dynamical system given any two positive
integers r and k with r|k.

Theorem 3 [8] Given any two positive integers r and k with r|k then there exists a non-
autonomous dynamical system having minimum period k and which has a globally asymptot-
ically stable geometric r-cycle with minimum period r.
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2 The Beverton-Holt Equation

The Beverton-Holt equation has been studied extensively by Jim Cushing and Shandelle
Henson [3, 4]. Also known as the Beverton-Holt stock-recruitment equation [1], it is a model
for density dependent growth which exhibits compensation (Neave [12]) as opposed to over-
compensation (Clark [2]), see also (Kot [11]). The equation takes the form

xn+1 =
µKxn

K + (µ− 1)xn

, x0 ≥ 0 K > 0

where µ is the per-capita growth rate and K is the carrying capacity. It is easily shown that
for 0 < µ < 1 the equilibrium (fixed point) x = 0 is globally asymptotically stable whereas
for µ > 1 the fixed point K is globally asymptotically stable.
In [3] the authors considered a periodic carrying capacity Kn+k = Kn caused by a periodically
(seasonally) fluctuating environment

xn+1 =
µKnxn

Kn + (µ− 1)xn

Defining

fi(x)
.
=

µKix

Ki + (µ− 1)x

we have an equation of the form (1.2) with period k.

Although this is not always desirable from a qualitative point of view, we will compute a
“solution” in closed form of the periodic Beverton-Holt equation.

After two iterations

x2 = f1 ◦ f0(x0) =
µ2K1K0x0

K1K0 + (µ− 1)M1x0

.

and inductively after k iterations

xk = fk−1 ◦ fk−2 ◦ · · · ◦ f0(x0) =
µkKk−1Kk−2 · · ·K0x0

Kk−1Kk−2 · · ·K0 + (µ− 1)Mk−1x
(2.1)

where Mn satisfies the 2nd order linear difference equation:

Mn+1 = Kn+1Mn + µn+1KnKn−1 . . . K0, M0 = 1.

Thus

Mk−1 =
k−2∏
j=0

Kj+1 +
k−2∑
m=0

(
k−2∏

i=m+1

Ki+1

)
µm+1KmKm−1 · · ·K0.

Letting Lk−1 = Kk−1Kk−2 . . . K0, we finally obtain (defining H)

H(x)
.
= fk−1 ◦ fk−2 ◦ · · · ◦ f0(x0) =

µkLk−1x0

Lk−1 + (µ− 1)Mk−1x0
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Figure 2:

But then the difference equation, xn+1 = H(xn) leaves the fiber (copy of R) invariant and is
thus independent of n, i.e. autonomous ! (See fig.2 for k = 6).

While this may or may not be easy to glean from (2.1) we will nevertheless use (2.1) later,
but only in the case k = 2:

x̄ = (µ + 1)
K1K0

K1 + µK0

. (2.2)

The mapping xn+1 = H(xn) thus has the unique positive fixed point

x̄ =
µk − 1

µ− 1

Lk−1

Mk−1

which is globally asymptotically stable with respect to positive initial conditions. By The-
orem 2 we have further that either x̄ is of minimal period k or of minimal period r where
r|k.

3 The Ricatti equation

We next consider the more general autonomous Ricatti equation

xn+1 = f(xn), f(x)
.
=

ax + b

cx + d
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where we assume the following conditions

1. a, c, d > 0, b ≥ 0

2. ad− bc 6= 0 (3.1)

3. bc > 0 or a > d

1 =⇒ f : R+ → R+

2 =⇒ f not a constant function

3 =⇒ f has a positive fixed point (Bev.-Holt if b = 0)

Under composition, letting

g(x) =
αx + β

γx + δ
,

one easily obtains

g ◦ f(x) =
(aα + cβ)x + (bα + dβ)

(aγ + cδ)x + (bγ + dδ)

from which 1,2 and 3 in (3.1) easily follow.

We now consider the periodic Ricatti equation

xn+1 = fn(xn)
.
=

anxn + bn

cnxn + dn

where the coefficients satisfy 1, 2 and 3 in (3.1) and have period k > 0. Again, the function
H defined by

H(x)
.
= fk−1 ◦ fk−2 ◦ · · · ◦ f1 ◦ f0

has the same Ricatti form and satisfies 1, 2 and 3 in (3.1). Thus we conclude that the periodic
Ricatti equation has a globally asymptotically stable geometric r-cycle and by Theorem 2,
r|k.

4 The General Case

In the previous sections we based our analysis on the special form the difference equations
had. In this section we extract the salient properties that makes it all work. Recall that
h : R+ → R+ is concave if

h(αx + βy) ≥ αh(x) + βh(y) for all x, y ∈ R+

where α, β ≥ 0, α + β = 1. The following property is easily verified: If f, g are concave
and f is increasing then f ◦ g is concave. Note however that by requiring our maps
to take values in R+ and to be defined on all of R+, a concave function is automatically
increasing.

Define the class K to be all functions which satisfy
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(1) f : R+ → R+ is continuous

(2) f is concave (and therefore increasing)

(3) There exist x1 and x2 such that f(x1) > x1 and f(x2) < x2, i.e. the graph of f crosses
the “diagonal”.

K generalizes the class “A1” of Cushing and Henson [3].

Properties of K.

(a) K is closed under the operation of composition, i.e. f, g ∈ K implies f ◦ g ∈ K. Thus
K is a semi-group under composition.

(b) Each f has a unique globally asymptotically stable fixed point xf > 0

(c) If f, g ∈ K with xf < xg then xf < xf◦g < xg and xf < xg◦f < xg

Thus, for the k-periodic difference equation

xn+1 = F (n, xn), x ∈ R (4.1)

if for all n, fn ∈ K, where fn(x) = F (n, x) then g defined by

g(x)
.
= fk−1 ◦ fk−2 ◦ · · · ◦ f1 ◦ f0 ∈ K

represents an autonomous equation

xn+1 = g(xn)

having a unique globally asymptotically stable fixed point. Therefore the difference equation
(4.1) has a globally asymptotically stable geometric r-cycle and by Theorem 2, r|k.

5 The Cushing and Henson Conjectures

In [4], Cushing and Henson conjectured that for the periodic k-Beverton-Holt equation, k ≥ 2

xn+1 =
µKnxn

Kn + (µ− 1)xn

, µ > 1, Kn > 0,

[Conj.1] There is a positive k-periodic solution {x̄0. . . . , x̄k−1} and it globally attracts all
positive solutions
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[Conj.2] The average over n values {y0, y1, . . . , yn−1}, av(yn)
.
= 1

k

∑k−1
i=0 yi satisfies

av(x̄n) < av(Kn)

In Conj.2 it is implicit that the minimal period of the cycle {x̄0. . . . , x̄k−1} exceeds one, i.e. it
is not a fixed point. The truth of Conj.2 implies that a fluctuating habitat has a deleterious
effect on the population in the sense that the average population is less in a periodically
oscillating habitat than it is in a constant habitat with the same average. Earlier [3] they
proved both statements for k = 2. By our remarks in the previous section, Conj.1 is now
completely solved: There exists a positive r-periodic globally asymptotically stable solution,
with respect to (0,∞), and moreover r|k.

We now answer Conj.2 in the affirmative for all k ≥ 2 and in the process give a much simpler
proof in the k = 2 case.
Comment: Without loss of generality we will now assume that k is the minimal period.
Then for the periodic sequence {K0, K1, . . . , Kk−1, Kk = K0}, it follows that Ki 6= Ki+1 for
at least one i ∈ {0, 1, . . . , k − 2}.
Everything then follows from an elementary algebraic lemma:

Lemma 4 Assume α, β, x, y ∈ (0,∞), α + β = 1. Then

xy

αx + βy
− βx− αy =

−αβ(x− y)2

αx + βy
(5.1)

Proof Letting g(x, y) represent the left side of (5.1), we have

(αx + βy)g(x, y)

= {(1− α2 − β2)xy − αβ(x2 + y2)}
= −αβ(x− y)2. QED

We first derive a formula for a fixed point, xf◦g of the composition of 2 Beverton-Holt
functions using the formula (2.2):

f(x) =
µKx

K + (µ− 1)x
, g(x) =

µLx

L + (µ− 1)x

xf◦g = (1 + µ)
KL

K + µL
=

KL

αK + βL
=

xfxg

αxf + βxg

(5.2)

where α = 1/(µ + 1) and β = µ/(µ + 1). From the previous comment and the lemma it
follows that

xf◦g =
xfxg

αxf + βxg

≤ βxg + αxf , (5.3)

with strict inequality for at least one pair f = fi, g = fi+1, i ∈ {0, 1, . . . , k − 2}.
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Proof of Conj.2 for k=2:

f0(x) =
µK0x

K0 + (µ− 1)x
, f1(x) =

µK1x

K1 + (µ− 1)x

f1 ◦ f0(x0) = x0 = xf1◦f0 =
K1K0

αK1 + βK0

f0 ◦ f1(x1) = x1 = xf0◦f1 =
K0K1

αK0 + βK1

Now add and use (5.3) and α + β = 1,

x0 + x1 =
K1K0

αK1 + βK0

+
K0K1

αK0 + βK1

< αK0 + βK1 + αK1 + βK0

= K0 + K1. QED

Proof for k > 2:
I. For k odd, assume, inductively that Conj.2 is true for (k + 1)/2.

Take k=3. Then

f2 ◦ (f1 ◦ f0)(x0) = x0, f0 ◦ (f2 ◦ f1)(x1) = x1

f1 ◦ (f0 ◦ f2)(x2) = x2.

Using the period 2 result,

1. f1 ◦ f0(x0) = x2, and f2(x2) = x0 =⇒

x0 + x2 ≤ xf1◦f0 + xf2 =
K1K0

αK1 + βK0

+ K2

≤ αK0 + βK1 + K2

2. f2 ◦ f1(x1) = x0, and f0(x0) = x1 =⇒
x0 + x1 ≤ xf2◦f1 + xf0 ≤ αK1 + βK2 + K0

3. f0 ◦ f2(x2) = x1, and f1(x1) = x2 =⇒
x1 + x2 ≤ xf0◦f2 + xf1 ≤ αK2 + βK0 + K1

where at least one of the inequalities is strict. Adding, using (5.3) and α + β = 1 we get

2(x0 + x1 + x2) < 2(K0 + K1 + K2).

Sketch for k=5:(fig.3) Using the result for k = 3,

f1 ◦ f0(x0) = x2, f3 ◦ f2(x2) = x4,
f4(x4) = x0 =⇒

x0 + x2 + x4 ≤ xf1◦f0 + xf3◦f2 + xf4

9



Figure 3:

After one cyclic permutation:

x1 + x3 + x0 ≤ xf2◦f1 + xf4◦f3 + xf0 .

After 3 more cyclic permutation:

x2 + x4 + x1 ≤ xf3◦f2 + xf0◦f4 + xf1

x3 + x0 + x2 ≤ xf4◦f3 + xf1◦f0 + xf2

x4 + x1 + x3 ≤ xf0◦f4 + xf2◦f1 + xf3

where at least one of the inequalities is strict. Adding gives the result

3(x0 + x1 + · · ·+ x4) < 3(K0 + K1 + · · ·+ K4).

Sketch for k even, k=6: (fig.4) Inductively assume the conjecture true for k/2.

f1 ◦ f0(x0) = x2, f3 ◦ f2(x2) = x4, f5 ◦ f4(x4) = x0

=⇒ x0 + x2 + x4 ≤ xf1◦f0 + xf3◦f2 + xf5◦f4 (5.4)

≤ αK0 + βK1 + αK2 + βK3 + αK4 + βK5

After one (and only one) cyclic permutation: (fig.5)
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Figure 4:

f2 ◦ f1(x1) = x3, f4 ◦ f3(x3) = x5, f0 ◦ f5(x5) = x1

=⇒ x1 + x3 + x5 ≤ xf2◦f1 + xf4◦f3 + xf0◦f5 (5.5)

≤ αK1 + βK2 + αK3 + βK4 + αK5 + βK0

where at least one of the inequalities is strict. Adding (5.4) and (5.5), we obtain the result.

Theorem 5 For a k-periodic Beverton-Holt equation with minimal period k ≥ 2

xn+1 =
µKnxn

Kn + (µ− 1)xn

, µ > 1, Kn > 0

there exists a unique globally asymptotically stable k-cycle, C = {ξ0, ξ1, . . . , ξk−1} and

av(ξn) < av(Kn)

Summary of proof: Zig-zag induction

1. Prove it directly for k = 2,

2. k odd: True for (k + 1)/2 =⇒ True for k,

3. k even: True for k/2 =⇒ True for k.

By judiciously pairing and permuting the maps and using only the formula for the fixed
point of 2 maps, (5.2), it is straightforward to write down the complete proof for any k > 2.
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Figure 5:

6 Periodically varying growth parameter

In this section we consider the case in which the period k = 2 and extend our results to a
periodically varying growth parameter µ.

We begin with a lemma which follows from elementary calculus:

Lemma 6 For x, a > 1 define

u(x, a) =
|a− x|
ax− 1

.

Then u(a, a) = 0 ≤ u(x, a) < 1.

Letting xf and µf denote respectively the stable fixed point and growth rate of a B-H function
f , we derive a formula for a fixed point, xf◦g and xg◦f of the composition of 2 B-H functions

f(x) =
µf xf x

xf + (µf − 1)x
, g(x) =

µg xg x

xg + (µg − 1)x

g ◦ f =
µfµg xf xg x

xf xg + [(µf − 1)xg + (µg − 1)µfxf ]x

=
µfµg xg◦f x

xg◦f + (µfµg − 1)x
, where

xg◦f =
xg xf

(rxg + sxf )
, r =

µf − 1

µfµg − 1
, and s =

µg − 1

µfµg − 1
µf (6.1)

Clearly r + s = 1. Note that from (6.1) the composition of two B-H maps is again a B-H
map with µg◦f = µfµg and xg◦f explicitly given. Therefore the composition has a globally
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asymptotically stable fixed point. In fact the B-H maps with µ > 1 form a sub semi-group
of the semi-group K defined in [8].

Let

f0(x) =
µ0K0x

K0 + (µ0 − 1)x
and f1(x) =

µ1K1x

K1 + (µ1 − 1)x
(6.2)

and let x0 be the fixed point of f1 ◦ f0. Then we have

x0 = xf1◦f0 =
K0K1

rK1 + sK0

= rK0 + sK1 −
rs(K1 −K0)

2

rK1 + sK0

(6.3)

Letting λ
.
= µ0µ1 − 1 and substituting from (6.1), we obtain

λx0 = (µ0 − 1)K0 + (µ1 − 1)µ0K1 −
(µ0 − 1)(µ1 − 1)µ0

(µ0 − 1)K1 + (µ1 − 1)µ0K0

(K1 −K0)
2

A similar expression for x1 is obtained by interchanging all subscripts. Adding the two and
letting x̄ = (x0 + x1)/2 and K̄ = (K0 + K1)/2 we obtain

x̄ = K̄ + σ
K0 −K1

2
−∆

(µ0 − 1)(µ1 − 1)

2(µ0µ1 − 1)
(K0 −K1)

2, where (6.4)

∆
.
=

µ0(µ
2
1 − 1)K0 + µ1(µ

2
0 − 1)K1

µ0(µ1 − 1)2K2
0 + (µ0 − 1)(µ1 − 1)(µ0µ1 + 1)K0K1 + µ1(µ0 − 1)2K2

1

> 0 (6.5)

and

σ
.
=

µ1 − µ0

µ0µ1 − 1

and from Lemma 6, 0 ≤ |σ| < 1.

Remark 7 In the case µ0 = µ1 = µ (the Cushing-Henson case), the expression (6.4) reduces
to

x̄ = K̄ − 1

2

µ(K0 + K1)

µK2
0 + (µ2 + 1)K0K1 + µK2

1

(K1 −K0)
2

which gives an exact expression for the difference in the averages.

Remark 8 For certain values of the µ’s and K’s the state average x̄ can exceed K̄. For
example, for µ0 = 4, µ1 = 2, K0 = 11, K1 = 7 one obtains x̄ ≈ 9.23.

The calculations, even for k = 4, seem daunting at best.

This paper is a report on results to appear in [7].
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