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Towards Understanding the Compression of

Sound Information

Kathleen Fisher

April 14, 2016

Abstract

The purpose of this thesis is to explore data compression, specifi-

cally as it relates to sound information. Data transfer is an important

part of the current technology driven lifestyle and compressed data

means faster transmission. This thesis will explore how compression

can be applied to sound while considering often overlooked factors,

such as the way the sense of human hearing works to interpret sounds.

An example of Huffman compression follows the general discussion of

the compression of sound information.

1 Introduction

Information exchange across digital mediums is an integral part of everyday

life (at least for the majority of the human population). Present concerns
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relate to making these exchanges faster, easier, and with minimum costs.

Compressing information into a smaller size allows for faster transmission

(because there is less data there to transfer). The smaller size also reduces

the ”cost” of space; a user can store more movies, images, or songs per

specified chunk of memory. The issue of improving compression techniques

has even surfaced on popular media, with a compression algorithm taking

center focus on a recent HBO series, Silicon Valley.

An important part of compression is understanding the nature of the

information that will be compressed. Many types of compression work only

on information with certain characteristics. For example, a DNA sequence

stored in an ASCII text file (where each character is stored with 8 bits of

information) can be compressed to 25% of its original size by only using 2

bits to store each character since there are only four possible characters: A,

G, C, or T. This, of course, would not work on an ASCII text file storing

English sentences because there are more than four possible characters in

English sentences. Many types of compression depend on the nature of the

information, so it makes sense to consider compression techniques through

the lens of a particular field–in this case sound information.

An important consideration for compressing sound information is stream-

ing music. If music data can be decoded quickly enough, compression can

help save bandwidth and loading time. If music data is compressed to a

smaller size, less data has to be streamed to an end user. Compression runs

into problems with streaming when it decodes compressed information too
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slowly or data gets lost during transmission. There are far more detailed

implications that will not be discussed in this thesis.

Let us take a moment to think about the absurdity of modern capabilities.

Before addressing sound specifically, let us address another related media, the

photo, which is also commonly transferred. Every picture taken is capturing

a moment in time–in order to recreate that moment sometime in the future.

If we consider the universe with four dimensions, where the fourth dimension

is time, this moment exists in at a given coordinate in space and time, or

spacetime. The light waves from this specific spacetime are carefully captured

and cataloged. The camera attempts to mimic the eye in how it collects light

waves. Every time you look at a picture, you are receiving the recreated light

waves of a given spacetime–looking at a past spacetime. In that sense, looking

at a picture is a simple version of time travel. Abstracting the specifics of

photography away, this applies to sound as well.

1.1 What is sound?

Humans often think of sound in terms of what they can hear. A bird chirping

is a sound. Water cascading into the sink from a faucet is a sound. Anything

that is perceived from a humans sense of hearing, through the ears, is a

sound. More scientifically, sound is a wave created from vibrations in the

environment, requiring a medium through which to travel (particles in the

air, liquids, etc.) [1, 2, 6, 14]. Sound is not necessarily one specific vibration,

or frequency, but the culmination of frequencies associated with a specific
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object or action. The brain distinguishes the car driving by outside your

window as a separate sound from buzz of voices from a television in an

adjacent room from the sound of a toilet flushing across the hall–even though

they all happen simultaneously.

1.2 How sound is stored

Sound waves do not naturally lend themselves to the discrete nature of com-

putation. If you already understand the basics of computer memory, skip to

section 1.2.1 on Data Entropy. Everyday modern computers work with bi-

nary digits, or more succinctly bits [4]. Interesting historical side note: The

term bit was first published and popularized by Shannon [4] in 1948 (though

Shannon attributes the term to John W. Tukey) [4]. Each bit of information

can exist in two possible states, which we consider as either a 1 or a 0. Any

information stored on a computer is ultimately stored with a sequence of

binary digits, which is a sequence of 1s and 0s. This means that a sound

is stored as a sequence of 1s and 0s. Unfortunately for computers, sound,

as a wave, is inherently continuous. Computers (the current standard com-

puters, anyway) do not store continuous data, so sound information must be

represented discretely in order to be stored digitally.

Numerous standards exist for recording and storing sound waves. There

are varying standards for taking sound waves as input to a digital system (e.g.

through a microphone) as well as varying standards for storing that input.

Considering sound files, there is no universal standard; multiple standards
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exist such as .wav, .mp3, .flac and many others.

1.2.1 Data Entropy

Essentially, there exists a mathematical concept of entropy associated with

information. You may recall that the term entropy involves chaos or dis-

order. The entropy associated with information theory instead involves un-

certainty [4]. This is sometimes referred to as Shannon entropy since it was

first described by Shannon's A Mathematical Theory of Computation [4]. As

Shannon describes more succinctly in a later paper, entropy is ”how much

information is produced on the average for each letter of a text in the lan-

guage” [11]. Mathematically, H is the entropy for a character c where pc is

the probability of occurrence of c [4, 11, 15, 7].

H = −log2(pc)

1.2.2 PCM (Pulse Code Modulation)

One of the challenges of storing sound waves is turning continuous data into

discrete data. Somehow we have to record all of the vibrations that make up

a sound in 1s and 0s. A common method is to use pulse code modulation

(PCM). This essentially takes the waves produced by sound and records

their amplitudes to a given degree of specificity, the bit depth, and at a set

frequency, the sample rate. So PCM records the bit depth number of bits of

information every sample rate period of time.
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1.2.3 Nyquist-Shannon Sampling Theorem

The Nyquist-Shannon theorem, otherwise known as the sampling theorem,

deals with the sampling rate of methods such as PCM. Essentially, if you

do not take samples often enough, PCM will not read enough data points

per cycle to record the correct frequency [14, 16]. The sampling theorem

essentially sets an upper bound on the necessary sampling rate. Called the

Nyquist interval, ”this upper bound is π/∆w where ∆w is the angular fre-

quency bandwidth of the signal” [16].

1.2.4 Fourier Transform

Another way to transform the continuous data of sound waves into a discrete

format is to use the Fourier transform. If you are familiar with the Taylor

series, the Fourier transform works similarly. You can decompose a continu-

ous data set into an infinite series of sine and cosine equations [14]. The sum

of these sin and cosine equations represents the continuous waveform [14].

It is of course not practical or currently feasible to store an infinite series of

sign and cosine equations, but the sine and cosine terms at the beginning of

the Fourier series have the most weight over the resulting waveform. Instead

of taking the infinite series, taking some terms from the beginning of the

Fourier series will compose a decent approximation of the complete, exact

waveform.
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Figure 1: This figure shows that threshold of human hearing is 20 Hz to
20 kHz, depending on the loudness of a sound (pressure). This data was
obtained from a study done by Bell Telephone Laboratories in collaboration
with U.S. Public Health Service [2]. This figure is from [2]

1.3 How the ear works

This section will detail the workings of the human ear in how it affects the

topic of storing sound data, drawing attention to the intricate nature of signal

processing in the body. While considering the requirements and abilities

of the digital transmission of sound, it is important not to forget our own

enabling conditions, mainly the abilities and limitations of the human sensory

systems ability to interpret vibrations as sound. Generally, the quoted range

of discernible frequencies for the human ear is 20 Hz to 20 kHz [1, 2, 6, 14]

This, however, is heavily dependent on the loudness of the sound (often

measured in decibels) and individual characteristics, such as age [1, 6]. As
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Figure 2: This figure shows that threshold of human hearing (generally 20
Hz to 20 kHz) has a large amount of variation at the individual level. This
data was obtained from a study done by Bell Telephone Laboratories in
collaboration with U.S. Public Health Service [2]. This figure is from [2]

is evident in Figure 1, the ability to hear a certain frequency depends on

the intensity of the sound [1, 6]. And this threshold is not the same for each

individual human, as evident in Figure 2 [1]. This is due to natural variations

and degradation in the complicated process of the sense of hearing. Note also

that increasing intensity relates to increasing pressure (the units along the

rightmost y-axis).

The ear has thousands of tiny pieces working together to help the body

sense various frequencies and translate them into meaningful sounds (among

other functions that will not be discussed here, such as balance). First con-

sider the three standard parts of the ear: outer, middle, and inner. Sounds

(vibrations) travel through the ear from the outer ear to the inner ear. The
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outer ear includes the visible portion of the ear (the pinna) and the ear canal

[1, 2]. After sound waves pass through the ear canal, they hit the tympanic

membrane (eardrum) which passes the vibrations through the ossicular sys-

tem [1]. The ossicular system consists of a few small bones (ossicles) in the

middle ear, called the malleus, incus, and stapes (more commonly referred

to as hammer, anvil, and stirrup respectively due to their shape [1, 2]. When

a sound wave hits the tympanic membrane (again, eardrum), the vibrations

must then pass through the ossicles (malleus, incus, and stapes) of varying

shapes and sizes [1, 2]. Consider how vibrations/waves (of equal amplitude,

speed, etc.) transfer through objects of varying shapes and sizes. Once

the vibrations/sound waves hit the tympanic membrane, they begin to pass

through mediums other than the standard air. (This is, of course, assuming

that the waves have not passed through something other than air on the way

to your ear–consider instead hearing while underwater). The ossicles (tiny

bones) essentially pass the vibrations that are sound information from one

to the other into the cochlea [1, 2].

The cochlea has many intricate pieces, but we primarily care about the

basilar membrane because it is where sound waves are converted into elec-

trical signals the brain can process. Before discussing the basilar membrane

however, it is important to mention that the cochlea is filled with liquid [1, 2].

This means that sound waves must change mediums from air to liquid as they

pass from the middle to the inner ear. Fluid requires a greater pressure to

achieve the same vibration patterns, so the ear must adjust somehow to ac-
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count for this difference. To do this, the ear utilizes the tympanic membrane

and ossicular system to increase the pressure of a sound wave against the fluid

in the cochlea to attain proper impedance matching. The pressure against

the fluid is 22 times greater than the pressure of a sound wave against the

tympanic membrane [1]. The basilar membrane is essentially a long chamber

with nerve endings along its surfaces [2]. These nerve endings are what send

electrical signals to the brain identifying sounds [2]. The brain differenti-

ates the frequencies of sound waves by how far they travel along the basilar

membrane [1]. Higher frequencies will not travel as far along the basilar

membrane as lower frequencies [1]. There are over 20,000 basilar fibers along

the basilar membrane whose vibrations determine how your brain interprets

sounds [1, 2]. If even a small change occurs in the frequency of a vibration

on its way to these fibers, the brain will interpret the frequency differently.

Another relevant feature of the ear is what is called attenuation reflex.

The attenuation reflex is a natural muscle response triggered when the ear

is exposed to very loud (high pressure) sounds [1]. This response causes

a rigidity in the ossicular system that dampens sounds below 1000 Hz by

reducing their intensity [1].

The function of the ear is important because after being recorded, com-

pressed, uncompressed, and pumped out of a speaker to your ear, sound

waves have to go through all of the parts of the ear to finally be interpreted

as sound by the brain. The way the brain receives information about sound

though the sense of hearing is intricate and complicated and varies on an
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individual basis (as seen in Figure 2). Since the ultimate goal of storing

and compressing sound information is for it to be consumed by humans, the

humans sense of sound should be kept in mind when dealing with sound

information.

1.4 Process of sound travel

This section will address the complexity of hearing and interpreting a sound

in terms of the physical path of the vibrations that make up sound. This will

be addressed first from the perspective of listening to an original sound, then

from the perspective of listening to a recorded sound. For the purposes of

this paper, an original sound will refer to a frequency generated in physical

space that has not been processed through a digital medium, while a recorded

sound will refer to a sound that has been processed digitally.

First consider the path of the original sound. We can consider this path

to have three states: the creation The sound waves must first traverse from

their point of origin, bouncing off of and interacting with parts of the en-

vironment (causing, for example, resonance), to the physical position of the

ear. Once the vibrations reach the outer ear, they travel down the auditory

canal (ear canal) to the tympanic membrane (eardrum) [1, 2]. Vibrations

must then pass through the ossicular system (small bones) to the cochlea

(more complicated inner ear parts) [1, 2]. And so on and so forth until your

brain can decipher the sound, for the more detailed explanation, see section

1.3 How the ear works. Aside from the complexities of the ear, the sound
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waves only have to pass from the position of origin to the position of the ear,

only being changed or altered by the environment between those two points.

On the other hand, the path of the recorded sound has additional in-

termediate steps. The recorded sound path differs from the original sound

path when it is intercepted by an input device such as a microphone. To be

stored in a computer's memory, vibrations in the air must be transformed

into binary information. This transformation is likely to cause in a loss of

information since the sound waves can only be recorded to a certain degree

of precision. After this the binary data can go through multiple intervening

steps, ultimately ending up as the input to a speaker or similar device. The

speaker then converts the binary data back into vibrations that can be in-

terpreted by the ear. Then those vibrations must undergo the entire process

of being interpreted as sound by the human sense of hearing.

1.5 Data compression basics

1.5.1 Lossless vs. lossy compression

A defining characteristic of a compression technique is whether it is lossless

or lossy. A compression technique is considered lossless when the compressed

can be uncompressed exactly back to its original state; no information is lost

during the compression process for a lossless compression [6, 15]. On the

other hand, lossy compression techniques do not retain all of the information

of the original data [6, 15]. A common example of this is MP3 compression;
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MP3 compression discards unnecessary information in order to significantly

reduce data sizes [6]. Whether or not the lost information is completely

unnecessary remains debated. MP3 removes information about the sound

that humans should not be able to hear [6], but as previously discussed in

section 1.3 How the ear works, the capabilities of human hearing are not

identical across the board. It is entirely possible that some humans can hear

differences in an original and MP3 compressed file (and many humans state

that they can).

1.5.2 Quantitatively comparing compression

One of the simplest, most common metrics for comparing compression tech-

niques is the resulting compression ratio. The compression ratio is simply

the ratio of uncompressed size to compressed size, uncompressed
compressed

. This metric

does not take speed into consideration. Calculating and comparing the com-

pression ratios for some given file or set of files is a way to compare multiple

compression techniques against each other. However, depending on the type

of information stored in the files, certain compression techniques could have

a natural advantage if they are optimized for that file type. This sort of com-

petition could also cause the creators of compression techniques to optimize

for the set of test files as opposed to the general use case.

Shannon's data entropy can also be used as a metric for rating com-

pression. The entropy of a character x is theoretically the number of bits

required to store the amount of information inherent to that character x in
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its respective alphabet [4]. Knowing the entropy value for each character

in an alphabet would allow you to calculate the minimum amount of space

theoretically required to hold the information inherent to a certain set of

characters. Though this only applies to lossless techniques, the closer you

can get to the theoretical minimum, the better the compression technique.

Interestingly, a brand new metric called the Weissman score, created

by a Stanford professor Tsachy Weissman, emerged from the compression-

centered HBO series Silicon Valley [10]. The Weissman score, W , is as

follows:

W = α
r

r̄

logT

log T

Variables r and r̄ refer to the compression ratios of the target compression

technique and a standard compression technique respectively[10]. While T

and T refer to the time it takes to compress with the target and standard

respectively [10]. It has only been used in at least one academic paper [5], but

that paper patronized the metric by referring to it as a ”fictional Weissman

score”.

1.6 Huffman coding

Huffman coding is a lossless compression method [6]. Huffman coding runs on

a set alphabet of characters, utilizing probability information on how often a

given character will occur. Characters with higher occurrence frequency are

represented with fewer bits while characters with a lower frequency are repre-
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sented with more bits [3, 6]. Consider running Huffman coding on ”lossless”.

The word contains the character set {l, o, s, e}, so the alphabet considered, A,

is {l, o, s, e}. The probability of encountering the character l for this example

is 2
8
, or 25%. The probability of encountering s is 50% while o and e only

occur once with a probability of 12.5%. Instead of storing each character as

the standard 8-bits of ASCII or a fixed bit length, characters are stored with

a variable bit length corresponding to their probability. So for this example,

the most likely character, s, could be represented simply by one bit, 0, with

the others represented by more bits: 10 for l, 110 for o, and 111 for e. The

Huffman coding for ”lossless” would then be 10110001011100, 14 bits long.

The smallest fixed bit length that could represent each character is two bits,

which for eight characters would result in using 16 bits to store ”lossless”.

This is only two bits longer than the Huffman coded ”lossless”, and the

Huffman coded version must also keep track of a ”key” (a tree, which will

be discussed later) for decoding purposes. While Huffman coding will result

in a larger file size for worst case scenarios, it will result in a smaller file size

with certain types of character probability distributions.

1.7 MP3 Basics

MP3 compression is a lossy method of compressing sound information [6].

There are two large steps of MP3 coding: throwing out ’useless’ information

based on psychoacoustics and Huffman coding [6]. The MP3 dictates that

information can be thrown out that is seen to be not audible to the human
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hear or not processed by the human brain [6]. To understand the specifics of

which data MP3 loses, more detailed aspects of psychoacoustics would need

to be understood such as simultaneous masking and temporal masking [6].

The space savings of MP3 coding are primarily gained by ignoring much of

the sound information in the first part of the process; the Huffman coding

after only allows a smaller space saving. This is due to the respective na-

tures of lossy and lossless compression. Because lossless compression must

perfectly store all information, the reduction of space is inhibited. The anal-

ysis required to remove ’unnecessary’ information also takes up a lot of time

and computer resources [6]. This means that the encoding process for MP3

is lengthy, while the decoding is much quicker.

2 Methods

2.1 Language Choice

The chosen programming language for this project was C++. This was pri-

marily chosen due to requirements for utilizing GPU processing on the fin-

ished compression technique. The next steps for this project are to speed up

the compression technique with GPU processing using the NVIDIA CUDA

language. CUDA is currently only compatible with C++. CUDA was de-

cided on due to the limitations of the author–in possession of a NVIDIA

graphics card and lacking funds to purchase another type.
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2.2 Exploring the WAV format

The WAV format was used as the starting point for the compression al-

gorithm. It was decided that the WAV format would be the appropriate

starting point for compression because WAV is the starting point for MP3

compression, one of the most widespread compression techniques [6]. The

WAV format is essentially the PCM of the sound waves with header infor-

mation to detail the specifications of the PCM such as the sampling rate and

bit depth.

The first step of this compression technique is to read in the information

stored in a WAV file. The WAV format is composed of a header and data

section. The header contains important information such as the size of the

data section in bytes, the bit depth in bits, and the sample rate in Hertz

(Hz, cycles per second). The compression technique for this experiment

records the header information (as well as the data, of course) for use during

compression. At this point a compression technique had not been decided

because a closer look at the nature of WAV formatted data was warranted.

For a 16 bit depth file, there are 216, or 65,536, possible bit arrangements

for each sample. We were curious if all possible combinations are used and if

we could find any trends in WAV formatted data. By plotting a histogram of

possible bit arrangements (Figure 3), we discovered that data values in the

middle were significantly less likely to occur than those at the ends, like 0 and

65,535. There were also many middle values that did not occur at all. The

probability distributions demonstrated in Figure 3 lend themselves Huffman
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Figure 3: The graphs above show the histograms of five 16-bit depth .wav
files. The lowest and highest integer values (e.g. 0 and 65,535) occur the most
frequently in .wav files, with many of the middle data (e.g. 32,767) values
not occurring at all. (The values that do not occur differ across different
files.)
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Figure 4: This is the algorithm for Huffman coding from the CLRS Intro-
duction to Algorithms textbook [3]

coding due to the steep difference between likely and unlikely characters of

the 65,536 possible in the 16 bit depth alphabet.

2.3 Basic technique

The overview of the implemented technique is as follows. First, the WAV

format file is read into the program using the fread function in the C++

standard library. The header information and sound data are stored for later

use in the program. The sound data is passed through once, using a for

loop, to acquire probability information for each character in the alphabet.

This is done by counting the number of occurrences of each character, the

probability is gained by dividing the number of occurrences for a character
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by the data size as defined by the WAV header. A priority queue is then

initialized, where values with a lower probability have higher priority. Each

character that occurs more than once is added to the priority queue. Then

the Huffman tree is built with this priority queue, Q. The Huffman tree is

built according to the standard algorithm outlined in the CLRS Introduction

to Algorithms textbook [3]. After creating the tree, it runs through the tree

in-order to assign the value of each leaf to its Huffman encoded value in a

map structure to provide constant look-up times. Then it runs through the

data of the WAV file again, outputting the encoded version of the value to

an encoded data file. For convenience, the header information and Huffman

tree information are output to separate files, so in total the result of the

compression is three files: a header file, a tree file, and a data file.

2.4 Tree storage

An important consideration is how to store the tree information with the

encoded sound data so that it may be decoded later. A natural implementa-

tion is to add this tree information to the header, but storing a tree structure

does not take a trivial amount of memory. To reduce the size of the stored

tree, the following method was used. In an in-order traversal of the tree, a 0

is recorded for every move to a left child. Whenever a leaf is reached (where

the relevant data is in a Huffman tree), a 1 is recorded followed by the data

value at that leaf. Consider the example tree in Figure 5. This tree would

be stored as 01(2)01(7)1(4) where the values in parentheses would instead
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a

Figure 5: This tree would be stored as 01(2)01(7)1(4) where the values in
parentheses would be the actual 8 or 16 bit binary representation of the value.
So if it was the tree for an 8 bit depth WAV file, the stored tree would be 01
00000010 01 00000111 1 00000100.

be the 8 or 16 bit binary representation of the value.

2.5 Exploring lossy methods

After implementing the lossless Huffman technique, we were curious to see

how we could implement some lossy versions to further reduce file sizes.

In addition to regular bit depth reduction and sampling rate reduction, we

tested different methods of corrupting WAV files to see if we could notice a

difference in the auditory experience. A few corruption methods were tested:

flip the least significant bit of every 16 bit value (Appendix 5.1.1), flip the

most significant bit of every 16 bit value (Appendix 5.1.2, very bad), shift

every 16 bit value left by 2 (Appendix 5.1.3, bad), shift every 16 bit value

right by 2(Appendix 5.1.4, very bad), round data in middle values of 5000

to 60000 to the closest high (60000) or low (5000) value (bad), and add

an offset to each 16 bit value (Appendix 5.1.5, introduced high pitch tone

at large offsets) See Audio Appendix for audio samples. As expected, the

only corruption method that did not appear to have an auditory impact was
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Figure 6: This shows how adjacent values are combined to form windows of
3.

flipping the least significant bit for each data point (because data points with

similar values have similar frequencies). The lossy technique implemented

involves combining adjacent alphabet characters into the same encoded value

to reduce the size of the Huffman tree, thus decreasing the resulting file size.

When combining every 3 adjacent characters into the middle value (see Figure

6), the compressed Repetitive.wav file was reduced to 1,434,817 bytes with

the Huffman tree reduced to 33,908 bytes. This is in comparison to the

lossless compression of 1,589,940 bytes with 86,297 bytes of tree data. The

tree data is essentially 3 times smaller with not very apparent audio quality

reduction. Listen to the resulting file in the Audio Appendix 5.1.6.

2.6 Generic Huffman Tree

Using a generic Huffman tree based on standard WAV file probabilities would

decrease encoding time and total compressed file size (improving compres-

sion ratios). The idea would be to use the same tree for every compression.

This runs into a problem because each WAV file has different holes in their

middle values (different values occur zero times in different WAV files). If

every possible value for 16-bits was included in this generic Huffman tree, it

27



is unlikely more space could be saved than individually calculating a Huff-

man tree for each compression. There would need to be some way to cut out

unnecessary middle values in a generic Huffman tree while maintaining the

most important data. Since combining adjacent values did not seem to have

a large affect on audio quality (See Audio Appendix 5.1.6), we decided to

implement a generic Huffman tree that combines adjacent middle values to

decrease size. Unfortunately, this makes any resulting compression lossy be-

cause not all values would be returned to their original value upon decoding.

We used windows of 7 to combine values above 1,000 and below 65,435. This

resulted in a Huffman tree of 17,418 bytes, significantly smaller than all of

the individually calculated Huffman trees (See table in Figure 7). However, it

is important to remember that this catastrophic decrease is due to the tran-

sition from a lossless Huffman tree to a lossy Huffman tree. Not only would

the size of the Huffman tree be reduced, the generic Huffman tree would not

need to be stored with the data of each file since it would be standard across

files. This would mean only the sound data and header data would need to

be stored for each file, reducing the total size. As an example with the use of

a generic tree, the Jazz.wav file would have an improved compression ratio

of 1.36 as opposed to the regular 1.16 compression ratio.

2.7 Limitations

Only music files in the WAV format were used, and only a handful of sample

files were used all of which with 16 bit depth. This is not sufficient to confirm
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the trends seen in this data apply on a broader scope. Further work would

need to be conducted on a larger collection of sample WAV files with a larger

variety (varying music type, clip length, sample rate, bit depth, etc.). The

Huffman algorithm does not incorporate any of the more recent improvements

such as would allow the algorithm to only make one pass through the sound

data [5].

3 Data

3.1 Resulting files

The resulting files from our compression technique all remained slightly

smaller than the original (as can be seen when looking at the next section on

compression ratios). The size of the resulting files can be broken down into

three categories: the compressed sound data, the Huffman tree information,

and the WAV header information. The compressed sound data is the result

of taking the data section of the WAV file and running our Huffman com-

pression technique on it. Of course, in order to get any useful information

out of the encoded compression, the Huffman tree that will be used to de-

code the data must also be included. Finally, the WAV header data, though

extremely tiny, must also be recorded. No compression was conducted on

the WAV header information due to its already small size, but for actual

applications this data would likely be compressed with another technique.

The discussed breakdown is enumerated for each WAV file in the table from
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Figure 7: All values are listed in bytes. The result of this compression
technique has three parts: the actual data, the WAV header data, and the
Huffman tree header data. This table denotes the size of each section.

Figure 7.

3.2 Compression ratios

As described earlier, the compression ratio is defined as uncompressed size

over compressed size. So a compression ratio of 1 would mean the compressed

file was exactly the same size. Any compression ratio greater than 1 means

that the compressed file was smaller than the original. From the table in

Figure 8, we see that the resulting compression ratios for our compression

technique are all slightly higher than 1 but less than 2. This is fairly standard

for lossless compression techniques. Lossy techniques, however, can achieve

much higher compression ratios because they are storing less information.

The MP3 compression technique can achieve compression ratios of 10 times

or more [6].
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Figure 8: All values are listed in bytes. The Original File refers to the size
of the complete original WAV file in bytes. The Compressed Data column
lists the size of the compressed Huffman encoded sound data in bytes; this
does not include the WAV header or tree data, these are included in the next
column, Total w/ headers. Finally, the compression ratios are listed in the
last column, calculated with the total file size including headers.

3.3 Entropy comparison

The entropy was calculated on a character by character basis using the for-

mula described in section 1.2.1 on Data Entropy. As described previously,

the data entropy can be as the theoretical minimum possible bits necessary

to store the information losslessly. (Note, however, that the entropy is simply

a mathematical model and was developed specifically with the intention of

describing the number of bits necessary to store English character informa-

tion.) Our compression technique achieved results close to the entropy values

for each WAV file, with less than a 0.3% increase in file size across the board.

This, however, does not include the size of the header information (the WAV

header and Huffman tree data). As seen in Figure 7, this header informa-

tion can add about 50-90 kilobytes of data. When this is added, the percent
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Figure 9: All values are listed in bytes. The Original File refers to the size of
the complete original WAV file in bytes. The Compressed Data column lists
the size of the compressed Huffman encoded sound data in bytes; this does
not include the WAV header or tree data. The Difference is, in bytes, how
much larger our compression technique was than the entropy estimate. The
% Increase is how much larger our compressed data was than the entropy of
the data.

increase for each file changes significantly for some cases. While most of the

files remain below a 1% increase, the Repetitive.wav and Ambience.wav files

rise to 5.61% and 1.43% respectively. This large increase when you add the

header information stems from the large Huffman trees required to encode

and decode these files. If you recall from the histograms in Figure 3, Repet-

itive.wav and Ambience.wav had a greater distribution of probabilities than

the other WAV files. This causes the Huffman tree to be larger, increasing

the amount of space necessary to store it.

3.4 Lossy method results

The table in Figure 10 shows the result of various lossy windowed methods on

the Repetitive.wav file. As described in Section 2.5 Exploring lossy methods,
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Figure 10: This table shows the result of combining adjacent values in in-
creasing quantities for the Repetitive.wav file. Combining adjacent values
dramatically reduces tree data size while also reducing total data size.

the windowed method involves rounding data values to the closest multiple

of the window size (See Figure 6). The range affected refers to the 16-bit

values that were not rounded to the nearest multiple of the window size.

The lowest and highest 16-bit values are the most important in a WAV file;

they contain the most inherent information by having the largest Shannon

entropy per character. For this reason, some values at the head and tail

end of this spectrum were left out of the rounding process and considered

in exactly the same manner as the lossless method. To counter the adverse

affects of increasing the window size, the range affected was reduced for the

larger window sizes. With the window sizes and ranges listed in this table,

the files sound almost exactly like the original Repetitive.wav.
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4 Conclusion

Data compression, even just the field of sound data compression, is a com-

plex topic that spans decades of academic research. From the beginning of

telecommunications to the current streaming of music wirelessly over the in-

ternet, compression of sound information has been of interest. Morse Code

was an early method of compression that keyed in on the need to convey in-

formation with a higher probability of occurrence with less data; this is why

an E in Morse code is merely a dot while Q and Z are four ”bits” long [11].

Huffman coding is built off this concept. All new scientific achievements are

built off of achievements of the past. Consider that any achievement which

involves mathematics is reliant on the existence of the standard mathemati-

cal models we use today that were developed a long, long time ago. None of

the information discussed in this thesis is new, it builds off of concepts built

up by previous humans from their attempts to understand the world. This

thesis serves as an exercise of working to understand a topic as it exists in

the current day and as its components have been interpreted by humans who

have worked to understand it in the past.

4.1 Future Work

There are many opportunities to continue with future work on this topic.

Ideally, the Huffman compression (or any compression method) would be

sped up using GPU processing. For any compression method that breaks
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the sound data up by time, time chunks of a certain size could be sent to

the GPU for concurrent processing. For Huffman encoding, all the GPU

needs to do for each data value is look up the replacement encoded value

in a table. Decoding would be only slightly more complicated, due to the

need to traverse the Huffman tree. This would then need to be timed in

comparison to non-GPU methods in terms of both encoding and decoding

time. Also more recent and elaborate versions of Huffman compression should

be analyzed such as adaptive Huffman and arithmetic coding [5].

5 Audio Appendix

5.1 Accessing the Audio Appendix

Since the PDF format will only allow .mp3 files to be embedded in the docu-

ment, the audio files must be accessed externally. A Google Drive folder has

been set up with the following files associated to their corresponding num-

bers, 1 to 11. Here is the link to access the Audio Appendix Drive folder:

https://drive.google.com/folderview?id=0B0kTcNNQp9hCeFBsUk8zckZCSms&usp=sharing.

The permissions are set so that anyone with the link should have access.

Email kfisher2@trinity.edu if you have trouble accessing these files.
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5.1.1 Jazz.wav flip least significant bit

5.1.2 Jazz.wav flip most significant bit

5.1.3 Jazz.wav shift bits left by 2

5.1.4 Jazz.wav shift bits right by 2

5.1.5 Jazz.wav add offset of 2000

5.1.6 Repetitive.wav combine adjacent 3

5.1.7 Repetitive.wav

5.1.8 Chopin.wav

5.1.9 HighVocals.wav

5.1.10 Jazz.wav

5.1.11 Ambience.wav
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