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Dimer-dimer collisions at finite energies in two-component Fermi gases

J. P. D’Incao, Seth T. Rittenhouse, N. P. Mehta,>l< and Chris H. Greene
Department of Physics and JILA, University of Colorado, Boulder, Colorado 80309-0440, USA
(Received 18 June 2008; published 11 March 2009)

We discuss a major theoretical generalization of existing techniques for handling the three-body problem
that accurately describes the interactions among four fermionic atoms. Application to a two-component Fermi
gas accurately determines dimer-dimer scattering parameters at finite energies and can give deeper insight into
the corresponding many-body phenomena. To account for finite temperature eftects, we calculate the energy-
dependent complex dimer-dimer scattering length, which includes contributions from elastic and inelastic
collisions. Our results indicate that strong finite-energy effects and dimer dissociation are crucial for under-
standing the physics in the strongly interacting regime for typical experimental conditions. While our results
for dimer-dimer relaxation are consistent with experiment, they confirm only partially a previously published

theoretical result.

DOI: 10.1103/PhysRevA.79.030501

The physics of strongly interacting fermionic systems is
of fundamental importance in many areas of physics encom-
passing condensed matter physics, nuclear physics, particle
physics, and astrophysics. The last few years have seen ex-
tensive theoretical and experimental efforts devoted to the
field of ultracold atomic Fermi gases. The ability to control
interatomic interactions through magnetically tunable
Feshbach resonances has opened up broad vistas of experi-
mentally accessible phenomena, providing a quantum
playground for studying the strongly interacting regime.
For instance, near a Feshbach resonance between two dis-
similar fermions, the s-wave scattering length a can assume
positive and negative values, allowing for the systematic ex-
ploration of Bose-Einstein condensation (BEC) and the
Bardeen-Cooper-Schrieffer (BCS) crossover regime, in
which bosonic (a>0) and fermionic (a<<0) types of super-
fluidity connect smoothly [1,2]. In this broad context, few-
body correlations [3,4] play an important role in describing
the dynamics of such systems. On the BEC side of the reso-
nance (a>>0), dissimilar fermions pair up into weakly bound
bosonic dimers, and the zero (collision) energy dimer-dimer
scattering length, ag(0), determines various experimental
observables such as the molecular gas collective modes, the
internal energy, and even the macroscopic spatial extent of
the confined cloud [1,2]. Although a better description of the
many-body behavior has emerged through the inclusion of
few-body correlations, most of the current understanding of
crossover physics relies on zero-energy theories, and very
little is known about finite-energy effects in this regime (see
Ref. [5] and references therein).

In this Rapid Communication we demonstrate important
finite-energy effects which can potentially impact the physics
of a finite temperature ultracold Fermi gas in the crossover
regime. Our results show deviations from zero-energy dimer-
dimer collisions and indicate that, at experimentally relevant
temperatures and scattering lengths, molecular dissociation
might play an important role. The crossover regime can be
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viewed as a long-lived atom-molecule mixture, where dimers
are dynamically converted to atoms and vice versa. In order
to account for finite temperature effects, we calculate the
energy-dependent complex dimer-dimer scattering length,
agq(Esop), where E is the collision energy. The real and
imaginary parts of ayq correspond, respectively, to contribu-
tions from elastic and inelastic (dissociative) collisions [6],
both of which should be considered to properly model the
Fermi gas at realistic temperatures. In the zero-energy limit
we reproduce the well-known prediction ag44q(0)=0.6a [4].
However, when the dimer binding energy, E,=#%/(2u,,a°)
(where uy, is the two-body reduced mass) is comparable to
the gas temperature 7, finite-energy effects and molecular
dissociation become important, defining a critical scattering
length a.=#A/(2uyksT)?, where kg is Boltzmann’s con-
stant, beyond which an atom-molecule mixture should pre-
vail.

We also study dimer-dimer relaxation in which two
weakly bound dimers collide and make an inelastic transition
to a lower-energy state. In such a process, the kinetic energy
released is enough for the collision partners to escape from
typical traps. Petrov er al. [4] predicted that, near a Feshbach
resonance, dimer-dimer relaxation is suppressed as a=>, ex-
plaining the long lifetimes observed in several experiments
[2,7]. Here we also verify this suppression, although with an
a dependence that is not described as a simple power-law
scaling as originally predicted [4]. While the a=>> scaling
law has already been tested (Regal et al. [7] found a=23+04
and Bourdel et al. [2] found a2°*%8), our calculations dem-
onstrate that finite range corrections can explain the apparent
experimental scaling law behavior, despite deviations from
that power law for larger a.

We solve the four-body Schrédinger equation in the hy-
perspherical adiabatic representation, which offers a simple
yet quantitative picture. A finite range model is assumed for
the interatomic interaction, and a physically motivated varia-
tional basis set is adopted to solve hyperangular equations
[8]. While several hyperangular parameterizations exist, we
find that the best choice is the “democratic” hyperspherical
coordinates [9] in which all possible fragmentation channels
are treated on an equal footing, which describes elastic and
inelastic processes in a unified picture.

©2009 The American Physical Society
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In the adiabatic hyperspherical representation, the collec-
tive motion of the four fermions is described in terms of the
hyper-radius R, characterizing the overall size of the system.
The interparticle relative motion is described by the hyper-
angles O={0,,6,,¢,,d,,d;} and the set of Euler angles
{a, B, y} specifying the orientation of the body-fixed frame
[9]. 6, and 6, parametrize the moments of inertia while ¢,
¢, and ¢; parametrize internal configurations [9]. Integrat-
ing out the hyperangular degrees of freedom, the
Schrodinger equation reduces to a system of coupled ordi-
nary differential equations given in atomic units (used
throughout this Rapid Communication) by

1 d°
[ 2 AR E]Fy(m +§ W, (R)F,(R)=0, (1)
where uw=m/4"3 is the four-body reduced mass (m being the
atomic mass), E is the total energy, F, is the hyper-radial
wave function, and v represents all quantum numbers needed
to label each channel. Scattering observables can then be
extracted by solving Eq. (1), where the nonadiabatic cou-
plings W .., drive inelastic transitions between channels de-
scribed by the effective potentials W,,,.

In the hyperspherical representation, the major reduction
to Eq. (1) is accomplished by finding eigenfunctions of the
(fixed R) adiabatic Hamiltonian

A2(Q)+ 12

H,4(R,Q) = R +V(R,Q). 2)

In the above equation, A is the grand angular momentum

operator [9] and V includes all two-body interactions [10].
For simplicity, we neglect the interaction between identical
fermions and assume the one between dissimilar fermions to
be v(r)=D sech?(r/r,), where r is the interatomic distance
and D is tuned to produce the desired a. We choose the
atomic mass m and effective range r,=181 a.u. [11] to be

those of “’K. The eigenvalues and eigenfunctions of ﬁad,
namely, the hyperspherical potentials U,(R) and channel
functions @ (R;()), determine the effective potentials and
nonadiabatic couplings in Eq. (1): W,,=U,-Q,,/2u and
W, =—[P,,dldR+Q,,]1/2u, where P,,=(®D,|d/dR|D,)
and Q,, =(® |d*/dR?|®,/). We find ®,(R;Q) variationally
by expanding in exact eigenfunctions of Eq. (2) at large and
small R [8]. At ultracold energies the convergence of the
scattering observables with respect to the number of basis
functions is surprisingly fast [8].

However, including higher-order correlations that de-
scribe dimer-atom-atom and four free atom configurations is
crucial for accurately describing scattering processes at any
collision energy. We find that for R=<a the strongest contri-
bution to the probability density of the dimer-dimer channel
function comes from dimer-atom-atom-like configurations.
Figure 1 shows a graphical representation of this channel
function in terms of the internal configuration angles ¢, ¢,,
and ¢;. The four surfaces explicitly illustrate the fourfold
symmetry (S, ® S,) of the fermionic problem. The long mid-
lines of the surfaces correspond to the interaction valleys
where two dissimilar fermions are in close proximity while
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FIG. 1. (Color online) Analysis of the probability density
integrated over the hyperangles #, and 6, at R=04la is
shown. (a) An isosurface of the probability density at
|D(R;Q)P=0.1|D(R; Q)|%,, for the dimer-dimer channel is shown.
The darker (lighter) colors correspond to a more (less) linear con-
figuration for the four-particle system. ®(x) is the unit-step func-
tion. (b)—(e) show density plots for fixed values of ¢;. The darker
regions represent higher probabilities for which planar configura-
tions are shown to illustrate the most probable four-body geometry

at selected points.

the wide parts loosely represent the larger phase space ex-
plored by dimer-atom-atom-like configurations.

Figure 2(a) shows the hyperspherical potentials for
a=125r, showing the full energy landscape with the four-
body thresholds for dimer-dimer (FF'+FF'), dimer-atom-
atom (FF'+F+F’), and four atom (F+F'+F+F') colli-
sions. Notice that the four-body potential associated with
dimer-dimer collisions is repulsive for R <a, indicating that
zero-energy dimer-dimer elastic scattering must be qualita-
tively similar to scattering by a hard sphere of radius a, i.e.,
agq(0) ca. Although a clear and qualitative picture emerges
from the four-body potentials alone, we in practice extract
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FIG. 2. (Color online) (a) Several four-fermion hyperspherical
potentials attached to all relevant breakup thresholds are shown. (b)
The energy-dependent elastic (red solid line) and inelastic (green
dashed line) parts of agq [Eq. (3)] are shown. For energies E<E),
we find a}j;=0.605(5)a [4], while for E,, =~ E, finite-energy correc-
tions strongly affect ayq. Solid black line: a4y using the effective
range expansion [12].
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FIG. 3. (Color online) (a) The scattering length dependence of ajj; and aéld (inset) at fixed collision energies is shown. At any nonzero
collision energy ayq deviates from the zero-energy prediction (black dashed line) as a— o0 and strong contributions from molecular disso-

ciation, agyy, occur. (b) The dimer-dimer relaxation rate, Vfg,

is shown versus a. The solid line is the total V‘rid1 and the dashed and dot-dashed

€

lines are contributions from different decay pathways (see text). For intermediate a, we reproduce both experimental data [7] (filled circles)

and the a=2%

green dashed, blue dot-dashed, and orange lines, respectively).

scattering observables from coupled-channel solutions to Eq.
(). We define the energy-dependent dimer-dimer scattering
length, ayq(E.o), in terms of the complex phase shift ob-
tained from the corresponding S-matrix element [Syq4q
=exp(2id49)]

tan 6dd

add(Ecol) == = a:ld(Ecol) + iafld(Ecol) . (3)

dd
Here, k§d=2mEml, E.,=E+2E, is the collision energy, and
aly and agd<0 are the real and imaginary parts of ayq, rep-
resenting elastic and inelastic contributions [6].

Figure 2(b) shows @y, and a), for a=125r,. For energies
E.<E, we find that a44(0)=0.605(5)a in agreement with
Refs. [4,12], while for E.,<E,, although molecular disso-
ciation is still not allowed, i.e., af]d=0, we obtain strong cor-
rections to the zero-energy result. At these energies, an ef-
fective range expansion, ag)(Ey)=ag (0)—%rddk§d where
rqq=0.13a [12], is accurate over a small range but quickly
fails to reproduce our results [see black solid line in Fig.
2(b)]. For E,, = E,, the channels for molecular dissociation
become open, leading to strong inelastic contributions to
aga(Eey), as parametrized by ajy. Our results indicate that
both ajj, and aj, are universal functions of energy and scat-
tering length, i.e., insensitive to the details of the short-range
physics, which should extend up to E.,;<<1/ mré in the ab-
sence of deeply bound states. Due to the small number of
basis functions used in these calculations, our results for
E,<E. <1/(mrj) are not fully converged, but we expect
their qualitative behavior, i.e., the sharp decease in ayq(E,),
to persist.

Figure 3(a) demonstrates that when approaching the Fes-
hbach resonance (a— ) at any finite collision energy, mo-
lecular dissociation becomes increasingly more important
and aj, substantially deviates from the zero-energy predic-
tions [black dashed line and inset in Fig. 3(a)]. As
a—o, E,«1/a* becomes extremely small and such finite-

scaling law [4] while deviating from that for larger a. Inset: we show T), as a function of R for a=100, 80, 65, and 50r (red,

energy effects [see Fig. 2(b)] are relevant even at ultracold
energies. Therefore, the molecular binding energy E,, or
equivalently a,=1/v2u,,T, defines the range beyond which
(i.e., a>, ) deviations from the zero-energy predictions can
be observed. Perhaps more importantly, it specifies a regime
beyond which molecular dissociation can lead to a long-lived
atom-molecule mixture [13,14], where dimers are
continuously converted to atoms and vice versa, i.e.,
FF'+FF' < FF'+F+F'. Further, this indicates that the un-
derlying physics of the strongly interacting regime may fun-
damentally depend on temperature. Values for a. at 100 nK
are 7000 a.u. for *°K and 17 000 a.u. for °Li, and therefore
the finite-energy effects above can become experimentally
relevant [2].

We also study vibrational relaxation due to dimer-dimer
collisions. We verify the suppression of the relaxation rate as
a—, however, with a different a dependence than a=>>°
predicted in Ref. [4]. In Ref. [4] it was assumed that the main
decay pathway for relaxations is a purely three-body process
and requires only three atoms to be enclosed at short dis-
tances. Therefore, it neglects the effects of the interaction
with the fourth atom. Here, however, we analyze such effects
and find that it strongly influences the suppression of relax-
ation. In our calculations we express the inelastic transitions
probability 7,(a,R) in terms of the probability of having
three atoms at short distances as a function of the distance
~R of the fourth atom from the collision center [15]. We
calculate 7, from our fully coupled-channel solutions and
effective potentials [see Figs. 1 and 2(a)], and our results are
shown in the inset of Fig. 3(b).

In our model the relaxation rate is simply proportional to
the transition probability 7),(a,R). It is interesting note that
our formulation allows for the analysis of different decay
pathways. For instance, at short distances, R=~ry, T, de-
scribes inelastic transitions in which all four atoms are in-
volved in the collision process. At large distances, R/a>1,
T,, describes the decay pathway where only three atoms par-
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ticipate in the collision, akin to the process studied in Ref.
[4]. We note, however, that for values of R up to R=5a the
scaling law for relaxation depends strongly on R/a and
greatly deviates from the a2 scaling. In order to take into
account inelastic processes for all values of R we define an
effective transition probability by integrating T),(a,R) over R
[15]. Our results for the relaxation rate, Vi, are shown in
Fig. 3(b) where the red solid line is obtained by integrating
T, from R=2r, up to 10a [16], giving an apparent scaling
law of a=329005 The dot-dashed and dashed lines are ob-
tained from integrating 7, from R=2r, to 5ry and from
R=5r, to 10a, which yields scaling laws of a=*%2 and
a—3202005  respectively, “separating” the contributions from
the decay pathways in which four and three atoms participate
in the collision process. The amplitudes for each of these
contributions, however, are disconnected as they depend on
the details of the four- and three-body short-range physics. In
contrast, the amplitudes for the a=>** and a2 processes are
governed by the same three-body physics. As a result, the
fact that we do not observe the a=>>° scaling implies that it is
not important for the range of a used here. The amplitude for
the process which leads to the a=>>° scaling is exponentially
suppressed owing to the unfavorable overlap of the dimers’
wave function [see inset of Fig. 3(b)]. In fact, for our largest
values of a, it is already apparent that in the very large a
limit the rate deviates from a=32°, however, to a behavior
different than =23 [15].

Figure 3(b) rescales our results for V%

o1 by an overall con-
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stant chosen to fit the experimental data for “°K at a tempera-
ture of 70 nK (Regal er al. [7]). We note, however, that
between a=1000 and 3000 a.u. [17], our results agree with
both the experimental data and the a=>> scaling law, ap-
proaching our predicted scaling law a~>?° only for larger
values of a. This change in behavior of VY originates in the
finite range of our model, which represents physics beyond
the zero-range model of Ref. [4] where the a >3 scaling
applies for all a.

In summary, we have calculated the energy-dependent
complex dimer-dimer scattering length, aq44(E,;), by solving
the four-body Schrodinger equation in the adiabatic hyper-
spherical representation. Our results demonstrate that for ex-
perimentally relevant temperatures and scattering lengths the
elastic and inelastic contributions of ay4q are equally impor-
tant. We show that molecular dissociation plays an important
role and suggest that the many-body behavior in the strongly
interacting regime might be significantly altered at finite
temperature. Our results also demonstrate a stronger suppres-
sion for dimer-dimer relaxation, compared to that obtained in
Ref. [4], while remaining consistent with experimental data.

The authors would like to acknowledge D. S. Jin’s group
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S. Petrov for fruitful discussions, and the W. M. Keck Foun-
dation for providing computational resources. This work was
supported by the National Science Foundation.
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