

Student Agreement

I grant Trinity University (“Institution”), my academic department (“Department”), and the Texas Digital Library

("TDL") the non-exclusive rights to copy, display, perform, distribute and publish the content I submit to this
repository (hereafter called "Work") and to make the Work available in any format in perpetuity as part of a TDL,
Institution or Department repository communication or distribution effort.

I understand that once the Work is submitted, a bibliographic citation to the Work can remain visible in perpetuity,
even if the Work is updated or removed.

I understand that the Work's copyright owner(s) will continue to own copyright outside these non-exclusive granted
rights.

I warrant that:

 1) I am the copyright owner of the Work, or
 2) I am one of the copyright owners and have permission from the other owners to submit the Work, or
 3) My Institution or Department is the copyright owner and I have permission to submit the Work, or
 4) Another party is the copyright owner and I have permission to submit the Work.

Based on this, I further warrant to my knowledge:

 1) The Work does not infringe any copyright, patent, or trade secrets of any third party,
 2) The Work does not contain any libelous matter, nor invade the privacy of any person or third party, and
 3) That no right in the Work has been sold, mortgaged, or otherwise disposed of, and is free from all claims.

I agree to hold TDL, Institution, Department, and their agents harmless for any liability arising from any breach of
the above warranties or any claim of intellectual property infringement arising from the exercise of these non-
exclusive granted rights.”

I choose the following option for sharing my thesis (required):

[x] Open Access (full-text discoverable via search engines)
[] Restricted to campus viewing only (allow access only on the Trinity University campus via
digitalcommons.trinity.edu)

I choose to append the following Creative Commons license (optional):

Multithreaded Collision Detection

with Akka’s Actor Library in Scala

Bryan Schrock

Contents

1 Introduction 1

1.1 Two Dimensional Collision Detection . 2

1.2 Concerns With the Java Virtual Machine 2

2 Related Work 3

2.1 Single threaded two dimensional collision detection 3

2.2 Hard-Body Simulations vs. Soft-Body Simulations 4

2.3 Parallelization of the single threaded approach 5

2.4 The Actor Model . 5

2.5 Limitations of the two models . 7

2.6 Messages . 8

2.7 Implementing the actor model . 8

2.8 Non-actor parallel model . 9

3 The Algorithm Design 10

3.1 The Single Thread Model . 10

3.2 Detailed Description of the Pseudocode . 10

3.3 Walkthrough of a simulation . 13

3.4 The Six-Linked Threaded Priority Bucket Queue 14

3.5 Global Class . 16

3.6 The Bounced Particle Problem . 18

3.7 Multithreading the Single Thread Algorithm 19

3.8 The Bounced Particle Problem in the Non-Actor Model 19

3.9 The Actor Model . 21

3.10 Challenges in the Actor Model . 24

4 Results 25

4.1 Single Thread Model . 26

4.2 Multithread, Non-Actor Model . 26

4.3 Actor Model . 27

4.4 Comparisons . 28

4.5 Pushing the Parallel . 31

5 Conclusion 34

5.1 Further Projects . 35

A Outdated Figure 37

List of Tables

4.1 The table of results for the single thread algorithm. 26

4.2 The table of results for the multi thread, non actor algorithm. 27

4.3 The table of results for the actor model algorithm. 29

4.4 The table of results for the large tests on the parallel models. 32

List of Figures

2.1 A simple diagram of an actor system . 6

2.2 A simple diagram of our implementation of the actor model 8

3.1 Five snapshots during the processing phase of a simulation. 13

3.2 The six linked threaded bucket queue. 15

3.3 An example of the bounced particle problem. 18

3.4 Initial run in the non actor multithreaded model. 20

3.5 Demonstrates which neighbors belong to which group. 22

4.1 The results of the single threaded control algorithm. 27

4.2 The results of the multi threaded, non actor algorithm. 28

4.3 The results of the actor model algorithm. 29

4.4 The results of all three algorithms overlayed. 30

4.5 Cells that are local minima divided by the number of cells per pass number. 30

4.6 The results of the two multi threaded control algorithms. 31

4.7 The results of the two multi threaded control algorithms. 33

A.1 The old results of the two multi threaded control algorithms. 37

Chapter 1

Introduction

Reactive programming has grown quickly from a concept into an idealized form of writing

multi-threaded code. It has huge implications in web design, where much of the computation

is already reactive. In fact, any graphical user interface should be a reactive program.

A popular tool for achieving reactive programming is actors. Actors and actor systems

can vary by implementation but the idea remains as a small reactive unit of code. The pop-

ular full-stack Scala based framework Play uses Akka actors to implement their framework.

Actors have been rising in popularity, and the Akka Actor library is praised as an efficient

way to build a reactive multithreaded system, and effective for solving inherently reactive

problems.

This research aimed to determine the efficiency of pure actor computing compared to

more conventional methods of parallelization in a problem that is not reactive in nature.

I strive to build a scalable two dimensional collision detection system using actors, while

adhering to Akka programming guidelines as much as possible. In this thesis, I will discuss

the prior studies on which this is built, the design steps taken for the actor model as well

as control models, and the results I have found.

1

2

1.1 Two Dimensional Collision Detection

The biggest reason for the selection of this algorithm for testing is simply the precedent

set by Dr. Mark Lewis in previous research. His familiarity with the algorithm was hugely

beneficial and his ideas for methods of multi-threading the algorithm spurred the models

that were produced in the process of this research.

1.2 Concerns With the Java Virtual Machine

I chose to implement a reactive actor system using Scala. It is a familiar language to me,

and has higher-order functionality. The Akka Actor library is a well-documented, easy to

implement extension. All of that being said, there are some immediate concerns with this

choice that I will address here before continuing.

The obvious concern is that the Java virtual machine (JVM) is not the most efficient

choice. Normally a simulation such as this would be written in C++ or a similar highly

efficient language. Scala runs on the JVM which can and will have effects on both efficiency

and memory usage. I pose that these issues are solved simply because all of my code runs on

the JVM, thusly comparing between iterations of algorithms will be meaningful. Whether

the JVM directly affect the efficiency of actors but not that of the other algorithms will be

left for a future project.

Chapter 2

Related Work

In this chapter, we will give a brief introduction to the work of Dr. Mark Lewis, among

others, on which this research is based. We will introduce the algorithm that spurred all

three algorithms used here, as well as the ideas and coding practices used in the actor model.

2.1 Single threaded two dimensional collision detection

To introduce the slightly modified algorithms eventually implemented, it is useful to begin

by looking at a single threaded approach. This approach can be summarized with the

following pseudocode [2]:

1) Build spatial data structure.

2) Find potential collisions based on initial conditions and

add them to a priority queue.

3) For(predefined number of timesteps)

a) While there are potential collisions on the priority

queue.

3

4

i) Remove the next collision from the priority queue.

ii) Process that collision.

iii) Remove all future potential collisions involving

either of the colliding particles from the priority

queue.

iv) Find new potential collisions involving those

particles based on their new trajectories. Add

those happening in the current time step to the

priority queue.

The term “potential collision” is used to describe a class containing two particles that

will collide given their current attributes, and a time signifying when that collision might

occur. The uncertainty of the collision is due to the fact that a potential collision may

be altered by previously occurring collisions and the changing conditions that accompany

them. This single thread approach is used for the control tests.

2.2 Hard-Body Simulations vs. Soft-Body Simulations

There is an important difference in simulating collisions between rigid spheres, as was done

in this thesis, and simulating collisions between more deformable things, referred to as

soft-body objects. When rigid bodies are used, many of the techniques used for collision

detection are heavily based on data structures that can be more or less pre-computed before

the simulation starts [5]. Soft-body physics, on the other hand, is frequently used in games,

and requires the ability to simulate in real time. Often, the requirement for accuracy is

far less important in soft-body simulation, as long as it appears accurate to an observer.

This thesis used hard-body collisions. These require accuracy, because their intended use

5

is scientific simulations.

2.3 Parallelization of the single threaded approach

Parallelizing the algorithm adds a little complexity to the problem. According the the Akka

guidelines, shared memory like the priority queue described in step 2 of the pseudocode is

not allowed. The priority queue being shared memory could be solved by either using a

thread safe queue or smartly applying blocking. The processing loop itself poses a more

difficult problem. It is important to realize that while the order in which collisions are

processed is very important, collisions happening far enough away from each other can be

processed simultaneously. What constitutes “far enough away” depends on a few things.

The grid based spatial data structure is created based on the particle with the most velocity.

Taking into account the distance that this particle can travel, we can create a grid where we

are guaranteed no particle will cross more than one grid boundary in one time step. After

constructing this grid, we know that we can process any two grid cells that are not neighbors

simultaneously. What we do with this information varies between the two multithreaded

algorithms.

2.4 The Actor Model

In Derek Wyatt’s Akka Concurrency [6], the book we used as a guideline in following what we

will call “The Actor Model,” two methods of achieving concurrency are introduced. The first

is shared-state concurrency, the “default” or “normal” way to program multithreaded code

in Java, for example. Other authors call the shared-state model the async-finish model[1]-

either way, this model describes when a parent thread spawns child threads and uses blocking

to solve race conditions. The other method of achieving concurrency is message passing,

6

and that is the model on which the actor model is based.

Akka was not the first actor design. The idea of reactive concurrent programming has

been around for a long time. Scala had an actor library before Akka was released, and

Martin Odersky describes it in a detailed paper [4].

Figure 2.1: A simple diagram of an actor system

With actors, many of the issues that come up in parallel programming are handled

simply by following the guidelines setup in the actor system. An actor is an object that

has the capability to process incoming messages, with a well-defined lifecycle and rules

regarding its actions in different states. Message passing with actors is accomplished by

sending messages between actors and listing reactions to those messages. In figure 2.1,

we see the main actor (The actor system) which knows about all of its child actors. The

system will send messages during runtime to the children and they will react according to a

predefined set of rules. The actors can also send messages to each other as long as they know

about each other. The other big consideration to think about is that Akka recommends a

minimum amount of mutable data, in order to minimize race conditions in actor processing.

In fact, the messages passed should contain no mutable data whatsoever. The actor’s local

7

state is entirely encapsulated within the actor itself, and cannot be accessed by outside

objects. Due to this, and to the ability to communicate between actors asynchronously,

actors are inherently concurrent and are a great format to accomplish multithreaded code

[1]. We will discuss our specific implementation of the actor model in a later section.

2.5 Limitations of the two models

The async-finish model is well suited to deterministic problems where the “finish” of the

children threads generally occurs in a similar time frame. However, many problems are not

this way. The quicksort algorithm, for example, is widely regarded as a simple and effective

algorithm to parallelize; With the async-finish model, there is not a way to compute partial

results of the sort on the occasion that one side of a split set is available early. We must

wait for both sides to become available and process them then [1]. In an actor system, we

can merge two sides of a quicksort as soon as they are available to merge, adding some

efficiency.

The actor model’s main limitations stem from its inability to simulate non-blocking

synchronous replies. It cannot guarantee the arrival time or order of messages and thus

cannot guarantee the order of responses. Similarly, achieving “global consensus” in a group

of actors can lead to issues [1]. The typical approach to solving this problem is to use a

coordinator actor to process the order of messages in the coordinated actors. This coordi-

nator actor can sometimes become a bottleneck. This coordinator/coordinated approach is

how I solve this problem in this research.

8

2.6 Messages

Messages can be any object. We decided to use Scala’s Case Class functionality. The list of

possible messages is simply a list of case classes with specified names and specified contained

information. Each actor has a reaction method which is filled with a case switch on the

message name, calling functions with the parameters contained inside the case classes. The

main actor and the child actors react differently to different messages.

2.7 Implementing the actor model

Implementing the briefly discussed parallelized algorithm for two dimensional collision de-

tection using the actor model takes a little extra thought. As shown, the algorithm even in

its single thread form, requires some spatial data structure. For the actor model simulation,

we use a grid to fill this need along with the need for an ActorSystem. The grid is told to

begin its process and main thread now is waiting for an answer from grid.

Figure 2.2: A simple diagram of our implementation of the actor model

Upon starting, the grid creates an array of actors, in our implementation called cells,

the size of which corresponds to the number of rows and columns in the grid (something

9

which is generated previously and will be discussed in a later chapter). After generating

the array of cells, the grid provides each one with a collection of its neighbors. The cells

are also passed a message with a collection of particles that they store for later processing

use. This list cannot be used by other cells directly.

2.8 Non-actor parallel model

In order to get a reference for the efficiency of Actors, we implemented a multithreaded

algorithm that does not use actors but instead uses the previously mentioned shared state

method. There are many similarities between the two. Both models have a main grid

based data structure containing cells which do most of the actual work. However, in order

to handle race conditions, we made some adjustments to the order of processing. The

algorithm is again heavily based on Dr. Lewis’ previous work with both Berna Massingill

[3] and with Zachary Langbert [2]. The specific changes we made will be discussed in more

detail in a later chapter.

Chapter 3

The Algorithm Design

3.1 The Single Thread Model

The single thread model was discussed primarily in section 2.1, with a set of pseudocode

largely taken from Zachary Langbert. The algorithm I used is almost exactly the same as

the one discussed there. It will be used as a control in the experiments to be compared to

the two multithreaded models.

3.2 Detailed Description of the Pseudocode

For reference, here is the pseudocode again.

1) Build spatial data structure.

2) Find potential collisions based on initial conditions and

add them to a priority queue.

3) For(predefined number of timesteps)

a) While there are potential collisions on the priority

10

11

queue.

i) Remove the next collision from the priority queue.

ii) Process that collision.

iii) Remove all future potential collisions involving

either of the colliding particles from the priority

queue.

iv) Find new potential collisions involving those

particles based on their new trajectories. Add

those happening in the current time step to the

priority queue.

1. In the single thread model, as well as the other models, I use a grid for the spatial

data structure. It works well for two dimensional collisions and accomplishes everything it

needs to for this project. In each model, the grid acts as a wrapper for a smaller unit of

computation. In the single thread, it is simply a two-dimensional array of lists of particles,

but in the other two models there is a cell class that handles much of the internal computa-

tions needed during processing. The number of rows and columns in the grid is determined

based on the maximum velocity of all particles, combined with the user-defined number of

time steps in the simulation. Given these two values, we can know the size the cells have to

be to guarantee a particle will not pass more than one grid boundary in one time-step. This

is a vital guarantee to have, because the simulations only look at neighboring cells when

searching for collisions. If a particle travels across two cell boundaries in one time step, it

will be in uncharted territory and any collisions it should have would not be found.

2. The conditions for the creation of a potential collision are as follows. First, a time of

collision is calculated based on the position and velocity of each of the particles. The grid

12

is important here- only cells of the grid that are neighbors of each other are considered for

potentials. The entire simulation is run in steps, so if a collision is found and will occur

during this time step, it is added to a list of potential collisions.

3. In a single, shared-memory model, this step is not too complicated. The potentials

are stored in a collection and sorted as they are found, so popping the first element of the

collection finds the collision that will happen the soonest. The particles are moved in space

to the exact point of collision, and new velocities are calculated. The cell in which the

collision occurs and its neighbors are told about the new cells so that new potentials can

be found if necessary. Then, the next collision is popped and processed in an identical way.

This is repeated until there are no more potentials, and then a new time step is started.

The exact implementations of this step in the pseudocode will be described in their relevant

sections.

In a well-implemented and tuned version of this code, collision detection hopefully be-

comes an O(n) algorithm, a huge improvement on the quadratic problem that this would

be otherwise.

13

3.3 Walkthrough of a simulation

Figure 3.1: Five snapshots during the processing phase of a simulation.

14

Examine figure 3.1. The first diagram (the top left) is the input set of particles before

any collisions occur. The white circles are particles, with red lines showing their to-scale

velocities. The two particles that are colored green are the particles involved in the next

collision. This input repeats the same pattern many times, but notice that the top left set

of particles is slightly different, with three particles in a line. We can follow the collisions

as they occur, in the next two diagrams, to the right and then below the first, we see the

three particles in the top left of the input bouncing off each other. For purposes of brevity,

the next diagram is a snapshot many collisions later. Notice that, due to the nature of the

algorithm, particles are only moved when a collision happens. This reflects the algorithm,

which only moves particles if they are involved in a collision or when going to a new time

step.

The final diagram is the output of the program after all its time steps are run. While

there may still be collisions in the set of particles, the number of time steps constrains the

run time of the simulation to here.

3.4 The Six-Linked Threaded Priority Bucket Queue

In step 2, the pseudocode mentions a priority queue. For the single thread model in this

research I wrote a priority queue specifically for collisions which did a lot of work for me.

This priority queue is visualized in figure 3.2. The class contains two bucketed arrays: one

based on particle number and one based on time of collision. Each of these arrays simply

contains pointers to the first node and it’s doubly linked list.

The nodes (visualized in the Figure as the three squares labeled a b and c) each contain

6 pointers:

1. Time Pointers (Previous and Next): Previous and next pointers to nodes based on

15

Linked Threaded bucket queue.png

Figure 3.2: The six linked threaded bucket queue.

time (visualized in the figure as the blue arrows coming out from the bottom and

top of the nodes). Each time bucket has a range of times that a collision must

be within to be contained in the bucket, ranging from 0 to (dT/n) where n is the

number of particles, and dt is delta time, the amount of time in one time step for the

current simulation. This allows for priority part of the priority queue, having a sorted

collection of collisions by time.

2. Particle Pointers (One, Two, Previous, Next): The orange and black arrows in the

figure show the particle pointers, references to the nodes that involve the particles

that match this node. Examine node A in the figure. Its particles are id numbers 0

and 2. We can see the black arrow on the left pointing to bucket 0, and the orange

16

arrow (representing particle 2) pointing on the left to bucket 2, and on the right to

node C. Looking at C, we see it also has particle ID 2 in its collision.

The particle pointers are actually circularly linked. This means that if a path followed a

nodes one next pointer repeatedly, it would not end but instead wrap back to the beginning.

In the figure, this means that As two next is C, but not pictured is that C s two next is in

fact A. If a node is the only node involving a particle as A is with particle 0, its particle

pointers involving that particle will point at itself.

The reason the particle pointers exist is to enable the fast deletion of all collisions

involving a certain particle. When a particle is processed, its trajectory is changed, and

potential collisions that are held in the priority queue need to be validated before proceeding.

This is accomplished simply by deleting all potential collisions involving the particles, and

calculating new potentials based on their new trajectories.

3.5 Global Class

In order to properly test the efficiency of the algorithms, code is shared where possible.

Shared code is managed by the Globals class. The class contains the following important

methods:

• double findCollision(Particle, Particle)

Returns the time that two particles will collide using vector math.

• goToNewTimeStep

Changes the internal values necessary for keeping track of time steps.

• findNewVelocities

17

Uses vector calculations to give back the new velocities of two particles bounced off

each other.

• translateCoordToCell

Gives back the indexes of a cell based on pre-calculated information surrounding the

list of particles, and given coordinates.

It also has the following attributes:

• allParticles

The original array of particles that everything else references. Passed in to the con-

structor of Globals. Upon creation, Globals figures out many of the constraints for

the simulation based on this list. For example, the side lengths of the cells is based

on the smallest and largest points in the list, combined with density information.

• dT

Delta time. the length of each time step. Important for ensuring the property where

no particle crosses two cell boundaries in one step

• T

Time. Equal to the number of time steps so far times dT.

• currentTimeStep

How many time steps the simulation has run.

• numTimeSteps

User defined, the number of time steps that the simulation will go through.

18

3.6 The Bounced Particle Problem

Figure 3.3: An example of the bounced particle problem.

When considering options in how to multithread the collision detection algorithm, there

is a key problem to consider. If the algorithm was simply run in parallel with each cell

having its own queue (solving shared memory problems at first), another, more hidden race

condition will happen:

If two cells share a neighbor, and both cells currenly contain local minima, it is possible

for race conditions to appear. Consider figure 3.3. The collision between A, a particle with

very high velocity, and B will cause a chain reaction in B hitting C. Because D is moving so

slowly, the collision with B and C should be processed before the collision between D and

E. This specific issue could be handled relatively simply, but it shows the real source of the

19

problem: by running two cells with a shared neighbor simultaneously, the two might try to

add collisions to the shared neighbor or otherwise access the memory, leading to a shared

memory scenario. A good way to handle the issue at hand is to avoid simultaneously

processing cells that share neighbors. If cells do not share a neighbor, each can process

secure in the knowledge that they are the local minimum and that nothing will modify

their neighbors without them knowing.

3.7 Multithreading the Single Thread Algorithm

The single thread collision detection algorithm is relatively simple to parallelize. It is

possible to parallelize the discovery of potential collisions, as long as the priority queue

is thread safe [2]. I used Java’s PriorityBlockingQueue, which is thread safe by default.

When this queue is asked to enqueue or dequeue an element, it makes sure nothing else is

accessing it and if it is not currently safe, it queues the action and performs actions in order.

The grid in this model was largely unchanged. Beginning the simulation, finding potential

collisions is trivial. The calculations themselves do not depend on each other at all and can

be run entirely simultaneously. Scala’s parallel for loop handles this nicely. The part that

does contain inter dependencies is adding the found potentials to the cells. As discussed

above, this potential problem is thoroughly solved with the PriorityBlockingQueue. After

calculating the potentials, we move to the processing phase. It is here that my algorithm

strays the most from those discussed in the previous chapter.

3.8 The Bounced Particle Problem in the Non-Actor Model

As discussed in section 3.6, the best way to handle the bounced particle problem is to simply

avoid simultaneously processing two cells with a shared neighbor. I achieve this in the non

20

actor multithreaded model with the following steps. After finding potentials, the processing

stage uses a parallel loop to begin the processing of every third row. Each row is processed

Figure 3.4: Initial run in the non actor multithreaded model.

left to right in one thread. Because a row is processed in a single thread, there is no chance

of race conditions in that local computation. The lack of race conditions in the higher scope

is guaranteed by skipping to every third row. Consider a four by four grid containing some

particles and their various potentials. The grid will begin the processing stage by asking

rows 0 and 3 to begin. If the cell located at (0,0) is the local minimum, we know that no

collisions happen in (0,1) before the first collision in (0,0). Simultaneously, row 3 has begun

21

and if that is reported as the local minimum, then we know that no collisions happen in

(0,2) before the collision in (0,3). Figure 3.4 shows the initial run through of this algorithm.

The white arrows on the left side of the diagram show which rows are run simultaneously

first. This approach takes advantage of more threads as the simulation is scaled up, but it

is more clear in the figure to show only a few particles.

3.9 The Actor Model

Actors support a highly reactive system. In fact, that is the way they work. When writing

for an actor system, the programmer defines a set of reactions to specific messages. The

important messages to understand in my work are the following:

• Particle message:

This is a message for cells and contains a collection of particles. The cell will compare

the particles to its own particles and add any collisions it finds (within the time-step)

to its list of potentials.

• Progress report:

This is a message that is sent to the grid. It contains information about a cell and

can signify a number of things.

• Begin processing:

The grid sends this to cells. When receiving this, the cell asks its neighbors to send

back their first collision.

• Minimum message:

22

Cells send this to each other. It simply informs a neighbor at what time cell’s minimum

collision will occur.

• Finished message

Cells send this to grid when they are done processing. The conditions for determining

when this is true are discussed below.

Figure 3.5: Demonstrates which neighbors belong to which group.

In this implementation of the pseudocode, I start with the grid, an actor in itself that

contains a two dimensional array of cells. Cells are also actors (See figure 2.2). The grid

begins the process by splitting the Global’s list of particles by location and distributing the

particles to the proper cells. It also tells each actor about its neighbors in two sets: Those

neighbors above and to the left (I will call these ”top neighbors”), and those neighbors below

and to the right (I will call these ”bottom neighbors”). See figure 3.5 explaining neighbors.

Finally, it passes a message to every cell saying to find the initial potential collisions.

When the cells receive said message, they immediately run through their own list of

23

particles, looking locally for collisions contained entirely within themselves. Afterwards

they send a particle message to each of their ”top neighbors” with a copy of their particles,

so that the neighbor can find potentials between the two cells. Note that the particle message

only needs to be sent to top neighbors. This is because only one of the two involved cells

in an inter-cell collision needs to know about the collision. I arbitrarily decided the owner

would be the one above or to the left of the collision. The cells send the grid a progress

report when they have processed a number of particle messages equal to the number they

expect (four, in the majority of cases, but fewer if they are on a bottom or right edge).

This step acts as a conventional block accomplished with the grid. In order to avoid

telling a cell to process while it is expecting particle messages and mixing up important

steps, the grid keeps track of how many cells have sent the progress report. Only when it

receives one from every cell does it begin the next step of the simulation.

The processing steps begin. Every cell asks its neighbors to reply with a minimum

message. These responses are compared to its own minimum to decide whether it is the

local minimum or not. If it is, it processes the collision, finding the particle’s new velocities

and sending a particle message to all neighbors. if it is not, it does nothing and waits. On

any change in a cells potentials list, it sends another minimum message to all neighbors.

This process continues until a cell has no potentials, and neither do its neighbors. Then

and only then the cell will send a finished message to the grid. When the grid gets finished

messages from all its children, it begins the next time step.

The bounced particle problem is handled by default in the actor model. Actors queue

up actions, so any race conditions are handled automatically.

24

3.10 Challenges in the Actor Model

The biggest challenge in designing the actor model was determining a finished state. It is

possible for a cell to have no potential collisions at one point in a time step and to gain

some later on in the same step, as a particle might be bounced into the cell from a previous

collision. To handle this, I use the same assumption that a particle cannot pass two cell

boundaries in a step. A cell is only done if it contains no collisions and none of its neighbors

do either. Then, within one time step, there can be guaranteed no change in potentials

within the center cell.

Another challenge is one typical of hard body sphere collision simulation. Due to well

known problems with floating point rounding in computation, particles sometimes find

themselves intersecting during the processing of a collision. This caused my simulation to

continually add and process collisions between the two intersecting particles, sinking into

an infinite loop. The solution was simply to detect when two particles were overlapped, and

to push them apart enough to rid myself of the issue but maintain most of the integrity of

the simulation.

Chapter 4

Results

The following tests were all run on the Trinity Computer Science department owned “pan-

dora02.” It has 32 2.1 GHz cores. The single thread algorithm only takes advantage of one

of the 32, so the speed of the machine will not be apparent until the parallelized tests come

up.

The tests consisted of inputs crafted with a randomized algorithm. Particles were created

within a given range in space, spaced evenly in a grid pattern. They were each given an

evenly distributed random velocity, and pushed around a small random amount to deviate

from the rigid grid shape. The random number generator was seeded per trial, so each

algorithm was run on the same set of five tests. A trial consisted of ten runs per algorithm,

starting with 16 particles (an arbitrary small starting place) and increasing by one hundred

thousand particles until finishing with 1 million. In order to see the scalability of the parallel

algorithms, larger tests were run on them. These tests were created with the same random

algorithm, but ranged up to 3 million particles.

25

26

4.1 Single Thread Model

Table 4.1: The table of results for the single thread algorithm.

The single thread algorithm performed admirably. The purpose of the grid based al-

gorithm is to turn collision detection into a linear algorithm, and this one was linear. It

out-performed the actor model considerably.

4.2 Multithread, Non-Actor Model

Figure 4.2 shows the results for the non actor parallel model between 0 and 1 million

particles. The multithread, multiqueue algorithm had linear performance between 0 and 1

million particles, and appears to be growing at a slower rate than both actor model and

the single thread. While this model was the fastest, I had hoped it would be faster by a

larger margin, maybe something around ten fold faster rather than three fold. This model

was also the most reliably efficient, with the lowest standard deviation of all three.

27

Figure 4.1: The results of the single threaded control algorithm.

Table 4.2: The table of results for the multi thread, non actor algorithm.

4.3 Actor Model

The actor model’s results for the smaller range are shown in figure 4.3. It grows linearly,

but is far slower than both of the other two models. I think the majority of issues with the

28

Figure 4.2: The results of the multi threaded, non actor algorithm.

actor model stem from the fact that I took no shortcuts in programming this algorithm,

making it as pure as I could. There is no shared memory when there are opportunities

to use shared memory, and there is a possibility that this algorithm could run successfully

without the blocking that it currently has in place. The overhead of an actor system also

probably contributes to the speed of the actor model. Scalability of the parallel models will

be discussed in a later section.

4.4 Comparisons

The actor model is by far the slowest, as we can see in figure 4.4. In order to understand

why it’s so slow, I counted the number of messages being passed between the actors. In

a simulation with 200,000 particles, close to 13 million messages were passed over the

29

Table 4.3: The table of results for the actor model algorithm.

Figure 4.3: The results of the actor model algorithm.

runtime. Only 55,000 collisions were found. Specifically, there were 237.8 messages passed

per collision and 65.7 passed per particle. I believe this overhead is the reason the actor

model is slow. Ideas for solutions will be discussed in the next chapter.

30

Figure 4.4: The results of all three algorithms overlayed.

Figure 4.5: Cells that are local minima divided by the number of cells per pass number.

31

The multithreaded, non actor model is the fastest, but not by an amount that we might

expect running the processes on a 32-core machine. I ran a test to examine the percentage

of cells per pass that were local minima. One would expect this percentage to decrease

during a step- the first pass processes the highest number of potentials, and as the number

of potentials decreases, so does the percentage of local minima. The results I found reflected

that exactly. Examine figure 4.5. It shows the percentage of cells that are local minima

by pass. Changing the density of particles per cells could raise the percentages above their

current maximum of five percent, a low value showing the algorithm is doing extra work.

Figure 4.6: The results of the two multi threaded control algorithms.

4.5 Pushing the Parallel

In order to see the limits of the actor model, I ran the two parallel models through some

considerably bigger tests, going up to three millions particles. They both scaled admirably.

32

I believe, however, that there would be a point at which the actor model would have to

begin doing a lot of garbage collecting, leading to a decrease in efficiency. However, that

point is past 3 million particles.

Table 4.4: The table of results for the large tests on the parallel models.

33

Figure 4.7: The results of the two multi threaded control algorithms.

Chapter 5

Conclusion

This research shows that such a strict implementation of the actor model is not a very

efficient way to parallelize the collision detection algorithm. There are some possible effects

and how many many actors are in a system as well; The reduction in speed could be because

of the sheer quantity of actors (At 3 million particles there are close to 1800 actors running

simultaneously) all running on 32 cores. An amendment to the algorithm to allow more

cells per actor could be an interesting speed boost.

This research also created a new method of multi-threading the original pseudo code,

at least in the scope of Dr. Mark Lewis’s work. The model that skips to every 3rd row and

computes those rows simultaneously, the non-actor method, proved much faster than the

actor method. Comparing this method to a more conventional blocking method could also

yield interesting results.

34

35

5.1 Further Projects

While this work shows the actor model under performing compared to conventional methods,

there are projects that could be done to find further information. Here are some examples

of possible further research:

1. Comparison of the non actor, multiqueue model to an actor model that follows the

guidelines less strictly. I believe careful application of shared, mutable memory to an

actor system would boost the efficiency of the actor model considerably.

2. This research was all tested on the same machine with the same amount of available

cores. A comparison of the parallelization techniques with varying number of cores

would be interesting. How does the ratio of actors to cores effect performance?

3. As discussed in the third chapter, I solved the bounced particle problem in this work by

processing every third row simultaneously rather than using blocking. A comparison

of the these two ideas would show the possible performance benefits of this algorithm

over the blocking technique.

4. Before some small efficiency fixes were added, the actor model at high input size had

a very sharp increase in speed in the same place through two trials. This outdated

result is shown in the appendix in figure A.1. An interesting future project would be

to see if this increase was due to machine constraints or due to caching problems, or

somehow due to actors themselves.

Bibliography

[1] Shams M. Imam and Vivek Sarkar. Integrating task parallelism with actors. ACM /

SIGPLAN Notices, 47(10):753, 2012.

[2] Zachary Langbert and Mark C. Lewis. Processing hard sphere collisions on a gpu using

opencl. In PROCEEDINGS OF THE 2014 INTERNATIONAL CONFERENCE ON

PARALLEL AND DISTRIBUTED PROCESSING TECHNIQUES AND APPLICA-

TIONS, volume 1, pages 35–41. CSREA Press, 2014.

[3] Mark Lewis and Berna L Massingill. Multithreaded collision detection in java. In

PDPTA, pages 583–592, 2006.

[4] Martin Odersky Phillip Haller. Scala actors: Unifying thread-based and event-based

programming. 2008.

[5] David E Stewart and Jeffrey C Trinkle. An implicit time-stepping scheme for rigid

body dynamics with inelastic collisions and coulomb friction. International Journal for

Numerical Methods in Engineering, 39(15):2673–2691, 1996.

[6] Derek Wyatt. Akka Concurrency. Artima Press, 2013.

36

Appendix A

Outdated Figure

Figure A.1: The old results of the two multi threaded control algorithms.

37

