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Three-body recombination in one dimension

N. P. Mehta,1,* B. D. Esry,2,† and Chris H. Greene3,‡
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2Department of Physics, Kansas State University, Manhattan, Kansas 66506, USA

3Department of Physics and JILA, University of Colorado, Boulder, Colorado 80309-0440, USA
�Received 14 March 2007; published 22 August 2007�

We study the three-body problem in one dimension for both zero- and finite-range interactions using the
adiabatic hyperspherical approach. Particular emphasis is placed on the threshold laws for recombination,
which are derived for all combinations of the parity and exchange symmetries. For bosons, we provide a
numerical demonstration of several universal features that appear in the three-body system, and discuss how
certain universal features in three dimensions are different in one dimension. We show that the probability for
inelastic processes vanishes as the range of the pairwise interaction is taken to zero and demonstrate numeri-
cally that the recombination threshold law manifests itself for large scattering length.

DOI: 10.1103/PhysRevA.76.022711 PACS number�s�: 34.80.Lx, 34.80.Dp, 34.80.My

I. INTRODUCTION

One-dimensional �1D� few-body and many-body systems
have been the subject of intense theoretical study for many
years �1–6�. This is largely because certain one-dimensional
problems admit exact solutions using the Bethe ansatz. These
theoretical studies are gaining increasing attention due to the
experimental realization of effective 1D geometries in tightly
confined cylindrical trap geometries �7–12�. Atoms in such
traps are essentially free to propagate in one coordinate while
being restricted to the lowest cylindrical mode in the trans-
verse radial coordinate. Olshanii has shown �13� how the 1D
scattering length �which we call a� is related to the three-
dimensional s-wave scattering length a3D and to the oscilla-
tor length a� in the confined radial direction. This identifi-
cation allows a connection with the intensively studied 1D
zero-range model with two-body interactions

V�x� = g��x� . �1�

The coupling constant g is renormalized to account for vir-
tual transitions to excited radial modes which appear as
closed channels in the unrestricted coordinate x. Early ana-
lytic calculations by McGuire �1� using the interaction Eq.
�1� gave vanishing probability for all inelastic events such as
collision-induced breakup �AA+A→A+A+A� and three-
body recombination �A+A+A→AA+A�. Section IV B dis-
cusses how finite-range interactions break the integrability of
zero-range models, and also how the probability for recom-
bination and breakup behave with respect to the range of the
interaction. In Sec. VI, we comment briefly on the relevance
of our 1D model to physical systems in actual atomic
waveguides.

In three dimensions �3D�, universal features occur when
the scattering length is the largest length scale �see �14� and
references therein�. Adiabatic hyperspherical studies in three
dimensions have provided a great deal of insight into such

universal behavior �15–18�. For example, the Efimov effect
in 3D appears as a hyperradial potential curve in the region
r0�R� �a� that is attractive and varies as R−2. Since it has a
supercritical coefficient, this potential has �as a3D→�� an
infinity of long-range bound states spaced geometrically by a
universal constant �19�. One of our goals here is to determine
what kind of universal behavior, if any, appears in one di-
mension. We discuss these issues in Sec. V.

A major portion of this work deals with the threshold laws
for recombination in 1D. We outline how these laws can be
extracted from the asymptotic form of the adiabatic potential
curves with a generalized Wigner analysis �20–22�, and show
that—as with any such analysis—they are independent of the
short-range properties of the interactions. This work closely
parallels the 3D analysis we carried out in Ref. �22�. Thresh-
old laws are found for all combinations of the parity and
exchange symmetries, including the cases where only two of
the three particles are identical. In order to demonstrate the
threshold behavior, we present numerical calculations for
bosons.

Finally, three-body recombination in cold atomic systems
results in a measurable loss of trapped atoms. Our goal is to
detail the qualitative features of three-body recombination in
one dimension in the hopes that such features will be seen in
atomic waveguides through atom-loss measurements. In-
deed, we provide in Sec. VI, a possible qualitative explana-
tion for the suppression in the three-body loss-rate constant
K3 measured in Ref. �8�. We speculate that such a measured
suppression of atom loss could be connected to both the
unique brand of universality discussed in Sec. V, and the
suppression predicted by the threshold law in Sec. III. We
hope that this theoretical work will stimulate other experi-
ments in this fascinating area of low-dimensional few-body
physics.

II. HYPERSPHERICAL COORDINATES

Since hyperspherical coordinates and the adiabatic hyper-
spherical representation play a central role in this paper, but
may be unfamiliar to some readers, we will briefly discuss
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the important points. For more detailed information, we refer
the interested reader to Refs. �16,18,23�.

We separate the center-of-mass motion from the relative
motion using Jacobi coordinates,

x12 = x1 − x2 and x12,3 =
m1x1 + m2x2

m1 + m2
− x3. �2�

The positions xi locate each particle relative to some
laboratory-fixed origin, and mi are their masses. The Jacobi
coordinates x12 and x12,3 constitute a Cartesian coordinate
system. Transforming these to polar coordinates �R ,��,

�R2 = �12x12
2 + �12,3x12,3

2 and tan � =��12,3

�12

x12,3

x12
,

�3�

gives the hyperspherical coordinate system. The reduced
masses are

�12 =
m1m2

m1 + m2
and �12,3 =

�m1 + m2�m3

m1 + m2 + m3
, �4�

and we choose the three-body reduced mass � to be
��12�12,3.

With the above definitions, we can find the interparticle
distances to be

�xi − xj� = dijR�sin�� − �ij�� , �5�

where we have introduced the constants

d12

��
=� 1

�12
,

d23

��
=� 1

�12,3
+ � m1

m12
�2 1

�12
,

�6�
d31

��
=� 1

�12,3
+ � m2

m12
�2 1

�12
.

The coalescence points—where the interparticle distances
are zero—are defined as

�12 =
�

2
,

tan �23 =
m1

m12
��12,3

�12
,

�7�

tan �31 =
m2

m12
��12,3

�12
.

If all three particles have the same mass, then dij =�2/�3 and
�23=−�31=� /6. If there are only two identical particles,
then it is convenient to label them 1 and 2. In this case,
d23=d31 and �23=−�31.

Since the hyperradius R is the only length scale in the
system, giving the overall size of the system, it is natural to
treat it as a “slow” coordinate for an adiabatic representation

�24�. The Hamiltonian for the system can be written as

H = −
1

2�R

�

�R
�R

�

�R
� + Had�R,�� �8�

where

Had�R,�� = −
1

2�R2

�2

��2 + V�R,�� �9�

and V includes the sum of all pairwise interactions. Atomic
units have been used here and will be used throughout this
work. The adiabatic representation is then defined by the
equation

Had�R,�����R;�� = U��R����R;�� . �10�

The eigenfunctions ���R ;�� are the channel functions, and
the eigenvalues U��R� the potential curves corresponding to
each channel.

In the limit R→�, the potentials approach either the en-
ergies of the bound diatomic molecules for the recombina-
tion �two-body� channels, or zero energy for the three-body
continuum channels. In this limit, the channels are un-
coupled, although there must be coupling at smaller R for
any inelastic transition such as recombination to occur. For
the purposes of determining the threshold laws, however, we
need only know that the channels in this representation be-
come uncoupled asymptotically.

III. THRESHOLD BEHAVIOR

At ultracold temperatures, the dominant character of a
given scattering process is controlled by its threshold behav-
ior, and the adiabatic hyperspherical picture readily yields
this behavior �22�. We show this by first solving the adiabatic
equation Eq. �10� while taking into account the appropriate
exchange symmetry and parity. In the limit R→�, all of the
adiabatic potentials take the general form U	→	2 / �2�R2�,
yielding the hyperradial equation

	−
1

R

�

�R
�R

�

�R
� +

	2

R2 − k2
F�R� = 0, �11�

where k is related to the total energy E �E=0 at the three-
body breakup threshold� by k2=2�E. The final momentum in
the two-body channel is related to the total energy by kf

2

=2��E+B2�, where B2 is the two-body binding energy. This
equation is simply Bessel’s equation with general solution

F	�kR� = AJ	�kR� + BY	�kR� . �12�

The coefficients A and B are determined by the usual proce-
dure of matching to short-range solutions and are related to
the S matrix. It is more convenient for the present discussion,
though, to consider each S-matrix element for recombination
at a fixed total energy E in the form

Sfi�E� � �F2B�2B�Ŝ�F3B�3B
	  , �13�

where 2B labels the final atom-dimer channel and 3B labels
the initial three-body continuum state. To determine the
threshold behavior, we use the small-argument form of the
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Bessel functions. For recombination, the final momentum in
the two-body channel is nonzero and slowly varying at the
three-body threshold, but the initial momentum k vanishes
there. Hence, it is the initial channel that determines the en-
ergy dependence of the transition probability, and it is the
lowest three-body continuum channel, with 	=	min, that will
dominate at threshold. As a result, in the limit k→0, the
recombination probability must scale like

�Sfi�2 
 k2	min. �14�

With this scaling, we can, of course, determine the scaling
behavior of the recombination rate. This connection will be
discussed in Sec. IV A. Moreover, when the scattering length
is the largest length scale, simple dimensional arguments
�namely, that a probability must be unitless�, imply that

�Sfi�2 
 �ka�2	min. �15�

A. Three identical bosons with �-function interactions

In this section, we will use �-function pair potentials, Eq.
�1�, to find 	min for three identical bosons. Even though the
recombination rate for such interactions actually vanishes
�1�, the analytic solutions of the adiabatic equation possible
with these interactions �25–28� nevertheless give 	min for
general interactions. With �-function interactions, we can
treat only interacting bosons. The case of interacting fermi-
ons will be considered in Sec. III B.

For three identical particles, the coalescence points �e.g.,
xi−xj =0� form radial lines that are equally spaced by � /3 in
the two-dimensional space spanned by the Jacobi coordinates
defined in Eq. �2�. These lines divide the coordinate space
into six regions, each of which corresponds to a unique or-
dering of the three particles along the real line. Symmetry
thus permits us to solve the adiabatic equation �10� in just the
region 0���� /6 with appropriate boundary conditions
�see Appendix A�.

The �-function coupling constant g is related to the 1D
two-body scattering length by a=−1/ ��2Bg� ��2B=m /2 is
the two-body reduced mass�, which is defined from the 1D
effective range expansion in the even-parity “partial wave,”
k tan���=1/a+ �r0 /2�k2+ . . . �13,29�. We require g�0 so that
the potential supports a two-body bound state, and write the
general solution for this channel as

��R;�� = A sinh q� + B cosh q� �16�

where q is related to the potential energy through

U�R� = −
q2

2�R2 . �17�

For even parity, we impose boundary conditions ���0�=0
and

lim
→0+

����0 + � −����0 − � = 2�g�R���0� , �18�

where �=1/d12=31/42−1/2 and �0=� /6. We require the ad-
ditional symmetry condition that ���� /6+�=−���� /6−�.
These conditions lead to a transcendental equation for q:

q tanh
q�

6
= − �g�R . �19�

A similar analysis for the continuum solutions begins with
the general solution

��R;�� = A sin�	�� + B cos�	�� , �20�

where 	 is related to the potential energy through

U�R� =
	2

2�R2 , �21�

and is the solution to the following transcendental equation:

	 tan
	�

6
= �g�R . �22�

As R→�, the allowed solutions are 	=3,9 ,15. . .. Note that
Eq. �19� is, of course, the analytic continuation of Eq. �22�
with 	→ iq.

For odd-parity solutions, the only difference is that the
boundary condition at �=0 changes to ��0�=0, immediately
giving B=0 and leading to

q coth
q�

6
= − �g�R �23�

and

	 cot
	�

6
= �g�R . �24�

From Eq. �24�, the allowed values 	 for odd-parity bosons
asymptotically are 	=6,12,18. . .. Note that the even- and
odd-parity potential curves for the two-body channel become
degenerate in the limit R→� as one would expect.

B. Three identical particles with square-well interactions

In order to determine whether the �-function results of
Sec. III A are general, we now consider square-well pairwise
interactions:

V�xij� = �− V0 if 0� �xij�� L ,

0 otherwise.
� �25�

Like the �-function interactions, the adiabatic equation re-
mains analytically solvable for square-well interactions. In
addition, square-well interactions are a good model for short-
�but nonzero-� range interactions. At the end of this section,
we will point out that the results are, in fact, general for all
short-range interactions. Unlike the �-function interactions,
though, indistinguishable fermions can interact via square-
well interactions. Consequently, we will be able to find 	min
for three identical fermions.

We thus focus on solutions that are either completely
symmetric or completely antisymmetric—assuming as in
Sec. III A that the particles are spin polarized such that the
spatial wave function carries all of the permutation symme-
try. As in Sec. III A, symmetry permits us to to solve the
adiabatic equation �10� in a wedge of width � /6. To simplify
the imposition of boundary conditions, though, we choose
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the interval � /2���2� /3 so that the edge �b of the
square-well centered at �=� /2 is simply

cos �b = − �3

4
�1/4 L

R
. �26�

This condition is invalid at small R where the two-body in-
teractions overlap, but is sufficient for determining the al-
lowed 	 in the region R�L. Again using U�R�=	2 / �2�R2�

�21� and defining �2=2�R2V0, the adiabatic equation be-
comes

� �2

��2 + �2�� = − 	2�,
�

2
��� �b,

�27�
�2

��2� = − 	2�, �b���
2�

3
.

We write the continuum solutions as

� = �A sin��	2 + �2�� − �/2�� + B cos��	2 + �2�� − �/2�� , �/2��� �b,

C sin�	�� − 2�/3�� + D cos�	�� − 2�/3�� , �b��� 2�/3.
�

A similar expression may be written for the two-body chan-
nels, but we want to focus on the recombination threshold
behavior and thus need only the asymptotic behavior of the
three-body channels.

For brevity, we sketch the derivation only for even-parity
bosons and summarize the results for all other symmetries in
Appendix B. For this symmetry, we impose boundary condi-
tions:

����
2
� =���2�

3
� = 0 �28�

which gives A=C=0. Matching the logarithmic derivatives
of the wave function at �=�b yields the quantization condi-
tion

�	2 + �2 tan	�	2 + �2��b −
�

2
�
 = 	 tan		��b −

2�

3
�
 .

�29�

In the limit R→�, �b→� /2, �	2+�2→�, and

�	2 + �2��b −
�

2
� → �2�V0�3

4
�1/4

L � � . �30�

So, in this limit, Eq. �29� becomes

� tan � = − 	 tan
	�

6
. �31�

Since �
R, this equation has the same form as Eq. �22�,
with the same consequences. In particular, the allowed 	 are
3,9,15,….

This analysis can be easily extended to find all allowed
values of 	 for all symmetries �see Appendix B�. The thresh-
old law, however, depends only on 	min. Collecting this
quantity for each symmetry, we find for bosons that

	min = �3, even parity,

6, odd parity,
�

in agreement with the results from Sec. III A for �-function
interactions. For fermions, we find

	min = �6, even parity,

3, odd parity.
� �32�

These fermion 	min are actually the same as one would find
by symmetrizing the free-particle solutions �see Eq. �A6��.
The interacting boson 	min above, though, are not the same
as the symmetrized free-particle solutions from Eq. �A5�.
From Eq. �14�, we see that recombination at threshold will
be dominated by the even-parity symmetry for bosons and by
odd parity for fermions. Moreover, recombinations of bosons
and fermions �30� in 1D share the same threshold law.

The above analysis, in fact, generalizes to short-range po-
tentials of any form �i.e., V�x�=0 for x�L�. That is, if we
take the logarithmic derivative b �see Eq. �C3�� from the
two-body equation outside the range of the interaction, then
the matching condition is

�4

3
�1/4

bR = 	 tan		��b −
2�

3
�
 �33�

for even-parity bosons. In the limit R→�, b may be re-
garded as a constant so that this equation reduces to the same
form as Eq. �22� or Eq. �31� and carries the same conse-
quences.

C. Two identical particles with �-function interactions

For this case, all combinations of parity and exchange are
considered, assuming that the spins of each particle are fixed
by spin polarization. Following the discussion in Sec. II, we
label the two indistinguishable particles 1 and 2. The inter-
action then takes the form

V = gS��x12� + gD���x31� + ��x23�� , �34�

where gS denotes the same-particle coupling, gD denotes the
different-particle coupling, and xij are the interparticle dis-
tances. The constant � in Eq. �18� is equal to 1/dij for each
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pair of particles ij. We shall use �S for particles 1 and 2 and
�D otherwise.

By symmetry, we need only solve the adiabatic equation
in the range 0���� /2. The �-function boundary condition

Eq. �18� is imposed at �0=�23 for the distinguishable pair
�see Eq. �7�� and at �0=� /2 for the indistinguishable pair.
The general continuum solution is now conveniently written
as

� = �A cos�	�� + B sin�	�� , 0��� �23,

C cos�	�� − �/2�� + D sin�	�� − �/2�� , �23��� �/2.
� �35�

We are now prepared to determine the asymptotically al-
lowed values of 	 for specific symmetries.

For brevity, we outline the derivation only for even-parity
bosons and summarize the results for all cases in Appendix
B. As before, even-parity bosons require the boundary con-
ditions

���0� = 0 and ����
2

+ � = −����
2

− � . �36�

These conditions immediately give B=0 and yield the quan-
tization condition

�− 	 +
2

	
�2g2�S�DR2�tan		��23 −

�

2
�


− �g�SR tan 	�23 tan		��23 −
�

2
�
 + 	 tan 	�23

= �g��S + 2�D�R . �37�

In the limit R→�, the R2 term dominates, and this equation
reduces to

1

	
tan 	��23 −

�

2
� = 0, �38�

yielding solutions 	=n� / ��23−� /2� for n=1,2 ,3 , . . .. Care-
ful inspection of Eq. �37� leads to the additional solution

	 tan 	�23 → � . �39�

This equation has solutions 	= �n+1/2�� / ��23� for n
=0,1 ,2 , . . . .

Similar analyses can be carried out for all combinations of
parity and exchange �see Appendix B�. The resulting 	min for
each symmetry are summarized below. As discussed above,
	min determines the threshold law for recombination and is,
for two identical particles in general, an irrational number
that depends only on the masses. Moreover, since 	min is
always a nonzero quantity, we find that the recombination
rate is never a constant at threshold in 1D. If we let the two
identical particles be labeled 1 and 2 with mass M, and the
third particle be labeled 3 with mass m, for bosons we have

	min =��
�

��23 − �/2�
, �23��/6 �M � m� ,

�

2��23�
, �23��/6, �M � m� ,� even parity,

�

��23 − �/2�
, odd parity,

�
while for fermions we have

	min =�
�

��23 − �/2�
, even parity,

�
�

��23 − �/2�
, �23��/6 �M � m� ,

�

2��23�
, �23��/6 �M � m� ,� odd parity. �
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Note that these results do not all immediately reduce to the
equal-mass results �i.e., �23=� /6� of Sec. III B since the
symmetry at �23 has not been taken into account here. That
symmetrization eliminates some solutions, finally giving
complete agreement with the equal-mass results.

IV. RECOMBINATION FOR BOSONS

A. Cross section and event rate constant

In the presence of a purely short-range hyperradial poten-
tial, the scattering solution for distinguishable particles is of
the form

�dist → eikR cos��−��� + f3BeikR

�R
, �40�

where the “direction” of the incident plane wave is param-
etrized by the angle ��. For ��=0, the incident flux is in the
direction of the first Jacobi vector x12, while for ��=� /2, the
incident flux is in the direction of x12,3. The quantity f3B

represents the elastic three-body scattering amplitude and is
given by

f3B =� 1

2�k
�

m=−�

m=�

eim��−����e2i�m − 1� . �41�

We have defined the scattering phase shift in the m partial
wave as �m. The total integrated cross section is then �31�

�dist = �
0

2�

d��f3B�2 =
1

k
�

m=−�

m=�

�e2i�m − 1�2. �42�

This expression must be modified to account for three
separate issues. First, we are interested in the cross section
for an inelastic process. Second, we must account for the
appropriate identical particle symmetry, and third, our
asymptotic harmonics are not two-dimensional partial waves.

Taking these issues into consideration, we find—
following the arguments of �32�—that the recombination
cross section for identical bosons in terms of the S matrix is

� =
6

k
�
	,p

���2B,p
sym �Ŝ�	�2 �43�

where �2B,p
sym denotes the final symmetrized two-body channel

function with overall three-body parity p, and 	 labels the
three-body entrance channel. At ultracold temperatures, we
need only include the smallest 	=	min, giving

� =
6

k
���2B,e

sym �Ŝ�	 = 3�2. �44�

Similar expressions can be derived for three identical fermi-
ons and for systems with only two identical particles. In fact,
the only change for these other symmetries—besides having
different dominant 	 and parity at threshold—is the numeri-
cal prefactor.

We are interested not only in the cross section, but also in
the more experimentally relevant event rate constant,

K3 =
�k

�
� =

6�

�
�S2B,3B

sym �2. �45�

Here, we explicitly show all factors of � in order to empha-
size that this quantity has the appropriate units of
�length�2 / �time�. K3 represents the probability of a recombi-
nation event per atomic triad per unit density of atomic triads
per unit time. The volume is the full volume spanned by the
internal coordinates of the three-particle system, so that the
density is the number of triads per unit two-dimensional vol-
ume. As defined in Eq. �45�, the rate is a function of energy.
To compare with experiment, though, it should be thermally
averaged to give the rate as a function of temperature. This
averaging is especially important in 1D since K3�E� is not
constant at threshold.

B. Zero- vs finite-range interactions

For identical bosons with �-function interactions, the elas-
tic atom-dimer S-matrix element is �1,4,26�

S11 = exp�2i�� = 1 −
24�k12,3a�

9

2
i�k12,3a�2 + 12�k12,3a� − 6i

�46�

where k12,3=�2�12,3�E+B2�. Simple analysis of Eq. �46�
shows that �S11�2=1 for all energies E�−B2 where this is an
open scattering channel, meaning that scattering in the two-
body channel is always elastic. Hence, the amplitude for
breakup �and also recombination� is identically zero at all
energies.

For �-function interactions, the adiabatic hyperspherical
potential curves have previously been calculated by solving
the transcendental equation Eq. �22� �25,26,33�. Since we
want to calculate inelastic transition rates, we also require the
nonadiabatic couplings Pij and Qij in Eqs. �C7� and �C8�. In
general, the preferred way to calculate these couplings nu-
merically is from difference formulas. It is difficult to obtain
high accuracy by differencing, though. A numerical algo-
rithm for calculating nonadiabatic couplings to the same ac-
curacy as the adiabatic eigenvalues was given in �34,35�. In
cases where the adiabatic solution � can be written analyti-
cally, however, it is possible to calculate �� /�R directly
�36�. This is accomplished by differentiating the transcen-
dental equations for 	 in Sec. III to determine equations for
�	 /�R. Rather lengthy expressions for Pij and Qij result, but
they do allow the couplings to be calculated essentially ex-
actly. The first few elements of the first row of the antisym-
metric matrix P are shown in Figs. 1�b� and 1�d�. The im-
portant feature of this figure is simply that these elements are
not zero. They couple the two- and three-body channels, yet
we know from Eq. �46� that the amplitude for any process
connecting the two- and three-body channels must vanish.
We will numerically demonstrate that, despite the nonzero
couplings, the solution to the coupled radial equations indeed
gives vanishing probability for inelastic events.

In order to facilitate this demonstration, we consider the
Pöschl-Teller two-body potential
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V�x� = − D sech2 x

L
, D� 0, �47�

which gives a Schrödinger equation having an analytic solu-
tion �37�. Defining �=�1+4DmL2, the zero-energy scatter-
ing length for the even-parity solution is

a =
L

2
�H−1/2−�/2 + H−1/2+�/2 − � sec �

�

2
� . �48�

In this expression, Hx=�EM+��x+1�, �EM is the Euler-
Mascheroni constant, and ��x�=���x� /��x� is the digamma
function. The energy eigenvalues are

E = −
�2n + 1 − ��2

4mL2 , n = 0,1,2, . . . . �49�

The scattering length becomes infinite when an even-parity
state sits at threshold, that is, when E=0 for n=0,2 ,4 , . . ..

To check whether recombination with the Pöschl-Teller
potential recovers the �-function result �46�, we set m=1, fix
the scattering length to a=2, and consider the effect of let-
ting L→0, approaching the �-function limit. When L=2 and
D= 1

2 , the Pöschl-Teller potential gives the same two-body

binding energy and scattering length as the � function. The
only difference is that the former is of finite range. The dif-
ference in the resulting three-body potential curves and cou-
plings, however, is more subtle. These potentials and cou-
plings are shown in Figs. 1�c� and 1�d�. By comparison with
the �-function results in Figs. 1�a� and 1�b�, we see that all
features for the Pöschl-Teller results tend to be pushed to
larger R.

Our numerically obtained �S11�2 for both kinds of poten-
tials are shown in Fig. 2. The numerical techniques used for
all calculations in this work are described in Appendix C.
Below the dimer breakup threshold at E=0, the collision is
purely elastic. Above the breakup threshold, the phase shift
in the elastic channel acquires an imaginary part, which ap-
pears as a deviation from �S11�2=1, implying a nonzero prob-
ability for breakup of the dimer. As indicated in the figure,
our numerical calculations show that as L→0, the collisions
do indeed become purely elastic at all energies, in agreement
with Eq. �46�. Since the S matrix is symmetric under time
reversal, the amplitude for recombination also vanishes. It
should be stressed that the solid black line in Fig. 2 is the
result of our numerical calculation for the � function, and not
simply a plot of the analytical result Eq. �46�.

C. Low-energy effective interaction

While the potential Eq. �47� has the advantage of yielding
an exact analytic two-body solution, it does not facilitate the
study of recombination into a single high-lying two-body
state in the limit a→�. The disadvantage stems from the fact
that the potential is purely attractive. As is well known, any
purely attractive potential in 1D will support an even-parity
bound state no matter how small the coupling. Hence, for the
potential Eq. �47� to have a→� with a single bound state,
we must let D→0. Therefore, we are motivated to construct
a renormalized low-energy potential model that supports a
single �shallow� bound state with finite couplings in the limit
a→�. We follow the insight of Ref. �38� �see also Ref. �29��
and take

Veff�x� =
�2

m
�c − 2d + 4d��x�2�exp�− �2x2� . �50�

The prefactor �2 /m gives the interaction units of energy in
atomic units, and m is the mass of the helium atom in atomic
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units �m=7296.299me�. One can tune the free couplings c
and d so that the potential reproduces physically reasonable
values for the scattering length and effective range of, for
example, 4He �39�: a=208 a.u. and r0=14 a.u. A reasonable
requirement of any renormalized model is that low-energy
observables remain independent of the momentum cutoff �.
We find that the values c=1.971 51 and d=−1.461 65 for
�=0.16 a.u. yield the desired effective range parameters.
These values also give a two-body binding B2=3.399 85
�10−9 a.u. We have verified that B2 varies by less than 1%
over a wide range of cutoffs 0.08���0.3, and that the
couplings c and d are of order unity over this range.

D. Low-energy scaling behavior

From Eq. �14� and Sec. III, we know that the inelastic
transition probability must scale as �S12�2�k6�E3 at thresh-
old since 	min=3 for three bosons. This behavior is already
plausibly seen in Fig. 2 since this scaling for S12 implies 1
− �S11�2�E3 at the three-body breakup threshold. When the
scattering length a is the longest length scale, we also know
from Eq. �15� that �S12�2��ka�6�E3a6. We demonstrate this
behavior quantitatively in Fig. 3. The points in the figure
were obtained by first tuning the effective potential Eq. �50�
to reproduce a given scattering length, and then calculating
the recombination probability near threshold, E→0. Finally,
we divided the probability by E3 to extract the constant of
proportionality. The constant A0 in �S12�2=A0E3 is plotted as
a function of the scattering length in Fig. 3. The a6 scaling is
clearly seen when compared to the solid line, which is A0
=3.0�109a6.

It is interesting to note that the lack of inelastic processes
for zero-range interactions is actually a consequence of per-
fect destructive interference in the exit channel. Indeed, since
the couplings Pij and Qij are nonzero, the only way for the
inelastic probability to vanish is through some sort of inter-
ference effect. It is possible to demonstrate this perfect inter-
ference by adding an arbitrary short-range three-body inter-
action V3�R� of characteristic length L3 to the zero-range
hyperradial potentials. The short-range three-body interac-
tion destroys the perfect interference and leads to a nonzero

recombination probability. Considering the ratio C= �1
− �S11�2� / �ka�6 near threshold, we find a nonuniversal power
law �that depends on the short-range nature of V3� of the
form C��L3 /a�c1. Although the particular value of c1 is non-
universal, we always find c1�0 such that K3→0 as L3→0.

V. UNIVERSALITY IN ONE DIMENSION

In three dimensions, the three-body problem exhibits uni-
versal features in the limit �a � →� related to Efimov physics
�14,16,19,40�. Here, we consider this limit in one dimension.
For L�R� �a�—with L generally the characteristic size of
the two-body interaction—we find that

q2 = − 	2 �
12�R
�3�a

�51�

to leading order in R /a for a�0 and a�0, respectively. The
corresponding adiabatic potentials are

U�R� =
�0

2�aR
�52�

with

�0 = −
12

31/421/2�
� − 2.052 277. �53�

We thus find an attractive, universal R−1 potential when a
�0, and a similarly universal, repulsive R−1 potential when
a�0. In the former case, this universal potential converges
to the highest-lying two-body threshold while for the latter, it
is the lowest potential converging to the three-body breakup
threshold.

This result can be derived in several ways. For instance,
the �-function transcendental equations Eqs. �19� and �22�
for positive and negative scattering lengths, respectively, can
be solved in the small-q or -	 limit. The exact same universal
curves can similarly be extracted from the analogous quan-
tization equations for the square-well interaction �Eq. �29�,
for example� using

� = �4

3
�1/4R

L
n��1 +

L

n2�2a
�, n� 0, �54�

assuming there are n two-boson bound states. This choice for
� follows from the fact that the two-body square well has a
zero-energy bound state when �2�2BV0L=n�. Reducing this
phase slightly gives a�0; and increasing it gives a�0. Fi-
nally, the universal curves can be obtained quite generally
from the quantization conditions for arbitrary short-range po-
tentials, Eq. �33�, using this expression for the logarithmic
derivative in the limit 2�2BEL2�1:

b =
1

a − L
. �55�

It is clear that the universality of the 1D problem has a dif-
ferent character from that of the 3D problem. First, �0 is the
coefficient of R−1 instead of R−2 as in 3D. Second, the uni-
versal potential Eq. �52� actually vanishes in the limit �a�
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FIG. 3. Numerical demonstration of a6 scaling of the three-body
recombination probability. The black line is A0=3.0�109a6, and
the circles are our numerical results. The units of A0 are atomic
units of inverse energy cubed, consistent with the use of Eq. �50� to
model the 4He two-body interaction.
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→�. The lowest three-body continuum potential in this case
is instead an attractive R−3 potential. For square-well inter-
actions, we can derive it explicitly using � from Eq. �54�
with �a�→� in Eq. �29�, yielding

U�R� = − �3

4
�1/4 n2�L

2�R3 . �56�

This potential, however, is not universal, although numerical
calculations with four different short-range two-body poten-
tials suggest that two aspects are general: �i� the attractive
R−3 behavior and �ii� the increasing interaction strength with
n.

As �a�→�, the solution in the lowest channel in the re-
gion L�R� �a� will obey the equation

	−
1

2�R

�

�R
�R

�

�R
� +

�0

2�aR
−

Q11�R�
2�


F�R� = EF�R� .

�57�

The diagonal nonadiabatic coupling −Q11�R� is always repul-
sive and falls off as R−2, while the universal R−1 term will
vary smoothly from an attractive to a repulsive potential as a
varies from +� to −�. When �a�=�, of course, the R−1 po-
tential vanishes, leaving just the R−3 potential in Eq. �56�.

In order to demonstrate that �0 is indeed a universal con-
stant, we again turn to the effective potential Eq. �50�. We
have calculated three-body potential curves using the two-
body potential Eq. �50� tuned to give different two-body
scattering lengths �the effective range is held constant at
14 a.u.�. Figure 4 shows the lowest three-body potential for
increasingly negative scattering lengths. The potential curves
have been multiplied by the factor 2�aR in order to more
clearly reveal the universal behavior. We see that the curves
do in fact approach �0 over a range of R consistent with the
condition r0�R� �a�. At R� �a�, the potentials again ap-
proach the three-body breakup threshold with the R−2 behav-
ior predicted in Sec. III �which translates to R−1 as plotted in
the figure�.

For large positive scattering lengths, the lowest potential
curve—the two-body channel—supports a three-body bound
state so long as there is at most one weakly bound two-body
state. Figure 5 shows the lowest potential curve for various

values of the two-body scattering length along with the hy-
perradial wave functions for the three-body bound state in
this channel. It is clear that the universal R−1 portion of the
curve has a strong influence on these states since a significant
portion of the necessary phase is accumulated in this region.
This argument is supported by a simple Wentzel-Kramers-
Brillouin �WKB� calculation using the Bohr-Sommerfeld
quantization condition

�
R1

R2

dR�2�E −
�0

aR
= �n +

1

2
�� �58�

for classical turning points Ri. We note that the Langer cor-
rection does not appear in this equation since it cancels the
attractive R−2 term obtained from eliminating the first deriva-
tive in the hyperradial kinetic energy—which is required to
use this WKB phase integral. The energies of the nodeless
solutions as a→� using the above equation are in reasonable
agreement with a B-spline calculation using the numerical
potential curves. These results are tabulated in Table I.
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TABLE I. The three-body bound-state energies are shown in
atomic units for various two-body potentials of the form Eq. �50�
tuned to give the scattering lengths in the first column. The WKB
estimates improve as a→�.

a Numerical B spline WKB

50 −1.8644�10−7 −4.8391�10−8

800 −6.0569�10−10 −4.8839�10−10

12800 −2.5156�10−12 −2.6829�10−12

204800 −1.0324�10−14 −1.1533�10−14

THREE-BODY RECOMBINATION IN ONE DIMENSION PHYSICAL REVIEW A 76, 022711 �2007�

022711-9



Further examination of Eq. �58� also shows why—despite
the long-range R−1 behavior—there is only a single three-
body bound state. If we evaluate the WKB phase at the two-
body threshold for R between L and a, then we find that it
lies between � /2 and 0.817� for all a /L between 8.072 86
and infinity. The phase remains finite because the strength of
the R−1 potential decreases with increasing a at the same
time that the domain over which it holds grows with a. So
there is sufficient phase accumulated in this universal region
alone to support a single bound state by Eq. �58�. Moreover,
the phase contributed from the small-R region, R�L, would
have to exceed roughly 0.7� to produce a second bound
state. While this is not impossible, it does not seem likely.

Finally, we consider the atom-dimer scattering length aAD
in the universal limit. Again using Eq. �50�, we calculate aAD
as a→�. Our results �plotted in Fig. 6� show a clear trend
toward aAD�8.5a. This finding is consistent with the pres-
ence of a bound state at the atom-dimer threshold in the
�-function model �1,26,33�. As a→� this zero-energy reso-
nance results in aAD→�.

Before we end our discussion of universality, it is worth
mentioning the consequences for the recombination rate. So
long as a is finite, the lowest three-body continuum potential
still behaves as predicted in Sec. III for R� �a�. The power-
law scaling of the S matrix with E and a is thus the same as
found in that section. The a dependence is modified, though,
by the universal region of the potential. Using arguments
similar to those in Refs. �17,41�, we can use a WKB calcu-
lation to determine the modifications. For a�0, the coupling
driving recombination peaks around R=L, so the system
must tunnel through the repulsive R−2 potential at R� �a� and
through the repulsive R−1 universal in the region L�R� �a�
in order to recombine. The WKB tunneling integral,
�L

adR��0 / �a�R, then leads to the modified threshold scaling
for a�0

K3 

�

�
�ka�6 exp	− 4���0��1 − �� L

�a�
�
 , �59�

where � is a numerical constant on the order of unity that
depends on the exact range of R over which the universal
potential is valid. Equation �59� does not go zero when L
→0 as one might expect, but it does take on its minimum
value. This is simply because the WKB estimate does not

capture the peculiar interference required to make K3 exactly
zero in the limit L→0.

For a�0, in analogy to the 3D case, recombination can
be modified by interference to give

K3 

�

�
�ka�6sin2	2���0��1 − �� L

�a�
� +�
 �60�

where � is the short-range R�L phase accumulated in the
nonuniversal portion of the two-body channel.

When �a�=� and the incident three-body continuum po-
tential is given by Eq. �56�, the threshold scaling is nontrivi-
ally modified. The attractive R−3 potential is equivalent to
	min=0, so the recombination rate is, in fact, independent of
energy at threshold, K3
const. It turns out that odd-parity,
identical fermions share this threshold law in the limit that
the two-body odd-parity partial wave scattering length—
appropriate for fermion-fermion interactions—goes to infin-
ity. The threshold scaling for odd-parity bosons and even-
parity fermions is also changed from the predictions of Sec.
III. In the limit that their respective scattering lengths are
infinite, K3
E3 for both cases.

VI. DISCUSSION AND SUMMARY

The work presented here has been carried out in strictly
one dimension. It is worth commenting on the relation of this
study to experimentally realizable, effective 1D geometries.
Olshanii �13� has determined the effective 1D scattering am-
plitude for two particles with 3D s-wave scattering length
a3D interacting under strong cylindrical harmonic confine-
ment. His analysis leads to the following one-dimensional
effective range expansion:

k tan � =
1

a
+
��3/2�a�

3

8a2

1

2
k2 + O�k4� , �61�

where a� is the oscillator length in the confined direction,
and ��x� is the Riemann zeta function. The 1D scattering
length is thus determined at zeroth order in k to be

a = −
a�

2

2a3D
�1 + ��1/2�

a3D

a�

� . �62�

One may argue that the 3D effective range should also be
present in the k2 term of Eq. �61�, but since a��r0

3D in
general, it is reasonable to assume that the contribution from
r0

3D is small compared to a�. With this approximation in
hand, it is possible to calculate the 3D parameters a� and a3D
that correspond to the 1D parameters a and r0 that we have
used. For r0=14 a.u. and our larger values of a, we find
experimentally accessible values for a� and a3D. All values
are tabulated in Table II. One notable point is that the 3D
scattering length is negative for positive 1D scattering
lengths. So while there is no shallow two-body bound-state
in the 3D system, a shallow bound state appears as a result of
the cylindrical confinement.

Finally, we comment on the role of three-body recombi-
nation in one recent experiment. The experiment by Tolra
et al. �8� has measured three-body recombination rates in
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FIG. 6. Inverse of the atom-dimer scattering length multiplied
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the atom-atom scattering length. In the limit that a→�, we find
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order to probe properties of the many-body wave function.
This idea was originally proposed by Kagan et al. �42�, who
showed that the event rate constant K3 is proportional to the
three-body local correlation function g3. Therefore a mea-
sured reduction in K3 from a 3D system to a 1D system in
Ref. �8� was interpreted as a reduction in g3 and a clear
signature of enhanced correlations.

While a complete description of three-body recombina-
tion in atomic waveguides requires a full-scale calculation of
three particles in a confinement potential, we attempt to ad-
dress some of the issues within our 1D framework. Our work
suggests an alternative explanation of the observed suppres-
sion of K3 in terms of the three-body hyperradial potentials.
For the experimental parameters of Ref. �8� �a3D�100 a.u.,
a��1100 a.u.�, Olshanii’s formula Eq. �61� gives a large
negative 1D scattering length a�−5300 a.u., indicating the
absence of a shallow 1D bound state. The wave function in
the lowest three-body entrance channel must therefore tunnel
under both the repulsive 	min

2 / �2�R2� potential in the region
R� �a� and the repulsive �0 / �2�aR� �recall that �0 and a are
both negative� potential in the region a��R� �a� before
reaching the region R�a� where a recombination event into
a deep two-body channel may occur. Therefore the measured
suppression in the confined geometry could be the combined
effect of the threshold law K3

1D
 �� /���ka�6 and the univer-
sal R−1 barrier given in Eq. �52� leading to the suppression
given in Eq. �59�.

While we are confident that we have solved the 1D
Schrödinger equation accurately, it is difficult to make quan-
titative claims regarding the measured suppression �8�. One
difficulty arises from the fact that the temperature of the
system in Ref. �8� is not very well characterized, and there-
fore it is unclear at what energy three-body collisions occur.
In addition, there are a number of theoretical complications
which can only be accounted for by performing a full-scale
calculation of three interacting bosons in a confined geom-
etry. For instance, since there are excited radial modes of the
trap and the two-body binding energy is typically much
larger than the spacing of these radial modes, there will be a
series of two-body thresholds attached to each excited radial
mode. All of these thresholds are open at the initial three-
body threshold energy, and our calculations have not ac-
counted for this. Also, our strictly 1D calculations undoubt-
edly do not correctly represent the hyperradial potentials in
the region R�a� where the system is neither purely 3D nor

strictly 1D in nature. Since the potential appears in the ex-
ponent of the WKB tunneling integral, any uncertainty in the
potential leads quantitatively to very different results for the
suppression of K3. Nevertheless, in view of our findings re-
garding universality in 1D systems, it is possible that the
observed suppression of K3 in Ref. �8� was a direct probe of
the universal R−1 potential Eq. �52�.

We have shown in this study how inelastic processes such
as three-body recombination and collision-induced breakup
behave near threshold for all combinations of identical par-
ticles. For the system of three identical bosons, we have fur-
ther investigated the behavior of these processes with respect
to the range of the pairwise interactions and to the two-body
scattering length. We have demonstrated numerically that the
probability for inelastic events vanishes as the range of the
interaction is taken to zero in agreement with previous ana-
lytic results �1�. Our work is related to a recent Letter that
has shown how inelastic processes could in fact be possible
if one considers a zero-range two-channel model with a
confinement-induced Feshbach resonance �43�. Specifically,
we note that finite-range interactions also break the integra-
bility of the zero-range model by introducing energy depen-
dence into the two-body scattering length. Finally, we have
explored in detail the nature of universality for three-body
systems in 1D.
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APPENDIX A: SYMMETRY OPERATIONS

The pair permutation operators Pij have the following ef-
fects on the hyperangle:

P12� = � − � ,

P23� =
�

3
− � ,

�A1�

P31� =
5�

3
− � .

Solutions of definite parity may be found via the operation

 � = � + � . �A2�

For three identical bosons, the symmetric projection requires

S = 1 + P12 + P23 + P31 + P12P23 + P12P31. �A3�

Similarly, for three identical fermions, the antisymmetric
projection operator is

A = 1 − P12 − P23 − P31 + P12P23 + P12P31. �A4�

To determine the boundary conditions required by permu-
tation and parity, it is useful to apply these operators to the

TABLE II. The 3D parameters a3D and a� are calculated to give
the desired 1D effective range r0=14 a.u. and the 1D scattering
length in the first column.

a �a.u.� a3D �a.u.� a� �a.u.�

50 −73.66 47.50

200 −63.62 119.70

800 −78.46 301.62

12800 −160.84 1915.14

204800 −377.39 12160.40

3276800 −925.65 77213.80
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free-particle solutions of Eq. �10� �18�. Doing so, we find
that the simultaneous symmetry eigenstates are real harmon-
ics with indices that are multiples of 3. Explicitly, for bosons

���� 
 �cos 3n� , n = 0,2,4, . . . , even parity,

sin 3n� , n = 1,3,5, . . . , odd parity;
�

�A5�

and for fermions,

���� 
 � sin 3n� , n = 2,4,6, . . . , even parity,

cos 3n� , n = 1,3,5, . . . , odd parity.
�

�A6�

From these expression, we conclude first of all that we can
reduce the integration range by a factor of 12—as
expected—from 2� to only � /6 in �. We can also conclude,
for instance, that three identical fermions in the odd-parity

state must obey the boundary conditions ���0�=0 and
��� /6�=0.

If there are only two identical particles, then we need the
operators S=1+ P12 for identical bosons and A=1− P12 for
identical fermions. The simultaneous symmetry eigenstates
for bosons are now

���� 
 �cos n� , n = 0,2,4, . . . , even parity,

sin n� , n = 1,3,5, . . . , odd parity;
�

and for fermions

���� 
 � sin n� , n = 2,4,6, . . . , even parity,

cos n� , n = 1,3,5, . . . , odd parity.
�

The range of integration can in this case be reduced by a
factor of 4, and the boundary conditions extracted as above.

APPENDIX B: SUMMARY OF RESULTS FOR
SQUARE-WELL AND �-FUNCTION INTERACTIONS

We summarize in this section the boundary and quantiza-
tion conditions, along with the large-R solutions, for all sym-
metries of three identical particles with square-well interac-
tions �see Table III and Sec. III B� and for all symmetries of
two identical particles with �-function interactions �see Table
IV and Sec. III C�.

We expect the square-well results in Table III can be gen-
eralized to arbitrary short-range interactions in basically the
same way as Eq. �33�. That is, the left-hand sides of the
quantization conditions would get replaced by the two-body
logarithmic derivative.

APPENDIX C: R-MATRIX PROPAGATION

In order to solve for the multichannel S matrix, we use the
eigenchannel R-matrix method coupled with the adiabatic
hyperspherical representation. The development closely fol-
lows Refs. �44–47�.

We begin with the variational expression

E =
� d�RdR��R,��H�R,����R,��

� d�RdR���R,���2
, �C1�

assuming � is real without loss of generality. The Hamil-
tonian is given in Eqs. �8� and �9�. Integrating the hyperra-
dial kinetic energy by parts in Eq. �C1� gives the variational
expression

b =

�
R1

R2

d� R dR�−
��

�R

��

�R
+��k2 − 2�Had���

� d��R2���R2,���2 + R1���R1,���2�
,

�C2�

where b is minus the logarithmic derivative �44,48� normal
to a hypersphere,

TABLE III. The boundary conditions, quantization conditions,
and allowed asymptotic 	 for three identical particles with square-
well interactions. The constants � and �b are defined in Sec. III B.

Even-parity bosons

����2 �=���2�

3 �=0

�	2+�2tan��	2+�2��b−
�

2 ��=	 tan�	��b−
2�

3 ��
	 →

R→�
3,9 ,15, . . .

Odd-parity bosons

����2 �=��2�

3 �=0

−�	2+�2tan��	2+�2��b−
�

2 ��=	 cot�	��b−
2�

3 ��
	 →

R→�
6,12,18, . . .

Even-parity fermions

���2 �=��2�

3 �=0

�	2+�2cot��	2+�2��b−
�

2 ��=	 cot�	��b−
2�

3 ��
	 →

R→�
6,12,18, . . .

Odd-parity fermions

���2 �=���2�

3 �=0

�	2+�2cot��	2+�2��b−
�

2 ��=−	 tan�	��b−
2�

3 ��
	 →

R→�
3,9 ,15, . . .
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b = −
� ln�

�n̂
. �C3�

In the adiabatic hyperspherical representation,

��R,�� = �
i

Fi�R��i�R;�� , �C4�

where �i�R ;�� are eigenstates of Eq. �9� with eigenvalues
Ui�R�. Substitution of the expansion Eq. �C4� into Eq. �C2�
results in a set of coupled equations for Fi�R�. We further
expand the radial functions in a basis set as Fi�R�
=�ncniBn�R�, converting the coupled equations into the gen-
eralized eigenvalue problem

b�c� = �c� . �C5�

The matrices � and � are defined as

��m,i�,�n,j� = �i,j�
n,m

�R1Bn�R1�Bm�R1� + R2Bn�R2�Bm�R2�� ,

��m,i�,�n,j� = �
R1

R2

dR R	− �i,j
�Bm

�R

�Bn

�R
− Pij� �Bm

�R
Bn − Bm

�Bn

�R
�

+ Pij
2 BmBn + �i,jBm�k2 − 2�Ui�R��Bn
 . �C6�

We require the first-derivative nonadiabatic coupling,

Pij�R� = ���i�R;��� �

�R
�� j�R;�� , �C7�

and the second-derivative coupling,

TABLE IV. The boundary conditions, quantization conditions, and large-R solutions are shown for the
two-identical-particle case. The constants �S, �D, and �23 are defined below Eq. �34� and in Appendix B.

Even-parity bosons

���0�=0 and ����2 +�=−����2 −�
�−	+

2

	
�2g2�S�DR2�tan�	��23−

�

2 ��−�g�SR tan 	�23 tan�	��23−
�

2 ��+	 tan 	�23=�g��S+2�D�R

	=n� / ��23−
�

2
�, n=1,2 ,3 , . . ., and 	= �n+1/2�� / ��23�, n=0,1 ,2 , . . .

Odd-parity bosons

��0�=0 and ����2 +�=−����2 −�
�−	+

2

	
�2g2�S�DR2�tan�	��23−

�

2 ��−�g�SR cot 	�23 tan�	��23−
�

2 ��+	 cot 	�23=�g��S+2�D�R

	=n� / ��23−
�

2
�, n=1,2 ,3 , . . ., and 	=n� / ��23�, n=0,1 ,2 , . . .

Even-parity fermions

��0�=0 and ���2 �=0

	 cot�	��23−
�

2 ��−	 cot 	�23=2�g�DR

	=n� / ��23−
�

2
�, n=1,2 ,3 , . . ., and 	=n� / ��23�, n=1,2 ,3 , . . .

Odd-parity fermions

���0�=0 and ���2 �=0

	 cot�	��23−
�

2 ��+	 tan 	�23=2�g�DR

	=n� / ��23−
�

2
�, n=1,2 ,3 , . . ., and 	= �n+

1

2 �� / ��23�, n=0,1 ,2 , . . .
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Qij�R� = ���i�R;��� �2

�R2�� j�R;�� . �C8�

The double angular bracket notation implies integration only
over �. The square of P is given by the symmetric part of Q
through the relation Qij =Pij

2 +�Pij /�R:

Pij
2 = − ����i�R,��

�R
�
�� j�R;��

�R
 . �C9�

Equation �C5� is solved for the expansion coefficients c�,
yielding a solution in the region R1�R�R2. For the first
region 0�R�R1, we require Fi��0�=0 but impose no bound-
ary condition at R1. The generalized eigenvalue problem then
yields an eigenvalue b� and wave function Fi� for each open
or weakly closed channel at R1.

To propagate the solution to large R, we solve the system
of equations again in the region R1�R�R2 with no bound-
ary conditions at either R1 or R2.

A valid solution in the region 0�R�R2 is then con-
structed by matching the solutions from the two regions at R1
and by requiring that the overall solution be an eigenchannel
solution of the R matrix,

R = �F��F��−1. �C10�

That is, � should have a constant normal derivative at the
surface R=R2. This procedure is repeated until the solutions
can be accurately matched to analytic asymptotic forms
�45–47�.

To be more explicit, we write the full wave function out-
side the R-matrix volume as

��
out�R,�� = �

j

� j�R;���f j�R�Ij� − gj�R�Jj�� , �C11�

where f j�R� and gj�R� are

f j�R� = �� 2

�kfR
cos kfR if j is a two-body channel,

J	�kR� if j is a three-body channel,
�

gj�R� = �� 2

�kfR
sin kfR if j is a two-body channel,

Y	�kR� if j is a three-body channel.
�

�C12�

The order 	 is determined as described in Sec. III. The so-
lution inside the volume involves the numerical functions
Fj�,

��
in�R;�� = �

j

Fj��R�� j�R;�� . �C13�

The matrices I and J are obtained from matching at some
large distance R=RM, which is conveniently accomplished
using

Ij� = W�gj,Fj��/W�gj, f j�
�C14�

Jj� = W�f j,Fj��/W�gj, f j� ,

where W�f ,g� denotes the Wronskian of f and g. Defining
�f�ij =�ij f i and �g�ij =�ijgi, the K matrix is

K�RM� = �f − f�R��g − g�R�−1. �C15�

The R matrix is calculated via Eq. �C10� using the numerical
solutions Fi� and the result Fi�� �RM�=−b�Fi��RM�. The latter
holds only at large R where Pij→0, since the exact relation
is

− b�Fi� = Fi�� + �
j

PijFj�, �C16�

in which each quantity is evaluated at RM. This relation is
obtained by differentiating Eq. �C13� and projecting the re-
sult onto �i. Finally, the S matrix is calculated from K using

S�RM� =
1 + iK�RM�
1 − iK�RM�

. �C17�

It is important to propagate the R matrix to large R in
order to obtain a converged, unitary S matrix. In Fig. 7, we
show the convergence of a few S-matrix elements with the
matching distance RM for an eight-channel calculation using
the Pöschl-Teller potential Eq. �47� with L=2 and D=1/2.
Figure 7�a� shows the lowest nine potential curves corre-
sponding to three-body channels. �Since it converges to −1
on the scale of the figure, the two-body channel is not vis-
ible.� The horizontal dashed line shows the energy at which
the calculation in Fig. 7�b� was carried out, and the vertical
dotted lines mark the classical turning points for the first
three channels. Note that the probability �S1i�RM��2 peaks ap-
proximately at the classical turning point for Ui�R�.

For the calculations presented in Fig. 2, we propagated
the R matrix to R=1000a to assure convergence. It is evident

0 20 40 60 80 100 120 140 160 180 200
R/a

-0.2

0

0.2

0.4

0.6

0.8

U
i(R

)/
B

2

0 20 40 60 80 100 120 140 160 180 200
R/a

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

Pr
ob

ab
ili

ty

|S
12

|
2

|S
13

|
2

|S
14

|
2

E=0.4 B
2

FIG. 7. �Color online� �a� Three-body potential curves for the
Pöschl-Teller two-body potential with L=2 and D=1/2. The hori-
zontal dashed line indicates the collision energy, and the vertical
dotted lines mark the classical turning points. �b� The convergence
of the transition probability between the two-body channel and the
lowest three three-body channels at E=0.4B2 as a function of the
matching distance.
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from Fig. 7 that the quantity �S12�2 has already converged by
R=200a. We have also verified that this probability is stable
with respect to the inclusion of more coupled channels. The
other probabilities, however, have not yet converged as well,
although their magnitude makes them negligible.

Our calculation of the matrix elements in Eq. �C6� is sim-
plified by using B splines as our radial basis set �Bn�R�� �49�.

This choice also simplifies the imposition of boundary con-
ditions since B splines have only local support. We typically
use ten fifth-order B splines within each R-matrix sector,
leading to a �10�N�� �10�N� matrix equation �N is the
number of channels�. The size of the sectors Ri+1−Ri is cho-
sen to be no more than one de Broglie wavelength in the
lowest �two-body� channel.
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