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Low-energy operators in effective theories

C. Felline,1 N. P. Mehta,2 J. Piekarewicz,1 and J. R. Shepard2

1Department of Physics, Florida State University, Tallahassee, Florida 32306, USA
2Department of Physics, University of Colorado, Boulder, Colorado 80309, USA

~Received 1 May 2003; published 22 September 2003!

Modern effective-theory techniques are applied to the nuclear many-body problem. A novel approach is
proposed for the renormalization of operators in a manner consistent with the construction of the effective
potential. To test this approach, a one-dimensional, yet realistic, nucleon-nucleon potential is introduced. An
effective potential is then constructed by tuning its parameters to reproduce the exact effective-range expansion
and a variety of bare operators are renormalized in a fashion compatible with this construction. Predictions for
the expectation values of these effective operators in the ground state reproduce the results of the exact theory
with remarkable accuracy~at the 0.5% level!. This represents a marked improvement over a widely practiced
approach that uses effective interactions but retains bare operators. Further, it is shown that this improvement
is more impressive as the operator becomes more sensitive to the short-range structure of the potential. We
illustrate the main ideas of this work using the elastic form factor of the deuteron as an example.

DOI: 10.1103/PhysRevC.68.034003 PACS number~s!: 21.60.Cs, 21.30.Fe

I. INTRODUCTION

The construction of effective interactions for use in shell-
model studies of nuclear structure has enjoyed a resurgence
due in part to the development of modern effective-field
theories@1,2#. Further, tremendous advances in raw compu-
tational power and numerical techniques have enabled the
consistent and systematic implementation@3–5# of 25-year-
old approaches based on the so-called similarity-
transformation methods@6–9#. Such implementations bypass
most of the recent criticism levied on frequently employed
shell-model approaches that rely on effective interactions
that do not follow in any systematic way from a realistic
nucleon-nucleon (NN) interaction @10,11#. Indeed,
similarity-transformations methods indicate how bare inter-
actions and operators should be modified in a systematic way
to account for the inevitable effects of truncations.

Earlier work by two of us~J.P. and J.R.S.! on low-
dimensional quantum magnets@12–16# made us familiar
with a variety of theoretical approaches that have been re-
cently adapted to the nuclear many-body problem@17#. In
that work it was shown how to combine similarity-
transformation methods, specifically the contractor renormal-
ization ~CORE! approach of Morningstar and Weinstein
@18,19#, with effective interaction methods, such as those
discussed by Lepage@1#. In particular, accurate predictions
for the ground-state energy of the three-body system were
made with relatively little computational effort when both
techniques were used in a complementary fashion. As dis-
cussed in other recent publications@20#, these similarity-
transformation methods may be understood in the context of
effective theories, which in turn rely on renormalization-
group techniques@21#.

What is not at all clear~at least to us! in effective-theory
approaches is how to modify operators in a manner consis-
tent with the modifications of the underlying Hamiltonian.
The need for consistently modified operators must be empha-
sized. Parametrized operators are often added to improve
quantitative agreement with data, but their origin is left un-

clear. Even in approaches based on similarity transforma-
tions where the modification to operators is well delineated,
it remains common practice to employ bare~rather than
renormalized! operators. In this work we adopt some modern
concepts of low-energy effective theories~ET’s! in the hope
of improving some of these shortcomings. The basic assump-
tion of ET’s is that the complicated, and likely unknown,
short-distance details of a theory are hidden from a long-
wavelength probe. It should then be possible to modify the
corresponding portion of the potential leaving its low-energy
properties intact. In order to achieve this, the low-energy
properties must be known in advance either from experiment
or, as in the case of this study, from solving the bare theory
exactly at low energy. As has been observed by many authors
@22,23#, ET’s for theNN interaction reproduce the effective-
range theory of many decades ago. Part of the inspiration for
the operator methods reported here arose from an especially
simple derivation of effective-range theory which appears in
the texts by Schiff and Taylor@24,25#.

The paper has been organized as follows: In Sec. II a
simple derivation of the effective-range expansion in one
spatial dimension is presented. Next, a prescription for the
renormalization of effective operators that is consistent with
the construction of the effective potential is introduced. In
Sec. III expectation values for various effective operators are
computed and are then compared to those obtained in the
bare~exact! theory. Finally, conclusions and some ideas for
the future are discussed in Sec. IV.

II. FORMALISM

The aim of this section is to adapt a textbook derivation of
the effective-range formula in three spatial dimensions
@24,25# to the one-dimensional problem considered here.
These ideas are then used for the construction of an effective
interaction that reproduces the scattering length and effective
range of the exact~i.e., bare! theory. Finally, an approach is
proposed for the renormalization of operators in a manner
which is consistent with the construction of the effective
interaction.
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A. Effective-range formula

To arrive at the effective-range formula we proceed along
the lines of Schiff and Taylor@24,25#, adapting their deriva-
tion to the one-dimensional case considered here. The even-
parity solution of the scattering problem satisfies the time-
independent Schro¨dinger equation

F d2

dx2
1k22U~x!Gck~x!50

@k2[2mE and U~x![2mV~x!#, ~1!

subject to the following boundary conditions:

lim
x→0

ck~x!511O~x2!, ~2a!

lim
x→`

ck~x!5fk~x![cos~kx!2tand~k!sin~kx!

5
cos@kx1d~k!#

cosd~k!
. ~2b!

Note thatfk(x) denotes the solution of the free Schro¨dinger
@U(x)[0# equation that coincides withck(x) at largex. It
then follows immediately from the Schro¨dinger equation that

dW~ck ,c0!

dx
5k2ck~x!c0~x!, ~3a!

dW~fk ,f0!

dx
5k2fk~x!f0~x!, ~3b!

where the Wronskian off andg is defined as

W~ f ,g!~x![U f ~x! g~x!

f 8~x! g8~x!
U5@ f ~x!g8~x!2 f 8~x!g~x!#.

~4!

Upon integrating the difference of Eqs.~3! one obtains

@W~fk ,f0!~x!2W~ck ,c0!~x!#0
`

5k2E
0

`

dx@fk~x!f0~x!2ck~x!c0~x!#. ~5!

The contribution from the upper limit of the integral to the
left-hand side of the equation vanishes, asck(x)5fk(x) at
large distances. Further, as the derivative of the exact scat-
tering solution vanishes atx50 @see Eq.~2a!# the Wronskian
W(ck ,c0) vanishes as well. This yields

W~fk ,f0!~x50!5@fk~0!f08~0!2fk8~0!f0~0!#

5k2E
0

`

dx@fk~x!f0~x!2ck~x!c0~x!#,

~6!

which in turn generates the well-known effective-range
formula

k tand~k!5
1

a0
2k2E

0

`

dx@ck~x!c0~x!2fk~x!f0~x!#

5
1

a0
2

r 0

2
k21O~k4!. ~7!

Note that the~even-parity! scattering length and effective-
range parameters have been defined as

a0
215 lim

k→0
k tand~k!, r 052E

0

`

dx@c0
2~x!2f0

2~x!#.

~8!

B. Effective potential

The purpose of this section is to summarize briefly the
main points from Ref.@17# which will, in turn, motivate our
proposed method for constructing effective operators. To
start, a bare one-dimensional~1D! NN interaction with the
same pathologies as a realistic interaction is assumed. That
is, the bare potential is given by the sum of a strong short-
range repulsive exponential and a medium-range attractive
exponential:

V~x!5Vse
2msuxu1Vve

2mvuxu. ~9!

The two masses were chosen to be equal toms5400 MeV
and mv5783 MeV, respectively, while the strengths of the
potentials (Vs52506 MeV andVv511142.49 MeV) were
chosen to give a binding energy and point root-mean-square
~rms! radius for the symmetric~‘‘deuteron’’! state of Eb
522.2245 MeV andr rms51.875 fm, respectively.

Employing an option originally suggested by Lepage@1#,
and later adapted by Steele and Furnstahl@26,27# to treat the
NN interaction, we propose a Gaussian cutoff for the effec-
tive potential of the form

Veff~x!5
1

a S c1d
]2

]j2
1e

]4

]j4
1••• D exp~2j2!, j[x/a.

~10!

The parameters of the effective potential (c,d,e, . . . ) are
fixed to reproduce the low-energy scattering phase shifts.
That is, one adjusts the parameters until the following equa-
tion is satisfied:

k tand~k!5
1

a0
2k2E

0

`

dx@ck~x!c0~x!2fk~x!f0~x!#

~11!

5
1

a0
2k2E

0

`

dx@ck
eff~x!c0

eff~x!2fk~x!f0~x!#,

~12!

whereck
eff(x) is a scattering solution of Eq.~1! with V(x)

replaced withVeff(x). Note that as in Ref.@17#, the Gaussian
cutoff parameter has been fixed ata51.16 fm. The above
condition may be rewritten in the following convenient form:
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d^I&~k;c,d, . . . ![E
0

`

dx@ck~x!c0~x!2ck
eff~x!c0

eff~x!#[0.

~13!

Evidently, it is neither demanded nor expected that Eq.~13!
be satisfied for arbitrary large values ofk. Rather, one fol-
lows a hierarchical scheme, based on power counting, that
assures that observables in the bare and effective theory be
indistinguishable at low energies. It should be emphasized
that the specific form of the potential is somewhat arbitrary,
as the short-range structure of the theory becomes encoded in
the effective parameters.

As a simple illustration of this procedure we display in
Fig. 1 bare~solid line! and effective~dashed line! NN poten-
tials. The bare potential, with its characteristic short-range
structure, yields a scattering length ofa055.247 fm and an
effective range ofr 051.521 fm, respectively. The calcula-
tion of low-energy phase shifts is repeated using the effective
potential @Eq. ~10!# with its two parameters (c and d) ad-
justed to reproduce the exact effective-range expansion to
order k2. The resulting parameters (c520.039 and d
520.160) are natural and yield a smooth effective potential
which, as far as the low-energy properties of the theory are
concerned, is practically indistinguishable from the bare po-
tential. Indeed, bulk properties of the ground state~hence-
forth referred to as the deuteron! are predicted to be identical
to those obtained in the bare theory. This is in spite of the
vastly different short-range structure of the wave functions
~see inset in Fig. 1!.

C. Effective operators

One of the main criticisms levied on traditional shell-
model approaches is the lack of consistency between the
construction of the effective potential and the renormaliza-
tion ~if any! of the bare operators@10,11#. While important
steps have been taken to correct this inconsistency, both in
the area of low-dimensional quantum magnets@14# and
nuclear structure@4#, these are in the very early stages. Fur-

ther, it is unknown how to construct effective operators that
are consistent with both the effective theory and similarity-
transformation based approaches.

In this contribution we propose an approach for the modi-
fication of operators that is consistent, indeed mimics, the
construction of the effective potential. We assume that the
momentum dependence of matrix elements of~simple!
single-particle operators may be accounted for by an expan-
sion in powers ofk2 having the same form as the effective-
range formula@Eq. ~7!#. To do so, one demands that matrix
elements of effective operators (Oeff) with scattering-wave
solutions of the effective potential (ck

eff) possess the same
momentum dependence as those using the bare operators
with the exact wave functions. In analogy with the definition
of the effective potential@Eq. ~10!#, we parametrize the ef-
fective operators via

Oeff~x;c,d, . . . !5O~x!F11S c1d
]2

]j2
1••• D exp~2j2!G .

~14!

This parametrization affects only the short-range behavior of
the operator just as using the effective potential modifies
only the short-range structure of the wave function. The pa-
rametersc, d, . . . ~as before! are tuned to the low-k2 behav-
ior of the exact matrix elements. To be more specific about
our procedure, we fit—in complete analogy to Eq.~13!—the
parameters of the effective operator by requiring that

d^O&~k;c,d, . . . ![E
0

`

dx@ck~x!O~x!ck50~x!

2ck
eff~x!Oeff~x;c,d, . . . !ck50

eff ~x!#50.

~15!

The integral in this expression is convergent as the effective
theory demands that
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-100
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Effective

0 2 4 6 8 10
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0
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0.2

0.3

0.4

ψ
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E
b
=-2.225 MeV

a=1.16 fm
c=-0.039
d=-0.160

FIG. 1. Bare~solid line! and
effective ~dashed line! NN poten-
tials in a realistic one-dimensional
model. The inset shows ‘‘deu-
teron’’ ground-state wave func-
tions. The sharp features of the
bare potential are no longer
present in the effective potential.
Although the short-distance struc-
ture of the wave functions are dif-
ferent, the exponential falloff
~binding energy! is unchanged.
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lim
x→`

ck
eff~x!5ck~x!, ~16a!

lim
x→`

Oeff~x;c,d, . . . !5O~x!. ~16b!

However, to ensure that each term separately is convergent,
we add and subtract the following term:

E
0

`

dx@fk~x!O~x!fk50~x!#, ~17!

where we recall thatfk(x) is the free solution of the 1D
scattering problem@see Eq.~2b!#.

To extract the parameters of the effective operator we now
fit—in the spirit of the effective-range expansion—the low-
energy matrix elements of the bare operator between bare
scattering wave functions according to

^O&BB~k!5E
0

`

dx@ck~x!O~x!ck50~x!

2fk~x!O~x!fk50~x!#5a1bk21•••.

~18!

The parameters fixing the effective operators are then ad-
justed so that the above expansion is recovered. That is,

^O&EE~k!5E
0

`

dx@ck
eff~x!Oeff~x;b,c, . . . !ck50

eff ~x!

2fk~x!O~x!fk50~x!#5a1bk21•••.

~19!

Note that whenO(x)5Oeff51 one recovers the effective-
range expansion.

III. RESULTS

In this section we compute matrix elements of various
operators using three different schemes. The first scheme
uses bare operators with bare wave functions~we label these
calculations as ‘‘B1B’’ !; these should be regarded as ‘‘ex-
act’’ answers. Second, we compute matrix elements in an
approximation~labeled as ‘‘B1E’’ ! that uses effective wave
functions but retains bare operators. As we show below, for
operators insensitive to short-range physics this inconsis-
tency introduces small discrepancies. However, the more im-
portant the short-range physics, the greater the lack of ac-
cord. Finally, we perform calculations in a consistent low-
energy approximation~‘‘ E1E’’ ! that employs both effective
wave functions and effective operators. Showing that these
calculations are in excellent agreement with the exact (B
1B) answers represents the central result of the present
work.

Because of its simplicity, a natural place to start testing
the proposed approach is the calculation of the root-mean-
square radius of the deuteron, which is given by

^x2&BB[K 1

2 (
n51

2

~xn2xc.m.!
2L 5E

2`

`

dx
x2

4
cg.s.

2 ~x!

5~1.879 77!2 fm2. ~20!

The corresponding calculation in the effective theory re-
quires a renormalization of the bare operator. To do so we
follow the prescription outlined in the preceding section@see
Eqs.~18! and ~19!# to obtain

xeff
2 5x2F11S c1d

]2

]j2D exp~2j2!G
~c51.520, d520.305!. ~21!

In this manner the root-mean-square radius predicted by the
effective theory becomes

^x2&EE5E
2`

`

dx
xeff

2

4
@cg.s.

eff ~x!#25~1.879 88!2 fm2. ~22!

This represents a discrepancy of about one part in 104.
While this result is gratifying and lends some credibiliity to
the approach, it hardly qualifies as a stringent test of the
formalism. Although both the effective operator and the
ground-state wave function are modified at short distances
~see Figs. 1 and 2! the operator itself has so little support at
short distances that the two integrands@Eqs. ~20! and ~22!#
become practically indistinguishable from each other~see in-
set in Fig. 2!. Indeed, an acceptable result is obtained even
when the operator is not properly renormalized:

^x2&BE5E
2`

`

dx
x2

4
@cg.s.

eff ~x!#25~1.878 34!2 fm2. ~23!

A more sensitive test of the approach is provided by the
elastic form factor of the deuteron, which in our simple one-
dimensional model reduces to the following expression:

Fel~q!5ur~q!u2,

r~q!5E
2`

`

dx cosS qx

2 Dcg.s.
2 ~x!512

q2

2
^x2&1O~q4!.

~24!

The corresponding expressions in theB1E and E1E ap-
proximations are given by

r~q!BE5E
2`

`

dx cosS qx

2 D @cg.s.
eff ~x!#2, ~25a!

r~q!EE5E
2`

`

dxFcosS qx

2 D G
eff

@cg.s.
eff ~x!#2, ~25b!

with the effective operator renormalized at short distances as
detailed above. That is,
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FcosS qx

2 D G
eff

5cosS qx

2 D F11S c~q!1d~q!
]2

]j2D exp~2j2!G .

~26!

The renormalization procedure is illustrated in Fig. 3 at the
single momentum-transfer value ofq52 fm21. It is impor-
tant to note that the renormalization coefficients (c and d)
must be tuned at each value of the momentum transferq. The

solid line in the figure displays an effective-range-like expan-
sion for the bare operatorO(x)5cos(qx/2) @as described in
Eq. ~18!#, with the slope and intercept clearly indicated in the
figure ~note that for clarity the plots are normalized to 1 at
k250). It becomes immediately evident that the predicted
low-energy behavior of the exact theory cannot be repro-
duced without a proper renormalization of the operator. In-
deed, theB1E calculation predicts the wrong momentum
dependence; the sign of the slope is wrong. In contrast, it
becomes a simple matter to tune the parameters of the effec-
tive operator to reproduce exactly the low-energy behavior of
the exact theory~dashed line!.

Having corrected the short-distance structure of the opera-
tor one proceeds to compute the elastic form factor of the
deuteron, which now is apredictionof the effective theory.
The structure of the form factor~again atq52 fm21) is
shown in Fig. 4. The main panel shows bare@i.e., cos(x)] and
effective operators, displayed as solid and dashed lines, re-
spectively. Both the effective deuteron wave function~inset
in Fig. 1! and the effective operator differ considerably from
their bare counterparts at short distances—and so is the prod-
uct of the ~square of the! wave function times the operator
~inset in Fig. 4!. Yet the area under the curve—whose square
is proportional to the elastic form factor—is essentially un-
changed. For comparison, the exact (B1B) and effective
(E1E) theories yield values ofFel50.020 19 andFel

50.020 12, respectively. In contrast, a (B1E) calculation
with an effective wave function—but still employing a bare
operator—results in a discrepancy of nearly 20% (Fel
50.017 062).

We conclude the discussion of the elastic form factor of
the deuteron by displaying in Fig. 5 its momentum-transfer
dependence up toq55 fm21. Recall that effective param-
eters must be tuned for every value ofq. It is evident from
the figure that the renormalization of the operator at high-
momentum transfers is essential, as it is at highq that the
short-distance structure of the wave function~and of the po-
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<
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√<x
2
>=1.88 fm

a=1.16 fm
c=+1.520
d=-0.305

FIG. 2. Bare~solid line! and
effective ~dashed line! X2 opera-
tor. Note that while the operators
are considerably different at short
distances, its ground-state expec-
tation values are not~see inset!.
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FIG. 3. An effective-range-like expansion for the elastic form
factor of the deuteron atq52 fm21. Calculations are displayed for
the bare theory~‘‘ B1B’’ !, the effective theory~‘‘ E1E’’ !, and for a
‘‘hybrid’’ approximation that uses bare operators with effective
wavefunctions~‘‘ B1E’’ !. The solid (B1B) and dashed lines (E
1E) are identical~by construction! since the effective parameters
(c andd) are tuned to reproduce the expansion for the bare theory.
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tential! is being probed. Failing to correct the operator results
in a rather poor representation of the elastic form factor for
q*2 fm21 ~squares!.

For completeness, and as a further stringent test of the
formalism, we compute ground-state observables for an op-
erator with the most extreme short-range structure possible:
the Dirac d function. In the bare theory the ground-state
expectation value is simply given by the square of the deu-
teron wave function at the origin. That is,

^d~x!&5E
2`

`

dxd~x!cg.s.
2 ~x!5cg.s.

2 ~0!50.015 21 fm21.

~27!

As the sharp features of the bare potential are no longer
present in the effective potential, the effective deuteron wave
function at short distances is considerably larger than the
bare wave function~see Fig. 1!. As a result, a (B1E) cal-

culation using an effective wave function but a bare
d-function operator grossly overestimates the result:
^d(x)&BE50.049 81 fm21. Instead, by following the renor-
malization procedure outlined above, one obtains an effec-
tive Dirac d-function operator,

deff~x!5
1

a S c1d
]2

]j2D exp~2j2!

(c50.250, d520.035), ~28!

that yields a ground-state expectation value of^d(x)&EE
50.015 23 fm21. This result deviates from the exact value
by less than one part in a thousand.

In Table I we have listed~for completeness! some of the
results presented previously in graphical form. The operators
appearing in this table are listed in order of the importance of
their short-range components. For example, the root-mean-
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FIG. 4. Bare~solid line! and
effective ~dashed line! for the
cos(x) operator. The inset shows
the product of the square of the
wave function with the operator
for the three calculations dis-
cussed in the text. The elastic
form factor of the deuteron~at q
52 fm21) is proportional to the
square of the area under the curve.
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FIG. 5. The elastic form factor
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that the predictions from the effec-
tive theory (E1E) agree with the
exact theory at at all values of the
momentum transferq.
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square radius of the deuteron depends little on the short-
range structure of the wave function while the Dirac
d-function operator depends exclusively on it. For each op-
erator, we show the two effective coefficientsc andd deter-
mined by the fitting procedure outlined above. All these are
dimensionless quantities and it is gratifying that they are all
of the order of 1 in keeping with the principle of ‘‘natural-
ness’’@28#. We note that in some cases failing to renormalize
the operator (B1E) leads to discrepancies that are as large
as 50% or even 100%. In contrast, calculations using effec-
tive wave functions and effective operators (E1E) show
excellent agreement withB1B calculations regardless of the
short-range structure of the operator. We stress that all these
are predictions of the effective theory, as the tuning of pa-
rameters is done in the scattering sector. In particular, it is
satisfying that the elastic form factor of the deuteron atq
50 deviates from unity by less than two parts in a thousand.
We emphasize that such precise agreement is nontrivial; in-
deed, it reflects the soundness of our method.

IV. CONCLUSIONS

While the field of nuclear structure has benefited from
recent advances in numerical algorithms and sheer computa-
tional power, the shell-model problem, in its purest form,
remains intractable. As a result, an important part of the
nuclear-structure program for many years has focused on the
construction of effective interactions for use in shell-model
calculations. Two of the most promising approaches are
based on the so-called similarity-transformation methods~in
its many varieties! and on effective-field-theory techniques.
The main tenet underlying both approaches is that the short-
distance structure of a theory~which is complicated and at
present unknown! is hidden to a long-wavelength probe. It
should then be possible to ‘‘soften’’ the corresponding short-
range portion of the potential while leaving all low-energy
properties of the theory intact, thereby providing a signifi-
cantly more tractable—from a computational point of
view—interaction.

The main focus of the present paper is the determination
of single-particle operators which can be employed consis-
tently in conjunction with wave functions obtained using ef-
fective interactions. As observed by many authors, such con-
sistency is essential to the correct implementation of
effective theories. For computational simplicity we adopted a

one-dimensionalNN interaction, which nevertheless incor-
porates the well-known pathologies of a realisticNN poten-
tial. The central result of this work is the proposal and imple-
mentation of a single underlying approach for the
construction of both effective interactions and effective op-
erators. The construction of the effective interaction follows
a well-known approach that is based on a textbook derivation
of the effective-range expansion. What is not well known~at
least to us! is that the same approach may be generalized to
effective operators.

Results from such an implementation are very gratifying,
as evinced from a variety of calculations of ground-state ob-
servables. For those observables insensitive to the short-
range structure of the potential, such as the root-mean-square
radius of the deuteron, the renormalization of the bare opera-
tor, while required by consistency, is of little numerical con-
sequence. Yet, failing to properly renormalize operators sen-
sitive to short-range physics, such as the elastic form factor
of the deuteron at high-momentum transfers, can yield dis-
crepancies as large as 200%. The consistent renormalization
procedure advocated here yields in all cases errors of less
than 1%.

We conclude with a short comment on future work. The
results presented here are encouraging and lend validity to
the proposed approach, which is currently being extended to
the three-body system. Different algorithms are being em-
ployed to solve for the ground state of the three-body system
and in all cases, perhaps not surprisingly, better convergence
properties are obtained with the effective rather than with the
bare interaction. The results obtained here also constitute a
promising first step toward our ultimate goal of combining
similarity-transformation methods with effective interac-
tions. The effective interactions and operators obtained
here—with their sharp short-range features no longer
present—could provide a more suitable starting point for the
numerically intensive approaches based on similarity trans-
formations. Finally, the method proposed here will have to
be extended to three spatial dimensions. Other than numeri-
cal complexity, we do not foresee other serious challenges.
Indeed, the approach presented here for the construction of
effective interactions~whose three-dimensional derivation
may be found in several textbooks! had to be adapted to one
spatial dimension. In summary, a novel approach for the
renormalization of operators in a manner consistent with the

TABLE I. Ground-state expectation values for various operators in the different approximation schemes described in the text.B1B
indicates bare operators with bare wave functions,B1E bare operators with effective wave functions, andE1E effective operators with
effective wave functions. Note that the root-mean-square radii are given in femtometer and^d(x)& in fm21. Finally, thec andd coefficients
are dimensionless parameters of the effective theory.

^O(x)& c d B1B B1E E1E

A^x2& 11.51979 20.30545 1.87997 1.87834~0.09%! 1.87988~0.01%!

u^cos(0)&u2 20.02016 10.02985 1.00000 1.00000~0.00%! 1.00155~0.16%!

u^cos(x/2)&u2 20.06440 10.13429 0.04159 0.04261~2.45%! 0.04181~0.53%!

u^cos(x)&u2 20.79386 20.54503 0.02019 0.01706~18.4%! 0.02012~0.35%!

u^cos(2x)&u2 20.52925 10.14806 0.01541 0.00698~220%! 0.01544~0.19%!

^d(x)& 10.24964 20.03501 0.01521 0.04981~327%! 0.01523~0.13%!
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construction of the effective potential has been proposed and
implemented with considerable success. The results obtained
here are gratifying and suggest how in the future effective
theories may be profitably combined with more traditional
methods to tackle the nuclear many-body problem.
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