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PHYSICAL REVIEW C 68, 034003 (2003

Low-energy operators in effective theories

C. Felline! N. P. Meht& J. Piekarewic?,and J. R. Shepafd
!Department of Physics, Florida State University, Tallahassee, Florida 32306, USA
2Department of Physics, University of Colorado, Boulder, Colorado 80309, USA

(Received 1 May 2003; published 22 September 2003

Modern effective-theory techniques are applied to the nuclear many-body problem. A novel approach is
proposed for the renormalization of operators in a manner consistent with the construction of the effective
potential. To test this approach, a one-dimensional, yet realistic, nucleon-nucleon potential is introduced. An
effective potential is then constructed by tuning its parameters to reproduce the exact effective-range expansion
and a variety of bare operators are renormalized in a fashion compatible with this construction. Predictions for
the expectation values of these effective operators in the ground state reproduce the results of the exact theory
with remarkable accuraciat the 0.5% level This represents a marked improvement over a widely practiced
approach that uses effective interactions but retains bare operators. Further, it is shown that this improvement
is more impressive as the operator becomes more sensitive to the short-range structure of the potential. We
illustrate the main ideas of this work using the elastic form factor of the deuteron as an example.

DOI: 10.1103/PhysRevC.68.034003 PACS nunier21.60.Cs, 21.30.Fe

[. INTRODUCTION clear. Even in approaches based on similarity transforma-
tions where the modification to operators is well delineated,
The construction of effective interactions for use in shell-it remains common practice to employ bap@ther than

model studies of nuclear structure has enjoyed a resurgen&gnormalizegioperators. In this work we adopt some modern

due in part to the development of modern effective-fieldCONCEPLS of low-energy effective theoriésT’s) in the hope

theories[1,2]. Further, tremendous advances in raw compu-‘?f improving some of these sho_rtcomings. The basic assump-
on of ET's is that the complicated, and likely unknown,

tational power and numerical techniques have enabled th di details of a th hidden f I
consistent and systematic implementati8a-5] of 25-year- S ort-distance details of a theory are hidden from a long-
old approaches based on the so-called similarity-Wavelength. probe..lt should then b.e posglble' to modify the
transformation method$—9]. Such implementations bypass corresp_ond_mg portion of the poten_t|al Iea\_/lng its low-energy
most of the recent criticism levied on frequently employedP'OPerties intact. In order to achieve this, the low-energy

shell-model approaches that rely on effective interaction?r()per.ti(':'S must be k”OYV” in advance eith_er from experiment
that do not follow in any systematic way from a realistic or, as in the case of this study, from solving the bare theory

nucleon-nucleon NN) interaction [10,11. Indeed, exactly at low energy. As has bt_aen observed by many a_uthors
similarity-transformations methods indicate how bare interlzz’zc)g'hETS fofr theNl\(ljlntecrjactlon reprodufcehth_e eff.ect.lve—f
actions and operators should be modified in a systematic wa{*"'9€ theory of many decades ago. Part of the inspiration for
to account for the inevitable effects of truncations. 1€ operator methOdS repprted here arose frqm an eSpeC'a”y
Earlier work by two of us(J.P. and J.R.5.on low- simple derivation of effective-range theory which appears in

dimensional quantum magnef42-16 made us familiar theTthexts by S%hiﬁ %nd Taqur24,25(§|j. follows: In S I
with a variety of theoretical approaches that have been re- '€ Paper nhas been organized as Toflows: In >ec. 1l a

cently adapted to the nuclear many-body problg]. In simple derivation of the effective-range expansion in one
that work it was shown how to combine sim.ilarity- spatial dimension is presented. Next, a prescription for the

transformation methods, specifically the contractor renorma|[enormalization of effective operators that is consistent with

ization (CORE approach of Morningstar and Weinstein the construction_ of the effective potential i_s introduced. In
[18,19, with effective interaction methods, such as thosesec' Il expectation values for various effective ope_rator_s are
discussed by Lepagél]. In particular, accurate predictions computed and are then compareq fo those obtal_ned in the
for the ground-state energy of the three-body system wer are(exac) theo_ry. Fmally, conclusions and some ideas for
made with relatively little computational effort when both the future are discussed in Sec. IV.
techniques were used in a complementary fashion. As dis-
cussed in other recent publicatiof20], these similarity-
transformation methods may be understood in the context of The aim of this section is to adapt a textbook derivation of
effective theories, which in turn rely on renormalization- the effective-range formula in three spatial dimensions
group techniquef21]. [24,25 to the one-dimensional problem considered here.
What is not at all cleafat least to usin effective-theory  These ideas are then used for the construction of an effective
approaches is how to modify operators in a manner considnteraction that reproduces the scattering length and effective
tent with the modifications of the underlying Hamiltonian. range of the exadti.e., bare theory. Finally, an approach is
The need for consistently modified operators must be emphgroposed for the renormalization of operators in a manner
sized. Parametrized operators are often added to improweghich is consistent with the construction of the effective
guantitative agreement with data, but their origin is left un-interaction.

Il. FORMALISM
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A. Effective-range formula

1 o0
ktano(k)= a—o—szo AX[ (X) o (X) — Pi(X) o(X) ]

To arrive at the effective-range formula we proceed along
the lines of Schiff and Tayloj24,25, adapting their deriva-
tion to the one-dimensional case considered here. The even- < r—0k2+O(k4) )
parity solution of the scattering problem satisfies the time- a, 2 '
independent Schainger equation

Note that the(even-parity scattering length and effective-

dd_22+k2 U | g0 =0 range parameters have been defined as
-1_ _ * 2,0\ 42
[K2=24E and U(X)=2uV(X)], (1) a —lI(er:)ktancS(k), r0—2fo dx{ o(X) — pa(X)].
subject to the following boundary conditions: ®)
lim ¢ (X) =1+ O(x?), (2a) B. Effective potential

—0 . . . . .
g The purpose of this section is to summarize briefly the

; _ — _ ; main points from Ref{17] which will, in turn, motivate our
M 41¢(x) = i(x)=costx) —tan sk sin(kx) proposed method for constructing effective operators. To
start, a bare one-dimensiondD) NN interaction with the

_ cogkx+ (k)] , same pathologies as a realistic interaction is assumed. That

~ cosd(k) (2b) is, the bare potential is given by the sum of a strong short-
) range repulsive exponential and a medium-range attractive

Note that¢,(x) denotes the solution of the free Scimger  exponential:

[U(x)=0] equation that coincides with(x) at largex. It

X—00

then follows immediately from the Schitimger equation that V(x)=Ve M4y g™, 9
dW( iy, o) The two masses were chosen to be equahie 400 MeV
dx_:k P(X) gho(X), (33 and m,=783 MeV, respectively, while the strengths of the
potentials {/s=—506 MeV andV, = +1142.49 MeV) were
W( by, o) chosen to give a binding energy and point root-mean-square
= k2 () po(X), (3b)  (rm9 radius for the symmetriq“deuteron”) state of E,
=—2.2245 MeV and = 1.875 fm, respectively.
where the Wronskian dfandg is defined as Employing an option originally suggested by Lepddé
and later adapted by Steele and FurnsfaB|27) to treat the
f(x)  g(x) NN interaction, we propose a Gaussian cutoff for the effec-
W(T.9)(0=|, ) g'(x) =[f)9"(x) =" (x)g(x)]. tive potential of the form
Upon integrating the difference of Eq&) one obtains Ver(X)= 2 C+d?+e?+ )exp(—§2), §=xla.
(10

[W( bk, o) (X) = W( e, 1ho) (X) ]g

w The parameters of the effective potentia,d,e, ...) are
:sz dX[ P(X) Po(X) — h(X)po(X)].  (5)  fixed to reproduce the low-energy scattering phase shifts.
0 That is, one adjusts the parameters until the following equa-

The contribution from the upper limit of the integral to the tion is safisfied:

left-hand side of the equation vanishes,ya$x) = ¢ (x) at

large distances. Further, as the derivative of the exact scat- ktans(k)= __sz AX] (X)) Yio(X) — di(X) po(X)]
tering solution vanishes at=0 [see Eq(2a)] the Wronskian
W( iy, o) vanishes as well. This yields (11

W( ¢y, =0)=[ ¢k(0) p4(0) — ¢ (0) (O 1 =
(6 60)(x=0)=[hi(0) $5(0) = $4(0) $o(0)] —— K2 fo X 00 Y5 (0 = Bi(X) do(0)],

o Qo
=k? JO dX[ @i(X) do(X) = ¥ (X) ho(X) ], (12)

(6) where z/xﬁ“(x) is a scattering solution of Ed1) with V(x)
replaced withV(x). Note that as in Ref17], the Gaussian
which in turn generates the well-known effective-rangecutoff parameter has been fixed @t 1.16 fm. The above
formula condition may be rewritten in the following convenient form:

034003-2
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FIG. 1. Bare(solid line) and
effective (dashed ling NN poten-
tials in a realistic one-dimensional
model. The inset shows “deu-
teron” ground-state wave func-
tions. The sharp features of the
bare potential are no longer
present in the effective potential.

Although the short-distance struc-
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% ther, it is unknown how to construct effective operators that
XZ)(k;c,d, .. -)Ef dX[ () o) — " (X) 5 (X)]=0.  are consistent with both the effective theory and similarity-
0 (13) transformation based approaches.
In this contribution we propose an approach for the modi-

Evidently, it is neither demanded nor expected that [E8) fication of operators that_is consis;ent, indeed mimics, the
be satisfied for arbitrary large values kf Rather, one fol- construction of the effective poten_tlal. We assume that the
lows a hierarchical scheme, based on power counting, thafomentum dependence of matrix elements (sfimple)
assures that observables in the bare and effective theory [§ingle-particle opezratorg may be accounted for by an expan-
indistinguishable at low energies. It should be emphasize§©on in powers ok® having the same form as the effective-
that the specific form of the potential is somewhat arbitrary/ange formulgEq. (7)]. To do so, one demands that matrix
as the short-range structure of the theory becomes encoded f#fMents of effective operator©fy) with scattering-wave
the effective parameters. solutions of the effective potentiak/f"') possess the same

As a simple illustration of this procedure we display in momentum dependence as those using the bare operators
Fig. 1 bare(solid line) and effective(dashed lineNN poten- with the exact wave functions. In analogy with the definition
tials. The bare potential, with its characteristic short-rangef the effective potentialEq. (10)], we parametrize the ef-
structure, yields a scattering length af="5.247 fm and an  fective operators via
effective range ofry=1.521 fm, respectively. The calcula-
tion of low-energy phase shifts is repeated using the effectiv . _ _ g2
potential[Eq. (10)] with its two parametersc( and d) ad- Oerxicd, ) =0 e —¢ )1'
justed to reproduce the exact effective-range expansion to (14)
order k?. The resulting parametersc€ —0.039 andd

= —0.160) are natural and yield a smooth effective potentialryig harametrization affects only the short-range behavior of

which, as far as the low-energy properties of the theory argye gnerator just as using the effective potential modifies
concerned, is practically indistinguishable from the bare po'only the short-range structure of the wave function. The pa-

tential. Indeed, bulk properties of the ground stdtence- — ,natere ) ... (as beforgare tuned to the low? behav-
forth referred to as the deuteroare predicted to be identical o of the exact matrix elements. To be more specific about
to those obtained in the bare theory. This is in spite of theOur procedure, we fit—in complete analogy to Etg—the

vastly different short-range structure of the wave funCtionSparameters of the effective operator by requiring that
(see inset in Fig. 11

(92

1+|ct+td—+---
9E?

C. Effective operators 8(0)(k;c,d, .. ')EJ AX] (X)O(X) ¢ o(X)
One of the main criticisms levied on traditional shell- 0
model approaches is the lack of consistency between the —wﬁﬁ(x)Oeﬁ(x;c,d, . _Wﬁfio(x)]:o,

construction of the effective potential and the renormaliza-
tion (if any) of the bare operatorisl0,11. While important
steps have been taken to correct this inconsistency, both in
the area of low-dimensional quantum magngtel] and  The integral in this expression is convergent as the effective
nuclear structurg4], these are in the very early stages. Fur-theory demands that

(15
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lim y§"(X) = (X, (163 12 = X2
X ‘ ‘ <X2>BBE<§ nzl (Xn_xc.m)2> = Jloodxxz ‘rlfés(x)
lim Ogq(x;c,d, .. .)=0O(X). (16b) =(1.879772 fm2 (20)

The corresponding calculation in the effective theory re-
rHuires a renormalization of the bare operator. To do so we
follow the prescription outlined in the preceding sectieae
Egs.(18) and(19)] to obtain

we add and subtract the following term:

| 0000 4101, 17

62

1+ c+d5—¥)exq—§2)l

2 _ 2
Xeff= X

where we recall thatp,(x) is the free solution of the 1D
scattering problenisee Eq.2b)].

To extract the parameters of the effective operator we now (c=1.520, d=—-0.309. (21)
fit—in the spirit of the effective-range expansion—the low-
energy matrix elements of the bare operator between bar@ this manner the root-mean-square radius predicted by the
scattering wave functions according to effective theory becomes

. - X2
(O)ps(k)= fo dX] i X) O(X) Py—o(X) (X%)ee= fﬁxdxjﬁ[wg,ﬂs_(X)]é(1-879882 fm2. (22)

This represents a discrepancy of about one part th 10
While this result is gratifying and lends some credibiliity to
(18 the approach, it hardly qualifies as a stringent test of the
formalism. Although both the effective operator and the
The parameters fixing the effective operators are then adground-state wave function are modified at short distances
justed so that the above expansion is recovered. That is, (see Figs. 1 and)2he operator itself has so little support at
short distances that the two integran@ss. (20) and (22)]
* off ) off become practically indistinguishable from each ottsee in-
(O)ee(k) = fo dX[ 1 (X)Oer(X:0,C. .. ) thi=o(X) set in Fig. 2. Indeed, an acceptable result is obtained even
when the operator is not properly renormalized:

- ¢k(X)O(X)¢k=O(x)]: a—I—IBkZ—I— —

_d’k(x)o(x)d)k:o(X)]:a—l—ﬂkz-}—. . 2
" 0C)ee= f i U0 TP= (1878397 . (29

Note that whenO(x)=O¢=1 one recovers the effective-
range expansion. A more sensitive test of the approach is provided by the
elastic form factor of the deuteron, which in our simple one-
. RESULTS dimensional model reduces to the following expression:

In this section we compute matrix elements of various Feol(@)=p(q)|
operators using three different schemes. The first scheme
uses bare operators with bare wave functiomes label these . ax o
calculations as B+B”); these should be rggarded as “ex- p(q):f dxcos(—) llfé_s,(x)zl— —(x?)+0(q%).
act” answers. Second, we compute matrix elements in an — 2 2
approximation(labeled as B+E") that uses effective wave (24)
functions but retains bare operators. As we show below, for
operators insensitive to short-range physics this inconsisthe corresponding expressions in the-E and E+E ap-
tency introduces small discrepancies. However, the more inProximations are given by
portant the short-range physics, the greater the lack of ac-
cord. Finally, we perform calculations in a consistent low- * gx
energy approximatiof E+E” ) that employs both effective p(A)pe= dexco{ 7) (455012, (253
wave functions and effective operators. Showing that these
calculations are in excellent agreement with the ex&t ( .
+B%( answers represents the central result of the present P(Q)EEZJ dx
work. —
Because of its simplicity, a natural place to start testing
the proposed approach is the calculation of the root-mearwith the effective operator renormalized at short distances as
square radius of the deuteron, which is given by detailed above. That is,

coa(q{” T, (@b

034003-4
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8 T T [ T 1 | 7
B 0-25_|||||||||||||_ —
- 02 Vex’>=1.88 fm - |
6l— - . _
A 0151 g
— —
~ F ]
-V o1 - - o
L C 7 n FIG. 2. Bare(solid line and
§ 0.05F - effective (dashed ling X? opera-
o~ M | | ] ] tor. Note that while the operators
X [ S T RET R u are considerably different at short
— x (fm) — Eﬁre i - distances, its ground-state expec-
— ective] tation values are ndisee inset
2= a=1.16 fm —
— c=+1.520 —
— d=-0.305 —
B I R R T
% 1 2 3

x (fm)

92 )
c(a)+ d(Q)_agz) exp(— &)
(26)

qx qx solid line in the figure displays an effective-range-like expan-
c05< 7) =c05<7 . sion for the bare operatdd(x)=cos@x/2) [as described in

eff Eq. (18)], with the slope and intercept clearly indicated in the
figure (note that for clarity the plots are normalized to 1 at
k?=0). It becomes immediately evident that the predicted
The renormalization procedure is illustrated in Fig. 3 at thelow-energy behavior of the exact theory cannot be repro-
single momentum-transfer value g&=2 fm™*. It is impor- ~ duced without a proper renormalization of the operator. In-
tant to note that the renormalization coefficientsandd)  deed, theB+E calculation predicts the wrong momentum
must be tuned at each value of the momentum tramsféhe  dependence; the sign of the slope is wrong. In contrast, it

becomes a simple matter to tune the parameters of the effec-

1.003 BERRREEREEREEEEEEE Pr:ls gs;acr?tt?]!;or)zgg;%(lt:jcin(;xactly the low-energy behavior of
— B+B =2 fm™* — Having corrected the short-distance structure of the opera-
- |---- E+E c=-0.794 m tor one proceeds to compute the elastic form factor of the
- = — B+E d=-0.545 B deuteron, which now is arediction of the effective theory.
The structure of the form factofagain atq=2 fm™1) is
shown in Fig. 4. The main panel shows bfire., cosk)] and
effective operators, displayed as solid and dashed lines, re-
spectively. Both the effective deuteron wave functiorset
in Fig. 1) and the effective operator differ considerably from
their bare counterparts at short distances—and so is the prod-
uct of the(square of thewave function times the operator
(inset in Fig. 4. Yet the area under the curve—whose square
is proportional to the elastic form factor—is essentially un-
changed. For comparison, the exa@®+B) and effective
L ] (E+E) theories yield values ofF,=0.02019 andFy

T Ty =0.02012, respectively. In contrast, 8{E) calculation

0'9909_000 0.005 0.010 0.015 0.020 0.025 with an effective wave function—but still employing a bare

K2 (fm'z) operator—results in a discrepancy of nearly 20%,(
=0.017 062).

FIG. 3. An effective-range-like expansion for the elastic form  We conclude the discussion of the elastic form factor of
factor of the deuteron at=2 fm~’. Calculations are displayed for the deuteron by displaying in Fig. 5 its momentum-transfer
the bare theory* B+B”), the effective theory* E+E” ), and fora  dependence up tq=5 fm~*. Recall that effective param-
“hybrid” approximation that uses bare operators with effective €ters must be tuned for every value @flt is evident from
wavefunctions(“ B+E”). The solid 8+B) and dashed linesg{  the figure that the renormalization of the operator at high-
+E) are identical(by constructioh since the effective parameters momentum transfers is essential, as it is at higthat the
(c andd) are tuned to reproduce the expansion for the bare theoryshort-distance structure of the wave functi@md of the po-

1+

1.002

1.001

<cos(gx/2)>(k)

1.000
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N

—_— Bare T T | T T | T —
1'5_ ——— Effective 0.05}—= —  B+B __ __
e~ I~ —— EtE| T —]
N N C R —- B+E| ] ] FIG. 4. Bare(solid line and
1 \ 7>7<r o - ] effective (dashed ling for the
. 8 L . ] cosf) operator. The inset shows
‘>0<'T v 0.05— I — the product of the square of the
g o5 C 41 wave function with the operator
O - Ly NS for the three calculations dis-

1 cussed in the text. The elastic

[ a=1.16fm
0

2 /]
0 x (fm) ] form factor of the deuteroffat g
— =2 fm~1) is proportional to the
05 c=-0.794 ] square of the area under the curve.
) d=-0.545 —
I I I L 17
! 1 3 5

X (fm)

tential) is being probed. Failing to correct the operator resultsculation using an effective wave function but a bare

in a rather poor representation of the elastic form factor fors-function operator grossly overestimates the result:

q=2 fm ! (squares (8(x))ge=0.04981 fm L. Instead, by following the renor-
For completeness, and as a further stringent test of thmalization procedure outlined above, one obtains an effec-

formalism, we compute ground-state observables for an optive Dirac §-function operator,

erator with the most extreme short-range structure possible:

the Dirac § function. In the bare theory the ground-state

expectation value is simply given by the square of the deu- Oeft(X) = 2

teron wave function at the origin. That is,

(92
c+ da_gz) exp — £2)

B (c=0.250, d= —0.035), (28
— 2 _ 42 _ ~1

(8(x)) f—de(S(X)%'S'(X) ¥55(0)=0.01521 fm . that yields a ground-state expectation value (&{x))ge

(27) =0.01523 fmL. This result deviates from the exact value
by less than one part in a thousand.

As the sharp features of the bare potential are no longer In Table | we have listedfor completenegssome of the
present in the effective potential, the effective deuteron waveesults presented previously in graphical form. The operators
function at short distances is considerably larger than thappearing in this table are listed in order of the importance of
bare wave functiorisee Fig. 1 As a result, aB+E) cal- their short-range components. For example, the root-mean-

lo%g ‘ ‘ ‘ ‘ é

o = ]

r B2 x  B+B (Exact) ]

10_1 L ® O B+E |

E ® O E+E 3

o ® 7

- ® 4

-2
10°F Ry 00 | .

g ® g O FIG. 5. The elastic form factor
= r DDDD ] of the deuteron in the three calcu-
= 10°F BE Eﬁé} lations discussed in the text. Note
L E 3 that the predictions from the effec-

L i tive theory E+E) agree with the

10" 3 E exact theory at at all values of the

F ® ] momentum transfeq.

10°F E
-6 i I [ [ [ P i
107 1 2 3 4 5
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TABLE |. Ground-state expectation values for various operators in the different approximation schemes described in BheBtext.
indicates bare operators with bare wave functid$,E bare operators with effective wave functions, dhét E effective operators with
effective wave functions. Note that the root-mean-square radii are given in femtometg$(apin fm~1. Finally, thec andd coefficients

are dimensionless parameters of the effective theory.

(O(x)) c d B+B B+E E+E

&) +1.51979 —0.30545 1.87997 1.87838€.09% 1.87988(0.01%
|(cos(0)? —0.02016 +0.02985 1.00000 1.00000.00% 1.00155(0.16%9
|(cos2))|? —0.06440 +0.13429 0.04159 0.04262.45% 0.04181(0.53%
|(cos&))|? —0.79386 —0.54503 0.02019 0.017088.4% 0.02012(0.35%
|(cos())|? —0.52925 +0.14806 0.01541 0.0069220% 0.01544(0.19%
(8(x)) +0.24964 —0.03501 0.01521 0.0498B27% 0.01523(0.13%

square radius of the deuteron depends little on the shortne-dimensionaNN interaction, which nevertheless incor-
range structure of the wave function while the Dirac porates the well-known pathologies of a realigtidl poten-
d-function operator depends exclusively on it. For each optial. The central result of this work is the proposal and imple-
erator, we show the two effective coefficiemtandd deter- mentation of a single underlying approach for the
mined by the fitting procedure outlined above. All these areconstruction of both effective interactions and effective op-
dimensionless quantities and it is gratifying that they are allrators. The construction of the effective interaction follows
of the order of 1 in keeping with the principle of “natural- 5 well-known approach that is based on a textbook derivation
ness”[28]. We note that in some cases failing to renormalizeys 1he effective-range expansion. What is not well kno@n

the operator B+E) leads to discrepancies that are as larggqast to usis that the same approach may be generalized to
as 50% or even 100%. In contrast, calculations using effeCzgactive operators.

tive wave functions and effective operatol8{E) show Results from such an implementation are very gratifying,

excellent agreement with B calculations regardiess of the ¢ o\ inceq from a variety of calculations of ground-state ob-

short-range structure of the operator. We stress that al theséf?’ervables For those observables insensitive to the short-
are predictions of the effective theory, as the tuning of pa- '

rameters is done in the scattering sector. In particular, it igagge St;l:ﬁtu;e Otf the pgtentlal, SUCP ai_the rfot(;t-rgean—square
satisfying that the elastic form factor of the deuteromgat radius otthe deuteron, the renormalization ot the bare opera-

—0 deviates from unity by less than two parts in a thousandt®" while required by consistency, is of little numerical con-

We emphasize that such precise agreement is nontrivial; ir€duence. Yet, failing to properly renormalize operators sen-
deed. it reflects the soundness of our method. sitive to short-range physics, such as the elastic form factor

of the deuteron at high-momentum transfers, can yield dis-
crepancies as large as 200%. The consistent renormalization
procedure advocated here yields in all cases errors of less
While the field of nuclear structure has benefited fromthan 1%.
recent advances in numerical algorithms and sheer computa- We conclude with a short comment on future work. The
tional power, the shell-model problem, in its purest form,results presented here are encouraging and lend validity to
remains intractable. As a result, an important part of thehe proposed approach, which is currently being extended to
nuclear-structure program for many years has focused on thbe three-body system. Different algorithms are being em-
construction of effective interactions for use in shell-modelployed to solve for the ground state of the three-body system
calculations. Two of the most promising approaches arend in all cases, perhaps not surprisingly, better convergence
based on the so-called similarity-transformation meth@is properties are obtained with the effective rather than with the
its many varietiesand on effective-field-theory techniques. bare interaction. The results obtained here also constitute a
The main tenet underlying both approaches is that the shorpromising first step toward our ultimate goal of combining
distance structure of a theofwhich is complicated and at similarity-transformation methods with effective interac-
present unknownis hidden to a long-wavelength probe. It tions. The effective interactions and operators obtained
should then be possible to “soften” the corresponding shorthere—with their sharp short-range features no longer
range portion of the potential while leaving all low-energy present—could provide a more suitable starting point for the
properties of the theory intact, thereby providing a signifi-numerically intensive approaches based on similarity trans-
cantly more tractable—from a computational point of formations. Finally, the method proposed here will have to
view—interaction. be extended to three spatial dimensions. Other than numeri-
The main focus of the present paper is the determinatiocal complexity, we do not foresee other serious challenges.
of single-particle operators which can be employed consisihdeed, the approach presented here for the construction of
tently in conjunction with wave functions obtained using ef- effective interactions(whose three-dimensional derivation
fective interactions. As observed by many authors, such cormay be found in several textbogkisad to be adapted to one
sistency is essential to the correct implementation ofpatial dimension. In summary, a novel approach for the
effective theories. For computational simplicity we adopted arenormalization of operators in a manner consistent with the

IV. CONCLUSIONS
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construction of the effective potential has been proposed and
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