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Abstract

We consider an elementary mathematical puzzle known as a “difference box” in terms of a
discrete map from R* to R?* or, canonically, from a subset of the first quadrant of R? into itself.
We find the map’s unique canonical fixed point and answer the general question of how many
iterations a given “difference box” takes to reach zero.

1 Introduction

“Difference boxes”, also known as “diffy boxes”, are a simple mathematical puzzle which provides
elementary grades students with subtraction practice.
although among many Texas teachers it can be traced back to Prof. Juanita Copley of the University
of Houston, who introduced it as a problem-solving activity in professional development sessions
about twenty years ago (and who in turn cites her grandmother). Diffy boxes have been used in
numerous places as an example for elementary teachers of a way to practice arithmetic without the
tedium of drill (its use as a problem-solving activity will be addressed in the final section of this

paper).
One creates a difference box as follows:

1.

2.

It is perhaps surprising that diffy boxes always tend to “converge” rather quickly, that is, it usually
takes no more than a handful of iterations to get a box with all zeroes. Figure 1 shows a simple

Draw a (large) square, and label each vertex with a (real) number.

On the midpoint of each side, write the (unsigned) difference between the two numbers at

the endpoints.

Inscribe a new square in the old one, using these new numbers as vertices.

Repeat this process, and continue inscribing new boxes until one has all four vertices labeled

with 0.

example which converges to all zeroes after four iterations (on the fifth box).

*Corresponding author: kribs@uta.edu; P. O. Box 19408, Arlington, TX 76019-0408

The idea’s original author is unknown,



Figure 1: A simple diffy box (left) and its “descendants” (right)

The question we want to investigate is whether all diffy boxes really do converge to the zero
box, and, if so, how quickly? We will approach the problem by considering the diffy box process
as a map from the set of all possible 4-tuples, R*, into itself.

2 Definitions

We begin our analysis by defining some notation. We will denote by [a b ¢ d] the diffy box which
contains the numbers a, b, ¢ and d on its upper left, upper right, lower right, and lower left corners,
respectively (which makes the first box in Figure 1 [7 12 2 —2]).

Next we define notation for the diffy box iteration process, and some terms related to conver-
gence:

DEFINITION 1. The child of a given box B =[a bcd]is C(B) =[|b—a| |c—b| |[d —
¢| la —d|]. Bis a parent of C(B). (We shall see that any given box has many parents.)
The parent-child relation shall be denoted B > C'(B), and we shall denote C(C(B)) by
C?(B), etc.

DEFINITION 2. A given box B converges in n generations if and only if C"(B) = [0 0 0 0]
but C"~1(B) # [00 0 0]. B can then be said to have longevity n.

DEFINITION 3. Let | B| be the largest difference between two (not necessarily adjacent)
vertices of B.

DEFINITION 4. A box B is monotone if and only if its vertices are distinct and occur
around the square in numerical order from least to greatest.

Note that we shall consider boxes such as [2 1 4 3] monotone, since the definition allows us to start
with any vertex and proceed clockwise or counterclockwise from it. A couple of relatively quick
results may help the reader begin to develop some intuition as to how and why diffy boxes tend to
converge.

PRrROPOSITION 1. |C(B)| < |B|, and the inequality is strict if the four numbers in B are distinct.
Proof. Let w > x > y > z be the numbers in B (not necessarily in order of appearance). We have

|B| = w — z. The numbers in C'(B) all fall between 0 and w — z; hence |C(B)| < (w—2z) —0 = |B].
Furthermore, if w, z,y, z are distinct then C(B) does not contain zero, and hence |C(B)| < |B|. O



PROPOSITION 2. Any nonmonotone diffy box converges in 6 or fewer generations.

Proof. Table 1 details the longevity of all diffy boxes whose vertices are nonmonotone. The proof
is technical, by cases (a simpler proof follows from Figure 3 in Section 3). To put a given diffy
box into a form listed in the table, reorder the vertices (using reflection and/or rotation, isometry
properties which we shall discuss in Section 4) so that the smallest vertex is listed first, followed by
the smaller of the two vertices adjacent to it. (If two copies of the smallest number occupy adjacent
vertices, put them first and second, followed by the smaller of the two vertices adjacent to them.)
This reordering does not affect longevity. O

Longevity Isometric form of diffy box

a b cc], b closer to ¢ than to a
a bdc], band c on the same side of (a + d)/2

1 [aaaal,a#0

2 [abab]
[abcb], b= 2<

3 laabb]
[abbd], b= %<
[abdc],a—b=c—d
[acbd,a—b=c—d

4 Jaaald]
[a abc], b at least as close to ¢ as to a
[abac]
[a bbb]
[abbc], b# %<
labcb], b# EE
[a b cc], b at least as close to a as to ¢
[abdc], a—b# c—d, (a+d)/2 between b, ¢
[acb(]
[acbd],a—b#c—d

6 [aabcl,bcloser to a than to ¢
[
[

Table 1: Longevities for all nonmonotone diffy boxes (here a < b < ¢ < d)

Note that Proposition 2 includes any box whose vertex numbers are not all distinct. We will
observe in Section 4 that diffy boxes [a b ¢ d] whose vertices are monotone (with a < b < ¢ < d or
a > b > ¢ > d) have longevity 5 or greater.

Since, following Proposition 1, |C(B)| = |B| only when B’s vertices are not all distinct, we can
bound the longevity of any box that has all-integer vertices by observing that the range |B| of any
such box must decrease by at least 1 per iteration, until we reach a box C' with at least one pair of
identical vertices. At this point we compare in Table 1 the possible longevities of C' (2, 3, 4 or 6)
with the corresponding minimum possible range (1, 1, 1 or 3, respectively) and note the greatest
difference. We therefore have the following result.

COROLLARY. If B consists of integers, then the longevity of B is less than or equal to |B| + 3.



3 Canonical form

A little experimentation with different sets of numbers quickly leads to the observation that there
are different boxes which behave the same way as regards the iteration process which leads to zero.
For example, adding the same number to each of the vertices of a box B (B + k, k& € R), or
changing the signs of all the vertices (—B), will produce other parents of C(B), since each iteration
only records differences between successive vertices; thus the C' map is many-to-one. Furthermore,
since our real interest is this history of families rather than of individuals, we observe three other
types of changes which produce family histories parallel to the original: Multiplying each vertex of
a box B by a positive constant k£ will produce a box whose child is that same multiple of C(B):
kB > kC(B); B and kB should therefore take the same number of iterations to reach the all-zero
box. We may think of B and kB as “cousins” with the same family histories. Finally, rotating
or reflecting the numbers on the vertices of a box B (call this r(B)) will create another cousin, a
box whose child is the rotated or reflected version of C(B), r(B) > r(C(B)), and so on through
successive iterations. These changes are merely cosmetic, since the numbers retain their positions
relative to each other.

To simplify our analysis below, we will therefore define a set of equivalence classes which will
reduce the number of distinct boxes we must consider (and thereby reduce the dimension of the
problem considerably, as we shall see).

DEFINITION 5. The equivalence class of a box B = [a b ¢ d] is given by all combinations
of the following five properties:

(1) translation: Ve € R [abcd] ~ [(a+ @) (b+ a) (c+ a) (d+ a)];
(2) negation: [abcd] ~[—a —b —c —d];

(3) positive scaling: Vo € Rt [a bcd] ~ [(aa) (ab) (ac) (ad)];

(4) rotation: [abcd] ~[bcdal~[cdabl~[dabc|;

(5) reflection: [a b c d] ~ [d ¢ b a).

We can consider the first three properties as field properties, and the last two as isometry properties.
It can quickly be verified that this definition is indeed an equivalence relation, i.e., is reflexive,
symmetric, and transitive. We can also observe, following the same arguments given informally
above, that if By ~ By, then C(B;) ~ C(Bs), and B; and B; have the same longevity unless one
of them is the zero box and the other is [a a a a] (a # 0).

We would now like to find a way to select a unique member of each equivalence class so that
we can concentrate our remaining analysis on a reduced domain. Toward this end, we shall define
the canonical form for an equivalence class.

DEFINITION 6. The canonical form for a given diffy box equivalence class shall be one
of the following: (i) [0 0 0 0] for the class containing this (zero) box; (ii) [0 0 1 1] for
the class containing this box; or (iii) the unique member of the form [0 1 z y| which has
(z,y) €eS={x>0,y>1, z—1<y<z+ 1}, otherwise.

Equivalence class (i) consists of all boxes [a a a a] (a € R), which converge to the zero box in one
iteration (if a # 0). Equivalence class (ii) consists of all boxes [a a b b] and [a b b a] (a,b € R), and
can be seen to converge in three iterations (0011J>[0101]>[1111]>[000 0]). Identifying
the canonical form for all other classes besides these two requires the notion of an extreme element,
that is, an element a of a box which is either maximal (at least as big as each of the other elements)
or minimal (at least as small as each of the other elements). Note that at least two of the four

4



elements of each box must be extreme. The following result gives the procedure for determining a
type (iii) canonical form, as well as a justification of its uniqueness.

THEOREM 1. Any diffy box equivalence class of type (iii) (i.e., not of the form [a a a a] or [a a b b]
(a,b € R)) has a unique representative [0 1 z y] with (z,y) € S={z >0,y >1, z—1 <y < z+1}.

Proof. We first demonstrate an algorithm for finding the representative, using our equivalence
relations. We begin with an arbitrary diffy box [a b ¢ d].

1. Rotate (property (4)) until |d — a| is maximal among |a — b|, |b — ¢|, |c —d|, |d — a.

2. (a) Observe that either a or d must be extreme. If necessary, reflect (property (5)) to ensure
that a is extreme.

(b) If a and d are both extreme, it’s possible that |a — b] < |c — d|. If necessary, reflect
(property (5)) to make |a — b| > |c — d|.

3. If a is maximal, use negation (property (2)) to make a minimal.
4. Use translation (property (1)) to make a = 0.
5. Use positive scaling (property (3)) to make b = 1.

Observe that the properties created in each step are preserved in subsequent steps. The last step
is always possible since steps 2(b) and 4 together imply that b = 0 = ¢ = d, and the only two such
cases are equivalence classes (i) (¢ = d = 0) and (ii) (¢ = d # 0). Otherwise b > 0 (from steps 3
and 4), so positive scaling can be used to normalize b.

We now have [0 1 ¢ d] (from steps 4 and 5). From steps 3 and 4, ¢,d > 0. From steps 1, 4 and
5,d > 1. From step 2(b), [c—d| <1,s0c—1<d<c+1.

It remains to show that the canonical form (iii) is unique, that is, given [0 1 a b)) ~ [0 1 ¢ d]
where (a,b), (¢,d) € S as given in Definition 6, (a,b) = (¢,d). This can be seen first by observing
that 0 is a unique minimal number, i.e., a, b, ¢,d > 0 (except for [0 1 0 1], which has no other [0 1 ¢ d]
representation), and second on a case-by-case basis by taking a or b as maximal, and showing that
each of the seven transformations that would translate 0, 1, @ or b to 0 and normalize either of
the numbers adjacent to it, results in a (¢,d) ¢ S. As the details are simple but technical, we
leave them as an exercise for the reader (likewise the proof that the equivalence classes containing
[000 0] and [0 0 1 1] have no type (iii) canonical form representation). O

4 A two-dimensional map

We can now focus our remaining analysis on what happens to diffy box equivalence classes of the
form [0 1 z y| with (z,y) € S. We first observe that in the special case y = 1, the children will be
of type (i) or (ii) (since [0 1 z 1] > [1 |z — 1| | — 1| 1]), and hence will converge in 2 (z = 0,2) or 4
generations.

We shall now consider the diffy box process as a continuous map from S\{y = 1} into S, which
calculations show is given by



<

i N
P N D O O NN D

X

0.5 1 1.5 2 2.5

Figure 2: Subdivision of S into regions corresponding to the three branches of f
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Figure 2 illustrates the three domains S, S2, S3 into which this definition decomposes S.

By inspection we can see that the first and third branches of this function are infinite-to-one
mappings: the first branch sends all points to the line v = u — 1 (with u > 2 since y < z+ 1 implies
yz > 1) and the third branch sends all points to the line v = u + 1 (with 4 > 0 sincey >z — 1
implies 2=2 > —1). On the first branch (where z < 1), f(z1,71) = f(z2,2) implies zi—:é = g;:é,
that is, 2/331, y1) and (x2,y2) lie on the same line segment from (0,1). Likewise, on the third branch
(where y < ), f(z1,91) = f(x2,y2) implies gi—_; = £ 1 , that is, (z1,y1) and (x2,y2) lie on the
same line segment from (2,1). On these branches, f compresses two-dimensional regions into rays
on the boundary of S.

The second branch, however, is one-to-one: for (z1,y1) and (a:g,yg) both in Sy, f(z1,y1) =

f(z2,y2) implies (z1,y1) = (z2,2) (
and substituting into 1 + = o1 = ] 4 2= —2 ).

We can also see that the ﬁrst and thlrd branches have no fixed points inside their respective
domains: the first branch sends all points to the line v = w — 1, which isn’t in S, and branch 3
sends all points to the line v = u + 1, which isn’t in S3. (In fact, there is no possible periodicity
in these regions, either, since for (z,y) in S7 or S3, (¢,d) = f(f(z,y)) has d = 1.) Therefore any
fixed points must lie in S5. Indeed, straightforward calculations show that S contains the unique

fixed point (¢(q¢ — 1), q) ~ (1.5437,1.8393), where

— _ y1—1
y2 1asy2 1_( T1 )xz




1
q:§(1+ {’/19+3\/§+ \3/19—3\/§>

is the unique real solution to ¢* — ¢ —q—1 = 0. Here C([01 q(¢ —1) q]) ~[0 1 q(g — 1) q], i.e.,
the child is in the same equivalence class as the parent (and therefore takes as long to converge —
in other words, it has infinite longevity). The only other equivalence class for which this is true is
[0 0 0 0] (but properly speaking this class has no longevity).

We should note, however, that this does not imply that B = C(B) for members of the class
[0 1 g(g—1) g]. In fact, in an R*norm sense, as well as that of Definition 3, members of this
class do also approach the zero box under iteration (cf. Prop. 1) — they just take infinitely long
to get there. For example, calculation of a few iterations of the diffy box process beginning with
[01g(q—1) g] show that after the first step, the four entries gradually diminish in size (by a factor
of ¢ — 1) as they cycle around counterclockwise, in keeping with Proposition 1.

We now determine whether the fixed point (g(q — 1),q) is stable. To determine the stability
of a fixed point of a complex map, one looks at the Jacobian matrix. This is derived from the
linearization of the map, and consists of the map’s partial derivatives, evaluated at a given fixed

point. For f = (f1(z,y), f2(z,y)), the Jacobian is [gg;gi gg?gg]. This (second) branch of f has

1 r—2
J(x,y) [ ﬁ _(yfl) ] and J(Q(q 1)7Q) [ 1.1915 —2.1915 |-

This matrix has eigenvalues A =~ —1.6915+0.72247. Because the eigenvalues have magnitude greater
than 1, the fixed point is unstable. Because the imaginary components are nonzero, we see that
points near (q(q — 1), q) spiral away from it under (repeated) application of f. To read more about
stability analysis of fixed points, see [2, 3]. Because this is the only fixed point, one might expect
that further applications of f will eventually move any other point to the boundary of the domain,
and then out of it entirely. Therefore, we might expect that those diffy boxes that take longest to
converge correspond to those points in S closest to the fixed point (g(g — 1),q). As we shall see
below, these intuitive notions turn out to be correct.

If we begin a case-by-case analysis of the successive applications of f in S, we find the domain
subdividing into regions beginning along the boundaries and working in toward the fixed point.

EXAMPLE 1. Any box [0 1 z y] with z < 1 converges within 4 generations (3 if y = =z + 1, 2 if
(z,y) = (0,1)). We calculate

01zyl>[l(1-2) (y—z) yl>[z (y—1) z (y-D]>[ly—z-1| [y—z-1| |[y—z—1] [y—z—1[]>[00 0 0]

and observe convergence to the zero box one or two generations sooner in the aforementioned special
cases. (This corresponds to region S; in Figure 2.)

EXAMPLE 2. Any box [0 1 z y] with £ > y, £ > 2 converges within 4 generations (3 ify =z —1, 2
if (z,y) = (2,1)). We calculate

0lzy] plz-1)(@-yy>[z-2)(y—-1) (2y—z) (y—1)]
plly—z+1) (y—z+1) (y—z+1) (y—z+1)]>[0000],

again observing the quicker convergence for the special cases.



Figure 3: Subdivision of S into regions colored by longevity

EXAMPLE 3. Any box [0 1 z y] with 1 <y < z < 2 converges within 6 generations. We calculate

D1lzy] pA(z-1)(z-y)2>[2-2)(y—1) 2y —=) (y—1)]
Plla+y-3l(y—z+1) (y—z+1)|z+y-3|]>[p0p0
>pppp]>[0000]

where p = ||z +y — 3| —y + z — 1|. (Examples 2 and 3 together comprise region S3 in Figure 2.)

Note that Examples 1, 2 and 3, together with the case y = 1 discussed earlier and the type (i) and
(ii) classes, cover all nonmonotone classes of diffy boxes!. (Monotone classes have 0 < 1 < = < ¥.)
Further calculations show monotone classes have longevity at least 5. Figure 3 shows how S is
subdivided into regions of different longevities (the lighter the region, the greater the longevity).
The only two equivalence classes not depicted are (i) and (ii); here (ii) can be considered as the
point at infinity (by which is meant the one-point compactification of R?). The black dot in the
center is the fixed point, and the white region around it contains all equivalence classes of longevity
10 or more generations. Note that where two regions of different longevity meet, the boundary
between them “belongs” to the region of lower longevity.

To determine the longevity of monotone classes in full detail, we shall change our approach from
the sort of increasingly detailed calculations in the above examples to a consideration of pre-images
under f. We will therefore need the following result regarding the invertibility of the map f.

THEOREM 2. The map f has an inverse b which is well-defined on the interior of S (and {(z,1) :
0 < z < 2}), which maps the interior of S into the interior of S, and which preserves line segments.

land thus provide an alternate proof of Proposition 2



Proof. We have already seen that of the three branches given in the definition of f at the beginning
of this section, only the second is one-to-one. Since the images of the first and third branches lie on
the left and right boundaries of S, the inverse map b = f~! should be well-defined in the interior
of S (and y = 1). We can invert the expression for f on the second branch to find

2y z+y+1
b(z,y) = — —
r+y—1"z+y—1

for (z,y) in the interior of S (and {(z,1) : 0 < z < 2}). We observe that b maps the interior of S
into the interior of S: for b(z,y) = (u,v), £ > 0 and y > 1 together imply that v > 0, v > 1, and
u—1< v <u+1. Of course, we can also see that, as mentioned above, f~!(int .S) must fall within
the second region in the definition of f, So = {(z,y): 1<z <y <z +1}.

We can also observe, by calculation, that b preserves line segments in the interior of S: If we
have y = k1x + ko in this region, then we find

2(kyz + b ki + 1)z + by + 1
b(x,klx—i—kQ):(u,ru):( (kiz + k) (ki + 1)z + Ky + )

(ki + Dz +ko—1" (k1 + 1)z + ko — 1

U—<k1+1)u—|—(k2_kl>
- \k1 + ko ki+ko/)

Likewise f preserves line segments in region 2:

which obeys

2—-z z
kiz+ ko) = ={!
[z, kiz + ko) (u,v) ( +k1x+k2—1,k1$+k2_1>

:H,_(l_ik?yw(ﬂ) .
 \ki+ke+1 ki+ko+1)"

We shall now define a sequence of sets T;, (n > 1) inductively, as follows. Let 75 = S, and for
n > 1let Ty,y1 = f (T},). Because the backward map b is only well-defined in the interior of S, we
shall consider the first few examples individually, until we have a T;, C int S. We shall also need to
consider the type (ii) class (the point at infinity), asfor 0 <z <2, [01z 1]>[1 |z —1| |z —1] 1] ~
[0011]>[010 1], that is, the diffy box process sends points on the boundary y =1 (0 < z < 2) to
the type (ii) class, and then sends the type (ii) class to the point (0,1) € S. Excluding this point
from S, we find T3 = f=1(S) = (S\{y = 1}) U oo (see Figure 4), since the only points in S which
do not have images in S are on the lower boundary y = 1, and in addition the type (ii) class at oo
maps to (0,1).

Next we find that Ty = f~3(T3) = S\{(z,z £ 1)}, as f~1({
flz,y) = (k,1) = y =z +1), and f~H(o0) = {(z,y) : 0< , y = 1}. Following this,
Ts = fHTy) = {(z,y) : 1 <=z <y}, since f1(0,1) = {(z,z —1) : z > 2}, F12,1) =
{(z,z+1): 0<z <1}, fllz,z—1): 2>2} ={(z,9): 0<z <1, 1<y<z+l1}
i iz, z+1): 0<z<1}={(z,y): 2>2, z2—-1<y<z}and fl(z,z2+1): z>1} =
{(z,y): 1<z <2, 1<y<z} (and, again, f~}(c0) = {(z,y) : 0 <z <2, y =1}). Finally, we
find that Tg = f~1(T5) is the interior of the triangle with vertices (1,1), (2,1), and (2,3), again by
excluding the preimages of the parts of S excluded from T} (see Figure 4 for sketches of all these).
Since Ts C int S, we can use the one-to-one backward map b to determine 7, for n > 6.

If we continue on, we will see that T;, for n > 6 are also interiors of triangles; the second half
of Theorem 2 shows that b preserves triangles in the interior of S, and for n > 8 the vertices
of these triangles are also in the interior of S, which allows us to keep track of the T, via their

= 1}) = {(z,z £ 1)} (ie,



1.
0
y
1
0 1 X 0 1 X 0 1 X
Figure 4: The set T,, for 2 <n <7
y
3.5¢
3,
2.5¢
2,
1.5¢
1\
0.5 1 1.5 2 2.5 %

Figure 5: T}, (n < 10) superimposed upon each other
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n  Vertex 1 Vertex 2 Vertex 3
6 (1,1) (2,1) (2,3)
723 12 @&
s (Y 22 (¢
9 (32 GH &Y
0 ¢y 32 GY

Table 2: Vertices of T, for 6 <n <10

vertices (Table 2 provides a partial list, and Figure 5 shows boundaries of some of the T, (n < 10)
superimposed upon each other).

The utility of the Tj, follows from the fact that all equivalence classes of longevity n (n > 1)
are contained in T,. It is simple enough to check this for the first few examples; thereafter the
result follows by induction. It is also worth noting that although T;, does not contain all classes of
longevity n + 1, it does contain all classes of longevity n + 2 or greater. Furthermore, we observe
(again by induction, starting with n = 2) that 7},,9 C T}, so that T), 13 C T, 11, and we can classify
the set of all equivalence classes of longevity n (n > 1) as precisely T,\{Tp+1,Tnht+2}- That is, an
equivalence class has longevity n if and only if it is in 7}, but not T;,11 or Ty 49.

At this point the question arises of how to test where a given point (i.e., equivalence class)
falls relative to the sequence of triangles T}, (n > 6). Arguably the simplest is just to plot it on a
graph containing (enough of) the T;,. There are also several simple algebraic approaches, however,
to test whether a point falls within a given triangle. One is to write the points involved in vector
form. First let the interior of each triangle be written as the set of points whose coordinates are
a weighted average of the coordinates of the three vertices Vi, V3 and Va: T = {(z,7) : (z,y) =
rVi+sVo+ (1 —r — s)V3 for some r,s > 0, r+s < 1}. Now, to test whether a point P is inside T,
calculate the corresponding “coordinates” r and s:

“]=M%%@*%ﬁ

and see if r,s > 0, r + s < 1. For example, Ts = {(z,y) : (z,y) =r(1,1) +s(2,1) + (1 —r — 5)(2,3)
for some r,s > 0, r + s < 1}, and the fixed point P = (q(g — 1) q) ~ (1.5437,1.8393), making
ViVl = (-1,-2), B3V = (0,-2), T3P ~ (~0.4563, ~1.1607), and [1] = [ 9] [Z0450] —
(0.4563,0.124), Verlfylng that P € Tg.

The only drawback to an algebraic approach is that it is inescapably recursive, and the number
of calculations required to continue testing whether a given point falls inside each T, is comparable
to the number of calculations required simply to take the diffy box process toward its eventual
end. A graphical approach merely requires plotting a sufficient number of 7T}, so that the point falls
outside two consecutive triangles.

We close this section with one more way to look at the domain S. Figure 6 divides S into three
disjoint invariant regions by shades of gray: that is, each shade (light, medium or dark) represents
a sequence of images and pre-images under f, jumping around and toward the fixed point. The
fading of the colors near the fixed point indicates increasing longevity.
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Figure 6: Subdivision of S into 3 invariant regions (by color)

5 Conclusions, applications and extensions

We now return to our original question: Does every diffy box converge to the zero box, and, if so,
how many generations will it take? We can now reinterpret the results of our analysis on equivalence
classes in terms of boxes as 4-tuples. We might first make the observation that (as seen by the
regions into which S is subdivided in Figure 3) the use of “complicated” numbers such as radicals
or transcendentals does not really prolong convergence much, as within a couple of generations the
differences have propagated through the four vertices and get subtracted out. The answer to our
original question is yes, and for any longevity you specify, there are some classes of diffy box that
take that long to converge. However, there is one class of diffy box (the fixed point of f) which
takes infinitely long to converge; any diffy box in this class has entries (vertex numbers) which
become smaller and smaller but never actually reach zero. Nonmonotone boxes converge quickly
(in no more than 6 generations), while to determine the longevity of a monotone diffy box, it is
simplest to put the box in canonical form and compare its coordinates (x,y) with a graph of the
regions of various longevities identified in the previous section.

As mentioned in the introduction, diffy boxes can be used as problem-solving contexts for
elementary grades students (e.g., [1]). After working through several diffy boxes, children can
group them according to longevity and begin to observe some patterns in the forms of boxes which
converge in 1, 2, 3, and possibly 4 generations. They can also observe the properties we used in
Definition 5 to define equivalence, as well as the effects (or lack thereof) of using numbers other
than whole numbers.

Although we have classified boxes by how many generations they take to converge to the zero
box, it is an open question what number appears on all the vertices of the penultimate box, i.e.,
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the last box in the sequence before [0 0 0 0].

A natural extension of this problem which we leave to the reader is the generalization from
squares to other polygons. For example, a quick investigation of “diffy triangles” reveals a peculiar
chasing pattern and the surprising(?) result that no “diffy triangles” ever converge to the all-zero
triangle, except for those with all three numbers the same (to convince yourself of this, try to
construct the parent of such a diffy triangle). From this observation one might try to classify the
types of possible behavior of diffy triangles, or else move to a larger scale and perhaps consider
convergence of “diffy polygons” with even numbers of edges vs. odd numbers of edges. (If we place
“diffy polygons” in the context of graph theory, we see that any simple generalization to a more
general class of graphs is prevented by the fact that only the cycle graphs C),, i.e., polygons, have
line graphs isomorphic to themselves. Considering polygons as cycle graphs, however, does allow
us to include the trivial example Cy, the two-sided polygon, which converges in two steps for any
two starting values.)

Another possible extension is a change in the distance function used to calculate the vertices of
a given box’s child. We have used the symmetric “one-dimensional” norm f(a,b) = |a — b|, but we
might instead have used a “two-dimensional” norm f(a,b) = va? — b2, or an asymmetric one-norm
f(a,b) = |Aa — Bb|, for fixed weights A + B = 2 which place more emphasis on one vertex than
the other (in this case we would clearly have to identify vertices by orientation, e.g., b is clockwise
from a).

It is also interesting to note that the irrational number ¢ involved in the fixed-point diffy box
class is also associated with sequences of numbers called Tribonacci numbers. Similar to the notion
of Fibonacci numbers, Tribonacci numbers are a sequence of numbers ¢,, which obey the recursive
equation t, = t,—1 + tp—2 + t,—3. (The sequence typically begins with t; = 1, to = 1, t3 = 2.)
Like Fibonacci numbers, any sequence of Tribonacci numbers tends toward a geometric increase,
with the ratio of any two successive numbers in the sequence approaching a fixed constant. For
Tribonacci numbers, that constant is ¢. In fact, beginning as above, t, — ¢" as n — oo. (If we
look for geometric solutions ¢, = a™ to the recursive relation above, we see that we must have
a" =a" ' +a"2+a"3 or a® = a® + a + 1, the same equation we solved to obtain q.)

It is remarkable how mathematically rich such a simple notion can be, and we invite the reader
to explore further.

CMKZ thanks George Christ for introducing him to diffy bozes.
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Referee’s appendix

Proof of Proposition 2 (Section 2). By cases. Let a > b > ¢ > d.

[aaaal>[0000].

[ababl>[(a—b)(a—b)(a—>b) (a—b)]>[0000].

[aabb>[0(a—b)0(a—0b)]>[(a—0b)(a—>b)(a—>b)(a—>)]r>[0000].

[aaab>[00(a—>b)(a—b)]>[0(a—0b)0(a—b)]>[(a—b)(a—b)(a—0b)(a—0b)]r>[0000].

[abac>[(a—b) (a—b) (a—c) (a—c)]>[0 (b—c) 0 (b—c)]>[(b—c) (b—c) (b—c) (b—c)]>[0 00 0].

[abbbl>[(a—b)00(a—0b)]>[(a—b)0(a—>b)0]>[(a—0b)(a—0b) (a—b)(a—0b)]>[0000].

[abbc>[(a=b)0(b—c) (a—c)]>[(a—0b) (b—c) (a—b) (b—c)]>[la+c—2b| |a+c—2b| |a+
c—2b| |a+c—2b|]1>[0000] (converges after 3 generations if b = %3<).

[abcb>[(a—b) (b—c)(b—c)(a—Db)|>[la+c—2b0a+c—2b0]>[la+c—2b||a+c—
2b| |a+ ¢ —2b| l[a+ ¢ — 2b[] > [0 0 0 0] (converges after 2 generations if b = 4£€).

[a cbc]>[(a—c) (b—c) (b—c) (a—c)]>[(a—b) 0 (a—b) 0]>[(a—b) (a—b) (a—b) (a—b)]>>[0 0 0 0].

[acbd]>[(a—c) (b—c) (b—d) (a—d)]>[(a—b) (c—d) (a—b) (c—d)] which converges within
2 generations by Lemma 1 (within 1 ifa +d = b+ ¢).

[aabc>[0(a—b) (b—c) (a—c)]>[(a—0b)|a+c—2b| (a—0b) (a—c)] which is of the form
[a ba c] and converges within 4 generations (see above), or 2 if b < &£¢.

[abccl>[(a—b) (b—c)0(a—c)]>[la+c—2b (b—c) (a—c) (b— c)] which is of the form
[a ba c] and converges within 4 generations (see above), or 2 if b > 2£<.

[abdc>[(a—b) (b—d) (c—d) (a—c)]>[la+d—2b| (b—c) |a+d 20| (b— ¢)] which converges
within 4 generations by Lemma 1 (within 1 ifa+d=b+¢, and 2 if ¢ < “+ <b). O

Proof of Corollary (Section 2).

If the all-integer-valued B has at least one pair of identical vertices, then note simply that
the greatest discrepancy between B’s possible longevity and its corresponding smallest possible
range is 3. Otherwise, let n be the smallest number such that C™(B) have all vertices distinct for
0 <m < n—1, but C*(B) has at least one pair of repeated vertices. Then (from the first half of
the definition of n) |C™(B)| < |B| — n. (Obviously n < |B|, or else we have a contradiction.)

If we denote the longevity of B by L(B), we have L(B) = L(C™(B)) + n. Consulting Table 1,
we see that

(i) if L(C™(B)) = 2, then |C™(B)| > 1, so that L(B) < |B| + 1.

(ii) if L(C™(B)) = 3, then |C™(B)| > 1, so that L(B) < |B| + 2.

(iii) if L(C™(B)) = 4, then |C™(B)| > 1, so that L(B) < |B| + 3.

(iv) if L(C™(B)) = 6, then |C™(B)| > 3, so that L(B) < |B|+1. O
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