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Haplotyping and Minimum Diversity Graphs

C. Davis' and A. Holder*
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Abstract

Haplotyping is the process of reconstructing the genetic information donated by a prior
generation to form a current population. Haplotyping is important because it allows us to
study how traits are passed from one generation to another, which in turn allows us to find
genetic markers that describe a current population’s susceptibility to diseases. Our goal is to
study the underlying graph theory problem, and we study the bipartite graphs, called diversity
graphs, that describe haplotyping. In particular, we investigate the problem of finding the
minimum number of haplotypes that can reconstruct a population, called the Pure Parsimony
problem. The graph theory representation provides significant insight if the number of mates is
restricted.
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1 Introduction

With the successes of the human genome project, understanding how the genetic composition of
a population is formed from a prior generation is becoming increasingly important. Indeed, the
search for genetic markers that indicate an individual’s susceptibility to diseases and the design
of patient-specific drugs depend on the ability to reconstruct genetic information donated by
prior generations. This reconstruction is called haplotyping, and the problem is to start with
genotypic information from a current population and find a collection of haplotypes (genetic
donations from the previous generation) that explain the current population.

Genes are linear sequences of deoxyribonucleic acid (DNA) that code the genotype of every
living organism. In diploid organisms, such as humans, genes are paired to describe physical
traits. The binary alphabet {A, B} is used to describe genes, and so a gene is a sequence like
ABABBA. The positions are single nucleotide polymorphisms (SNPs), and for this example
the first SNP is an A, the second is a B, and so on. If this gene is paired with AAABBB,
the resulting physical trait is AX ABBX, where an A indicates that both SNPs are an A, a B
implies that both SNPs are a B, and an X means that one SNP is an A and the other is a B.
An individual’s genotype is a sequence of paired genes.

Physical traits are formed by the parents’ donated genes, and a haplotype is the sequence
of genes donated by a single parent, see Figure 1. Genotyping a population is the process
of collecting gene sequences from individuals in the population. So, when a population is
genotyped, a sequence of paired genes expressed over the alphabet {4, B, X} is collected from
each individual. It is important to note that we do not obtain the haplotypes donated by the
parents—i.e., we do not know the genetic donations made by the parents that form the physical
traits. The haplotyping problem is to construct a set of haplotypes that can be paired to form
the genotypes of the sampled population. Clark [5] first introduced the problem and suggested
the following haplotyping technique, known as Clark’s Rule. Select a genotype and construct
two haplotypes that form the genotype. Repeatedly select one of the remaining genotypes
and construct new haplotypes only if the genotype cannot be formed by pairing previously
constructed haplotypes.

Since Clark’s original work, several researchers have suggested other techniques and varia-
tions on the problem [2, 3, 4, 7, 8, 10, 11, 12, 13, 14, 15, 16, 17]. The problem we address is
called the Pure Parsimony problem, which means we are searching for the smallest number of
haplotypes that can be paired to form our collection of genotypes. This NP-Hard problem is
suggested in [6] and is first investigated in [9] by Gusfield. In this last work, Gusfield introduces
an integer programming formulation and describes techniques to reduce the problem so that
biologically relevant problems can be solved. Our interest is different in that we explore the
graphs that explain the Pure Parsimony problem. In Section 2 we introduce the concept of a
diversity graph and establish several of its properties. In Section 3 we study the Pure Parsimony
problem with a restricted mating structure. The most important result of this section shows
that a restricted form of the Pure Parsimony problem can be solved by decomposing the graph
into cycles and longest paths.

2 Notation & Basic Results

Let G be the set of genotypes collected from a population and H be a set of haplotypes.
Throughout this paper h is a haplotype and g is a genotype, where h? is SNP 7 on haplotype h’
and g} is SNP 4 on genotype g’ (note that if only one haplotype or genotype is considered, the
superscript j is disregarded). We assume that each haplotype and genotype has n SNPs. For
parent haplotypes h! and h? and offspring genotype g, we have the following at each SNP:

e g; = A if, and only if, h} = h? = A.

e g; = B if, and only if, h} = h} = B.

e g; = X if, and only if, either h} = A and h? = B, or h} = B and hl = A.
We say that h' @ h? = g provided that h', h?, and g adhere to these rules. For example,
let ' = AABAAB and h* = ABBABB. Then, h' ® h*> = g = AXBAXB. 1t is easy to
see that @ is a binary operation with the property that h* @ A’ = h* @ h* implies B’ = RE.
Parental haplotypes that contribute genetic information to the same offspring’s genotype are
called mates. That is, if h' @ h? = g, we say that h' mates with h? to form g. Furthermore, we
say that h' resolves g if h* @ h® = g for some h*. This concept is extended to sets, and we say
that H resolves G if for each g € G, there is an h' and h? in H such that h' ® h? = g.
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Figure 1: The mother and father’s haplotype donations combine to form two physical traits in the
child. SNP 2 and 7 are highlighted by dashed lines.

Throughout we assume a familiarity with graph theory, and we suggest [1] as a reference. A
diversity graph is a bipartite graph with vertex sets H and G and with its edge set defined by
the mating structure. The definition is based on the operation & and is biologically based.

Definition 1 A bipartite graph D = (H,G, E) 1is a diversity graph if
o (G is nonempty,
e cach genotype in G is resolved by some haplotype in H, and

o E has the property that if (h',g) € E, then there exists an h®> € H such that (h*,g) € E
and h* ® h? = g.

This definition does not require that a genotype be connected to every possible pair of haplo-
types, but it does require that every genotype be connected to at least one pair of mates. The
neighborhood of a genotype g is N(g) = {h : (h,g) € E}, and the degree of g, denoted deg(g),
is the number of edges emanating from g. The third condition in the definition of a diversity
graph guarantees that deg(g) is even for each genotype.

A bipartite graph is a diversity graph if we can label the vertices so that the edges repre-
sents a valid mating structure. So, the bipartite graph (V, W, E) is a diversity graph if we 1)
label each node in V' with a sequence of n SNPs over the alphabet {4, B}, 2) label the nodes
in W with sequences of n SNPs over the alphabet {A, B, X}, and 3) guarantee that the edge
set satisfies the last two conditions of Definition 1. For example, consider the bipartite graphs
({0, v}, {w' ) {(!, w)), (v, w")}) and ({v, 0%}, {w'}, {(v",w')}). The first graph is a diver-
sity graph because we can label v', v?, and w' with an A, which clearly creates a diversity
graph. The second graph is not a diversity graph because it does not have enough edges to
satisfy the third condition of Definition 1.

There are graphs with the property that every node has even degree but that are not diversity
graphs. An example is K(2,2) (the complete bipartite graph with both vertex sets containing
two nodes), which has the property that all nodes in W have degree 2 but the nodes cannot
be labeled so that the edge set satisfies @. In fact, any graph containing K(2,2) cannot be a
diversity graph for the same reason, and hence, K(m,n) is not a diversity graph if m and n are
at least 2.



The set of all possible haplotypes with n SNPs is H, and £ is the largest edge set between
H and G that is allowed by the third condition of Definition 1. A subtle convention is that if a
genotype has no SNPs with a value of X (and hence a haplotype mates with itself to form the
genotype), we include the edge between the haplotype and genotype twice. So, for the genotype
ABBABB, the edge set contains (ABBABB, ABBABB) twice.

The Pure Parsimony problem may be stated as finding a subgraph of (H, G, ) with the
following properties: 1) G is a vertex set, 2) the subgraph is a diversity graph, and 3) the
subcollection of # is as small as possible. Any subgraph with these properties is said to be
optimal and is denoted (H*,G,E*). There are typically several optimal subgraphs, each of
which has the property that the fewest number of haplotypes required to resolve G is |H*|.

A SNP is ambiguous if it has a value of X, and a gene is ambiguous if at least two of its SNPs
are ambiguous. Non-ambiguous genotypes are special because they are resolved by a unique pair
of haplotypes. For example, the genotype ABABA, is uniquely resolved as ABABA® ABABA
and the genotype AXBBA is uniquely resolved as ABBBA & AABBA. If ry is the number of
ambiguous SNPs on genotype g, there are at most 2”9 haplotypes that can resolve g. So, in any
diversity graph we have for every genotype that deg(g) < 2"¢. This bound is tight for (H, G, £).

Theorem 1 shows that ordering the elements of 7 lexicographically provides a convenient
way to list the 2"~ pairs of haplotypes that mate to form the genotype that is ambiguous at
every SNP. This result is used in Lemma 1 to show that any bipartite graph with no isolated
nodes can be extended to a diversity graph.

Theorem 1 If the elenz;en'ts of H are lexicographically ordered (where A < B), we have for
1<j<2" that W @ B9t = X X..X.

Proof: List the haplotypes lexicographically so that A7 < /T (so h' = AA...A). Create a
second list of the haplotypes by exchanging every A and B. Notice that in this new list A7 > k7!
for all j. So, the second list is the reverse of the first list.

Fix j between 1 and 2". Let k be any SNP such that b}, = A. So, if we start at hi=Aand
travel down the first list j haplotypes, we get an A at hj. Recall that reading the first list in
reverse order is the same as reading the second list top down. Hence, moving up j haplotypes
from h%n = B in the first list is the same as moving down the second list j haplotypes, and the
construction of the second list guarantees that we stop at a B. This means h;fn i) = B. So,
we have that h{c = A if, and ounly if, h;fn AR Hence, h{c &) h,(f" I+ = X A similar
argument works if h{c = B. |

As an example, for n = 3 the first list is lexicographically ordered from top to bottom and the
second list is formed by exchanging A’s and B’s. If we apply @ componentwise, each application
produces X X X.

AAA BBB XXX
AAB BBA XXX
ABA BAB XXX
ABB BAA | | xxx
BAaA |®| aBB | 7| xxx
BAB ABA XXX
BBA AAB XXX
BBB AAA XXX

The next Lemma shows that bipartite graphs with no isolated vertices can be extended to
a diversity graph, and it provides a tight upper bound on the number of nodes that need to be
added. Consider the bipartite graph (V, W, E), and let V be the vertex set that we extend and
W be the set that remains unchanged (so V' and W become the haplotype and genotype set,
respectively, after labeling). For w € W, define

T(w) = J [N(w) N N(@w").
w! #w

So, T'(w) is the collection of nodes in the neighborhood of w that are also in the neighborhood
of another node in W. For any real number C we define Cy by

C. — 0 if C<O0
TTlcC if C¢c>o.



N(w)

Figure 2: Geometric representation of the extensions.

We extend the neighborhood of each w so that the number of points in N(w)\T(w) plus the
number of points in the extension is exactly the number of points in 7'(w), except for a specific
case. Let V(w) be a set of cardinality (2|T(w)| — |N(w)|)+, and let N(w) = N(w) U V(w).
Notice that if 2|T'(w)| < |N(w)|, N(w) is not extended. This leads to problems because |N(w)|
can be odd. We remedy this by extending N(w) with F'(w), which is empty if |N(w)] is even
and contains a single node if |N(w)] is odd. Formally, let

={w:|Nw)=2p+1forp=1,2,3,...}

and
1, weéb

ww ={ 5 veh

We set |F(w)| = xo(w). Union V(w) and F(w) with each w neighborhood so that the new
neighborhood of each w is

N(w) = N(w) UV (w) U F(w) = N(w) U F(w).

The extended vertex set is

V=Vu ( U V(w)) U ( U ﬁ(w)>.
weW weEW

Notice that after the nodes have been labeled, we consider v to be a haplotype and w to be a
genotype, and hence we may apply the operation @ to the nodes. If deg(w) = 1, it is possible for
w to be resolved by a single v after labeling if we include an additional edge so that v & v = w.
This situation requires a double edge, and we let E(w) be the multiset

{(v,w), (v, w) : deg(w) = 1,v € N(w)\T (w)}.
The expanded edge set is
E=EU{(v,w):ve Nw)}UE(@w).

Note that throughout we have denoted an extension with the " notation and an extended set
with the ~ notation. See Figure 2 for a geometric depiction of the definitions.

Lemma 1 Any bipartite graph (V, W, E) with no isolated nodes can be extended and labeled to



become a diversity graph by adding no more than

D xe(w)+ Y QT (w)] — IN(w)])+

weW weW

nodes to V. In particular, (V,W, E) is an extension of (V,W, E) with this number of nodes
added to V' that can be labeled to become a diversity graph.

Proof: The proof follows by induction on [W|. Let (V,W, E) be a bipartite graph with
no isolated nodes such that |W| = 1. So, W = {w}. Notice that T'(w) = V(w) = 0, and
N(w) = N(w). There are three cases to consider.

Case 1: Suppose deg(w) = 1. Then, |V(w)| = (2|T(w)| — [N(w)|)+ = (0 — 1)+ = 0. Since
deg(w) = 1, xo(w) = |F(w)| = 0. So, N(w) = N(w)UV (w)UF(w) = N(w) = {v}. Hence,
V =V and
V= V]=0=x6(w)+ QIT(w)| — [N(w)])+.
From E(w) = {(v, w), (v, w)} we see that E = EUE(w) = E(w). Label w and v by setting
w=v=A, so that v ® v = w. With this labeling, (V, W, E) becomes a diversity graph.

Case 2: Suppose deg(w) = 2p for some p € N. Then, |_‘7(w)| = QT(w)| = INw)D+ =
(—=2p)+ = 0. Notice that since xo(w) = 0, N(w) = V = V. Likewise, E(w) = 0, and
E = E. We now have that

(V,W,E) = (V,W,E) and [V|—|V|=0=xe(w)+ 2T (w)|— N(w)])+.

Let n € N be such that 2p < 2". Set w to be a sequence of Xs of length n. Let the nodes
in N(w) be ordered from v* to v??. Set v} = A for all SNPs 4. For j < p — 1, let v/ be
the next lowest permutation lexicographically after v/, where A < B. For j > p use the
lexicographic ordering established in Theorem 1 by setting v?? 7! to be the haplotype
2" — j 4+ 1 from Theorem 1, so that we have v/ @ vP=ItY — XX X. Now, every node
in N(w) mates with another to form w, and (V, W, E) is labeled.

Case 3: Suppose deg(w) = 2p—1 for some p = 2,3, .. .. Then,A|f/(w)| = 2T (w)|—=|N(w)])+ =
(—=(2p—1))+ =0 and xs(w) =1. So, N(w) =V =V U F(w). So,

V=1V =1=xe(w) + 2T(w)| — [N(w)])+-

Also since E(w) = (), we have that_E = E. Note that |V| = 2p. So we may use the labeling
scheme from Case 2 to see that (V, W, E) may be labeled.

Assume that if |W| < k, the result holds. Let (V, W, E) be a bipartite graph with no isolated
nodes such that |W| =k + 1. Select w* € W, and let (Vi, Wi, Ex,) be the subgraph of (V, W, E)
with w! and its edges and neighboring vertices removed. Extend and label (Vi, Wi, Ey,) so that
Dy = (‘_/k, Wk,Ek) becomes a diversity graph. Let n; be the number of SNPs in the labeling,

and let
so= 3 xe(w)+ 3 @Tw) - [N )]+
weEW), weWy

Notice that the mating structure is unchanged if we lengthen the number of SNPs for each
w € Wy and v € V;, by assigning the same value at every additional SNP. For instance, if
v' ®v?> = ABB® BAB = XXB = w, adding two As at the end provides v' ®v?> = ABBAA®
BABAA = XXBAA = w. Each of the following cases lengthens the number of SNPs to ny +p
in this fashion.

Case 1: SupposeA|N(w1)| =1 and T(w') = 0. Then V(Y| = 2T (w')] — |N(1131)|)t =0.
Therefore, |N(w')| = 1 and xg(w') = 0. Thus, N(w") = N(w"), which means V' = V; UV
So, we have the following:

V-1V
= s,+0+0
= > xew)+ D @T(w) = N+ + [xe(w') + QT (w")] = [N(w")])+]
weWy weWy,
= Y xe(w)+ D QTW)| - [Nw)|)+-



Since E(w') = {(v,w?), (v, w!)}, we have that E = E U E(w'). Increase the number of
SNPs in the nodes in Wy and V; by adding SNP nj + 1 containing an A to every node.
Likewise, let the number of SNPs in w' and v' € N(w') be ng + 1, and let v} = w} = B
for all 5. Notice that w' and v! are unique since they disagree with every node in W}, and
Vi at SNP ng + 1. Since v' @ v? = w, we see that (V, W, E) is labeled.

Case 2: Suppose |[N(w!)| = 1 and T(w') # 0. So, T(w') = N(w'). Then, |V(w!)| =
Q2|7 (w H] = INwh)|)+ = 1, which means |N(w 1)| = 2 and ye(w 1Y = 0. Therefore,
N(w') = N(w') = N(w )UV( HYand V=V, UV UV(w'). We now have that

V-1V
= s +0+4+1
= D xe+ Y QTwW)| N+ + [xo(w') + QT (w")] = IN(w")])+]
wEW), weWy,
= > xe(w)+ Y @T(w)|—|INw)])+.
weW weW

In this case, we see that Ew')=0and E = EU{(v,w'):v e V(w')}. Let {v } = N(w")
and {v*} = V(w!). Lengthen the number of SNPs in each node in W and V by adding
an A at SNP ng + 1. Since v is in Vj, it is already labeled through the first n; SNPs.
So let v} = v} = w} in every SNP 4 # nj + 1. Set vikﬂ = B and w}zﬁ_l = X. Now
v! @ v? = w'. Since we already know that (Vi, Wy, Ex) has been labeled, we have that

(V,W, E) is labeled.

Case 3: Suppose |N(w')| = 2p for some p € Nand T'(w') = . Then 2T (w H=|N@")|)+ =0
and |N(w')| = 2p. So, xe(w') = 0 and N(w') = V. Hence, V = V4, UV and

VI= V]
= s+0
= > xew)+ Y @Tw)| = [N+ + [xo(w') + @IT(w")| = |N(w")])+]
weWy weWy,
= Y xe(w)+ Y QIT(w)| - [Nw)))+-
weWw weWw

Also, since E(w') = 0, E = E. Increase the number of SNPs in the nodes in W and V to
ni 4+ p. For every w € Wy and v € Vi, let w; = v; = A for ny, < i < ng + p. For every
v € N(w'), let v; = B for ng, < i < ny + p. Next, let w; = X for 1 <i <ny and w; =B
for ny, < i < ng +p. Order the nodes in N(w') from v* to v??, and set v; = A for all SNPs
i. For j < p—1, let v*! be the next lowest lexicographic permutation after v?, where
A < B. For j > p use the lexicographic ordering from Theorem 1 by setting v*~+! to
be the Theorem’s value for A2" 77!, Then we have that v/ @ vZ?~7+D) = XX..X, and
(V,W, E) is labeled.

Case 4: Suppose |[N(w')| = 2p — 1 for p = 2,3,... and T(w") = 0. Since 2|T(w")| —
IN(wh)|)+ = 0, we have that V(w') = Q) From the assumption that |N(w* Jl=2p—1, we
see that xg(w') = 1. Thus, N(w') = N(w') U F(w') and V = V4, UV U F(w'). We now

have that
V|-V
= s+1+4+0
= D xew)+ Y Q@TwW)| - Nw))+ + [xe(w') + T (w")] — |N(w')[)+]
= D xew)+ Y @IT(w)| - [Nw)|)+.
weWw weW

In this case, E = EU{(v,w") : v € F(w")}. Notice that with the extension, |N(w')| = 2p.
Thus, we can use the labeling scheme described in the previous case to label (V, W, E).

Case 5: Suppose |N(w ) =p for p=23,... and T(w") # (0. Let V(wl)A have cardinality
(2|T( D] = |N@w")|)+, and extend the neighborhood of w! by setting N(w') = N(w') U
V(w'). By examining the following cases, we see that [N (w)| is always even.



Case i: Suppose p € N and 2[T(w")| > p. If [V(w')| = QT (w?)| — |[N(w?)|)+ is even,
then |N(w')| is even, and hence [N (w')| = p+|V(w")| is even. Similarly, if |V (w')| =
2|T(w")| — |N(w?)])+ is odd, then p = |[N(w?)| is odd and [N(w")| = p + |V (w")] is
even. In either case yg(w') = 0, and N(w') = N(w?). Hence, |N(w?)| is even. Since
V = Vi UV UV (w'), the overall extension satisfies,

V1 -1vi
= sk +0+ 2T (wh) — [N(w)])+
= > xe(w)+ Y QTw)| — [N+ + [xo(w") + 2T (") — [N(w")])+]

weWy, weWy,
= Y xe(w)+ Y QITW)| - [N(w)])+.
weW weWw

Since E(w') = 0, we have in this case that E = EU {(v,w") : v € V/(w")}.
Case ii: Suppose p is even and g|T(w1)| < p. Then, |I2(w1)| =0, and [N (w')| is even.
Therefore, xg(w') = 0 and |N(w')| is even. Thus, V = V4 UV and

Vi -1Vl
= s,+0+0
= D xew)+ Y @TW)| = [Nw))+ + [xe(w') + QT (w")| - |N(w")])+]
wEWy, wEWY,
= > xew)+ Y QT(w)| — |INwW)|)+
weWw weWw

Since E(w') = 0, the extended edge set is E = E.

Case iii : Suppose p is odd and 2|T(w')| < p. Then, [V (w')| = 0, and |N(w?)] is odd.
So, |F(w")| = xs(w') = 1, which gives us that |N(w')| = [N(w")| + xe(w) is even.
Hence V =V, UV U F(w'), and so

V-1Vl
= s5;+140
= > xew+ Y QTw)| = |Nw))+ + [xe(w') + @IT(w")| — |N(w")])+]
weWy, weEWy,
= D xe(w)+ Y @T(w)| - |INw)))+.
weW wew

Since E(w') = 0, we have that E = EU {(v,w') : v € F(w")}.

From these cases we see that the size of the extended neighborhood is even and the exten-
sions match the number specified in the lemma statement.

Let every node in V and W have ng 4+ p SNPs. Note that W} and V; have values assigned
to SNPs 1 through ng by assumption. In Wy, and Vi, let SNPs ng + 1 through ng + p
all contain As. Let w} = X for all SNPs 4, and note that w' is unique from every other
genotype. Also, notice that each v € T(w') is already labeled. For every v € T(w'),
label a v' € N(w')\T(w') such that v @ v’ = w'. This yields a value for v that differs
from every other node in V} since SNPs ny + 1 through ny + p of v! must contain Bs by
construction. If 2|T(w?)| > p, there are no unlabeled nodes remaining in N(w?'). Since
xo(w') = 0 in this case, we have labeled (V, W, E). However, if 2|T(w')| < p, then while
every node in V(w!) is labeled, N(w') still contains unlabeled nodes. Let F(w') be the
set of remaining unlabeled nodes, and notice that |F(w')| is even by construction. Let
|F(w')] = 2f and order the nodes in F(w') from v' to v*/. For v' through v/, let the
first ny, + 1 SNPs contain Bs and let SNP ny + 2 be an A. Conversely, for v/*! through
v%f let the first ngy + 1 SNPs contain As and let SNP ny + 2 be a B. So, F’(wl) looks like,



{ BBB.BBA-——...—,
BBB..BBA — —...—,

BBB..BBA — —... —
AAA.AAB— —...—,
AAA.AAB— —...—,

)

AAALAAB——...— }

Lexicographically assign SNPs n + 3 through ny +p on v* through v2/ as demonstrated in
Case 2 of the base case, but alter the indices so that v/ @ v2f ~7+1 = ! where 1 < j < 2f.
Thus, if v' € F(w'), we have for v 7+ ¢ F(w') that v' @ v*f77*! = w'. Therefore,
(V,W, E) is labeled.

Figure 3 demonstrates the extension of a graph (V,W, E) where |W| = 2, |[N(w')| = 5,
IN(w?)| = 2, and |T(w')| = |T(w?)| = 2. Since 2|T(w")| < |N(w')|, we have that |V (w')| = 0,
and since 1N(w1)| = 3, we see that xg(w') = 1. So, the neighborhood of w' is extended by one
node via F'(w"). For w?, we have that |N(w?)| = |T(w?)| = 2, so lf/'(wl)| =2 and yg(w?) = 0.
Hence, the neighborhood of w? is extended by the two nodes in V(w?). We mention that not
all of the extended nodes are required because it is possible to label one of w' or w? with all
Xs and eliminate the need for V(w?). We now show that any bipartite graph, including those
with isolated nodes, can be extended and labeled to become a diversity graph. The result is a
simple extension of Lemma 1.

Theorem 2 Any bipartite graph (V,W, E) can be extended and labeled to become a diversity
graph by adding no more than

Y xe(w) + Y @T(w)| = [INW))+ | + (My — Mw)+,

weW weWw
where My and Mw are the number of isolated nodes in V and W, respectively.

Proof: Let (V,W,E) be a bipartite graph, and let V7 and W; be collections of isolated
nodes from V and W, respectively. Also, let (V', W', E) be the subgraph of (V, W, E) with the
isolated nodes removed. Extend and label (V', W’ E) as in Lemma 1 so that (V/, W, E’) is a
diversity graph. This extension requires adding

Y xe(w)+ Y QT (W)~ IN(w))+ 1)

wew!’ weWw!’

nodes to V'. For every node in W we have that xg(w) = (2|T(w)| — |[N(w)|)+ = 0, so we can
write (1) as
> xow) + 3 @IT(w)| - [N(w)))s- @)
wew weEW
Let n' be the number of SNPs used in Lemma 1 and V7 be a set of cardinality (My — Mw ).
Also let V; = V; U V7 and notice that [Vz| > |W;|. Add |Vi| SNPs so that every node has
n' 4+ |Vi| SNPs. For each node in V' and W, label SNPs n’ + 1 through n’ + |V7| with an A so
that (V/, W, E') is still a diversity graph.
For each node in V; and Wi, label SNP n'+|V1| with a B. Order the nodes in W; and V; from
w' to wMW and v' to vMV VI, For SNPs 1 through n’ +|V;| — 1, label the nodes in W; and V;
lexicographically. So w' = v' = AA..AB, w? = v® = AA...BB, and so on. Since |V;| is at least
as large as |Wr|, this labeling scheme continues to label all the nodes in V; once the nodes in W7
are labeled. Extend E’ to the multiset E such that E = E' U {(v,w), (v,w) : v®v =w € Wi}.
Setting V = V' U Vz, we see that (V, W, E) is labeled and and that V is extended by

Y xe(w) + Y @TW)| = [Nw))+ | + (Mw — My)+.

weW weW



Fwd

N(w')

N(w) = T(wh) = T(w?)

V(w?)

Figure 3: Example with all extensions from Lemma 1 used.

We next show that 2|G| haplotypes are needed to resolve G exactly if the neighborhoods of
the genotypes partition H. In support of this result, Lemma 2 shows that every H* contains
haplotypes that resolve multiple genotypes, provided that any such haplotypes exist.

Lemma 2 Suppose that T(g) # 0 for some g € G. Then, H* contains an element OngeG T(g)-

Proof: Let T(g) # 0 for some g € G. Suppose that H* does not contain an element of
Uyeq T(9)- Then, to resolve each g we must select two elements from N(g)\ U,cs T(9), pro-
vided that g has at least one ambiguous SNP. If g contains no Xs, we select one element from
N(9)\U, e T(g)- This implies that |H"| = 2|G| — u, where u is the number of genotypes with
no ambiguous SNPs. However, we know that 7'(g) is nonempty for some g, which means there
exists g' and g? such that h' ® h* = ¢ and h' @ h® = g* for some h', h?, and h3. If we replace
the four haplotypes that resolve g' and g? with h', h?, and h®, then we have resolved G with
2|G| —u — 1 haplotypes, which contradicts the definition of H*. Hence, H* contains an element

of Ugea T(9)- n

Theorem 3 Assume every g has one or more ambiguous SNPs. Then, |H*| = 2|G| if, and
only if, the neighborhoods of the genotypes together with the set of isolated haplotypes partitions
H.

Proof: (<) Let all g have at least one ambiguous SNP, and let H; be the set of isolated
haplotypes. Assume the neighborhoods of the genotypes and H; partition H. Then, there does
not exist an h that resolves both ¢' and g?, with g' # ¢°. Since all genotypes are ambiguous
in some SNP, there is no g such that h @ h = g, for some h. So, two distinct haplotypes must
mate to form every genotype. Since H is partitioned, H* has exactly two distinct haplotypes
from each genotype’s neighborhood. Therefore, |H*| = 2|G|.

(=) Let |H*| = 2|G|, and suppose for the sake of obtaining a contradiction that T(g) # @
for some g € G. Then by Lemma 2, H" contains an element in |J ., T(g). Let g" and g2 be
such that ' @ h? = g' and h' @ h® = ¢?, for some h', h?, and h®. Let G' = G\{g*, 9%}, and let
H' =J,ce N(g). Furthermore, let (H')" be such that

|(H')*| = min{|H| : H C H, H resolves G'}.

Clearly |(H')*| < 2|G’|. We know that we can resolve G’ by including h', h?, and h® in (H')".
Since all three haplotypes might not be required, we have that 2|G| = |[H*| < |(H')*| + 3. So,



2G| = |H| |(H')*|+3
2|G'| +3
2[(IG] = 2)| +3

2\G| - 1.

IIIAIA

Il

Since this is a contradiction, we have that T'(g) = @ for all g, and consequently, N (g9 N
N(g’) =0, for all ¢ # j. Moreover, for every genotype we have that Hr N N(g) = 0. The result

follows since H = (UQGG N(g)) UHj. [ ]

3 Restricting the Mating Structure

We continue our investigation by exploring the effects of restricting the mating structure. We
now constrain our optimization problem so that the maximum number of mates that any h can
have is m. A smallest haplotype set that resolves G with this restriction is denoted by H,,,. We
define ¢(m) to be the function that relates m to the cardinality of H,.

Definition 2 For (H,G,£), we let $(m) be |H,,|, where no haplotype can have more than m
mates.

If m = 1, each haplotype can mate with at most one haplotype (remember that a haplotype
can mate with itself). Biologically this means each parent can donate one of two haplotypes
to a unique child, so this haplotype cannot be used to form another child. So, for m = 1 the
neighborhoods of the genotypes in an optimal subgraph are disjoint, and the smallest number
of haplotypes that can resolve G is ¢(1) = 2|G| —u, where u is the number of genotypes with no
ambiguous SNPs. The situation is more complex if m > 1, and the main result of this section
shows that ¢(2) can be calculated by decomposing a diversity graph into cycles and longest
paths.

At some threshold, increasing m does not change the cardinality of H,,. For instance, if a
haplotype is not compatible with more than m genotypes, then allowing it to mate with m + 1
haplotypes provides no additional benefit. Hence, for some m, ¢(m) = ¢(m+k) for every natural
number k. Moreover, increasing the number of possible mates that any haplotype is allowed
never causes an increase in H,,. Thus, ¢(m) > ¢(m + 1) for all m, and ¢ is non-increasing. The
smallest m such that ¢(m) = ¢(m + k), for all k¥ € N, is denoted by m*. So, if m > m*, we
have that ¢(m) = ¢(m™). Notice that no haplotype can mate with more than |G| haplotypes,
and hence m* < |G|. Alternatively, if no haplotype reconciles more than one genotype, m* = 1.
The next Theorem shows that if m* = |G|, the number of haplotypes needed to resolve G is
either |G| or |G| + 1.

Theorem 4 If m* = |G|, we have that

« _ | 1Gl, if h@®h =g for some h € Hpp«,
$(m”) = { |G| +1, otherwise.

Proof: Let m" = |G|. Then, there exists h € H},. such that h"resolves every g. Since H,,«
resolves G, for each g* there is an h* € H},. such that b’ ® h* = g*. We have two cases.

Case 1: Suppose that ' @ h' ¢ G. Then, h' mates with a unique ht € Hp«\{l'} to resolve
each g' € G. Hence, ¢(m*) = |H*| = |G| + 1.

Case 2: Suppose b’ @ b’ € G. In this case we have that A’ mates with |G| — 1 haplotypes
in A* € H}-\{l'} to resolve the genotypes in G\{h' ® h'}. Hence, ¢p(m*) = |H}-| =
1+ (|G| —1) =|G|.

|

From Theorem 4 we see that there are situations where calculating m* solves the Pure Parsimony

problem. Unfortunately, further relations between m™* and the diversity graph (H, G, £) are not
clear, and related questions are left for future research.

For the remainder of this section we focus on calculating ¢(2). The key observation for

m = 2 is that the most complicated subgraphs allowed are cycles and paths. As an exam-

ple, let (#,G,E) contain the cycle h',g',h* g2, ..., 9P, h*. Then, the collection of genotypes

{g", 4% ...,9"} is resolved by {h',h?, ..., AP}, where both sets have the same cardinality. None

of the haplotypes can mate with another haplotype because each is already mating with two

haplotypes. Similarly, if k', g*, %, ¢%,..., g%, h?T! is a path in (H, G, E), only the haplotypes
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Algorithm to Decompose an acyclic (H,G, ) into Paths

Step 1: Set v =0 and (Hy,Gy) = (H,G).

Step 2: Find the largest path in (Hy,Gy), say P,. If no path exists, set P, = (.
Step 3: If P, =0, stop.

Step 4: Index v by 1.

Step 5: Set (Hy4+1,Gv+1) = (Hy, Gy)\Py.

Step 6: Index v by 1.

Step 7: Go to Step 2.

Table 1: An algorithm that solves the Pure Parsimony problem for acyclic graphs under the restric-
tion that haplotypes can have at most two mates. From Theorem 5 we have that ¢(2) = |G| + v at
the completion of the algorithm.

at the end of the path can mate to form another genotype. Unlike cycles, the p genotypes
{g%, 4% ..., 9"} are resolved by the p + 1 haplotypes {h',h?,..., h?T'}. So, the genotypes in
cycles are resolved by an equal number of haplotypes, and the remaining genotypes are resolved
along paths, each of which has one more haplotype than genotype. So, if v is the number of
paths, the cardinality of the haplotype set that resolves G is |G| + v. Consequently, to find
an optimal subgraph of (H, G, £), we first identify the genotypes in cycles and then proceed to
resolve the remaining genotypes with the fewest number of paths. The algorithm in Table 1
“decomposes” any acyclic diversity graph (H, G, E) into paths by iteratively finding the longest
paths through the unresolved genotypes. The fact that this technique minimizes the number of
paths is established in Theorem 5.

Theorem 5 The algorithm in Table 1 finds an optimal subgraph of the acyclic diversity graph
(H,G, E). Moreover, if v is the number of paths found by the algorithm, ¢(2) = |G| + v.

Proof: The case where the genotypes are resolved in cycles is If |G| = 1, the algorithm
in Table 1 clearly finds an optimal solution. Assume the algorithm finds an optimal subgraph
for all diversity graphs such that |G| = k. Let (H,G, E) be an acyclic diversity graph with
|G| = k + 1. Apply the algorithm in Table 1 to (H, G, E). Notice that every path must start
and end with haplotypes since every g must be connected to two haplotypes. So, for each
path P;, |H;| = |G;| + 1. Let Py, Ps, ..., P, be the paths in non-increasing length found by the
algorithm, and let Py = hy,, gvy, by, Gugs - - -5 9o,y B, o, - Remove the last genotype gy, from G
and set G' = G\{gv, }. Form a new diversity graph (H,G',E'), where E’ is E with the edges
incident to g,, removed.

Case 1: Suppose P, # hy, v, hv,- Then, the algorithm applied to (H,G', E') finds the paths
Py, P, .., P, where P, = hy,, gvy, Bug, Guas - -« » Gv,_, hw,.—i.€., the last path is missing the
last haplotype and genotype. In this case it takes the same number of paths to resolve
the genotypes. From the induction hypothesis we know that these paths form an optimal
subgraph of (H,G',E'). Adding g,, back to G' we can do no better than adding one
additional haplotype to reconcile g,,. Moreover, g,, cannot be added to any of the paths
Py, Ps,...,P,_ since this would violate the fact that each of these is a longest path
through the unresolved genotypes. Thus, Py, Ps, ..., P,, comprise an optimal subgraph of
(H,G,E), and ¢(2) = |G| + v.

Case 2: Suppose P, = hy,gu, ho,. Then the algorithm applied to (H,G', E') produces the
paths Pi, P, ..., P,_1, which form an optimal subgraph of (H,G’, E') by the induction
hypothesis. Notice that g,; cannot be added to any of Pi, Ps,...,P,_1, as this would
violate the fact that these are the longest paths through the unresolved haplotypes. So,
adding g,, back to G’ forces us to use a new path to resolve g,,. Since P, accomplishes
this task, the paths Pi, Py, ..., P,, form an optimal subgraph. Hence, ¢(2) = |G| + v.

|
The statement of Theorem 5 holds for any acyclic diversity graph, and hence, the result is true
for (H,G,€) if it is acyclic. If (H,G,E) contains a cycle, the algorithm in Table 1 can still
be used to find ¢(2), but we need to first remove all the genotypes that can be resolved along
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Figure 4: The consecutive genotypes of a path in (H, G, &) are indicated with an arc. So, there is
path that contains the sequence g%, h', g*, ", g°, but there is no path that contains g', h, g°.

cycles. Unfortunately, a similar technique of finding longest cycles is not guaranteed to identify
all of the genotypes that can be resolved in cycles.

The insight from Theorem 5 is that the solutions of a restricted form of the Pure Parsimony
problem are representable as a collection of cycles and paths. However, while Theorem 5 high-
lights the fact that an optimal subgraph can be calculated by first finding the genotypes that
can be resolved along cycles and then iteratively removing longest paths, this technique has two
shortcomings. First, the longest cycle problem is NP-Hard because it is equivalent to showing
that a subgraph is Hamiltonian. So, while the technique describes the nature of a solution, it
does not theoretically provide an efficient solution procedure. The second shortcoming is that
the algorithm is not capable of finding every optimal solution. To see this, consider the following
collection of genotypes,

' = AXBBBB
XAXXBB
BXAXBX
= BXXAXB
BBBXAB
¢° = BBXBBA.

M

s w
Il

ot

@ @ 9 9 ©
|

To understand this example, notice that a path may contain the sequence g°, hf, g**! if, and
only if, there is no SNP where g° has a value of A or B and ¢ has the other value. So, in
the above example no path contains the sequence g',h, g® because the first SNP of g' is an A
and the first SNP of g2 is a B. However, there is a path containing g', h, g2, as there is no SNP
where g' and g have different values of A and B. If we compare each pair of genotypes in a
similar fashion, we find that the paths in (H, G, £) must pass through the genotypes as indicated
in Figure 4. From this Figure we see that there is not a path or cycle through every genotype,
but that there are several two path solutions. From Theorem 5 we know that ¢(2) =6 +2 = 8.
Up to reversing the order of the genotypes, there are four optimal progressions through the
genotypes, see Table 2. Our algorithm finds the first solution indicated in Table 2, as the first
path is as long as possible. None of the other paths have this property, and so the algorithm is
not capable of finding these solutions.

4 Conclusion & Future Directions

Using genotypic information of a population, we have explored the fundamental question: what
is the minimum amount of diversity in the previous generation that can explain the current
population’s diversity? Our goal was not to investigate heuristics or model designs like much of
the previous literature, but rather, we were interested in studying the mathematical structure
underlying this biological question. This endeavor led us to the concept of a diversity graph,
which is defined in biological terms. The two main results of this work are

e that any bipartite graph can be extended and labeled to become a diversity graph, and

e that if the mating structure between haplotypes is restricted in a way that does not allow
a haplotype to have more than two mates, then the minimum diversity of the previous
population can be found by decomposing the diversity graph into cycles and paths.

There are many interesting questions yet to be answered, and we suggest the following:

e How fast does ¢(m) grow? If we had good lower bounds on ¢(m) — ¢(m + 1), we could
use this to estimate |H*|. For example, if ¢(m) — ¢(m + 1) > mA, then since ¢(1) = 2|G|,

12



First Path’s Second Path’s
Genotype Progression | Genotype Progression

(95, 9% 9% 9% 9°) R
(9, 9%.9",9°) (9%, 9%
) b b b
(9, 9% 9% 9% (g‘I 92)
%, 9%, 9", 9°) (9',9%)

Table 2: Ways in which the genotypes of (H,G, &) can be listed in two distinct paths.

we know that
$(3) < $(2) — 2X < ($(1) — A) — 2A = 2/G] — 3X.

If we have biological information that indicates no parental haplotype has been passed to
more than three children, then we know that the maximum number of haplotypes required
to resolve the current population is 2|G| — 3.

We see from Theorem 4 that knowing m* can solve the Pure Parsimony problem in some
cases. Moreover, knowing m™ is beneficial in all cases as this removes many subgraphs
from consideration. So, in an integer programming formulation of the Pure Parsimony
problem, m* provides a cut that may help reduce solution times. Finding bounds on m*
is an interesting area of future work.

Randomized coloring algorithms have been efficient on many classes of graphs, and it may
be that finding longest paths and cycles can be thought of as a coloring problem. If so,
then these techniques could be used to approximate the algorithm in Table 1, with the
hope being that substantial biological models could be addressed.
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