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1 Introduction

A Dirac particle is considered which can move only in one dimension. It
is characterized by a two-component spinor wavefunction. The mass of the
particle varies randomly in space. Such a random mass term can be the result
of an interaction of the particle with an external random field that affects the
kinetic properties. We are interested in the average wavefunction, averaged
with respect to the random mass. Therefore, we have to evaluate the average
Green’s function which describes the evolution of the average wavefunction.
A supersymmetric representation of the average Green’s function is employed
to perform the calculation. It allows us to translate formally the original
one-dimensional continuous Dirac Equation with random mass into a discrete
deterministic Schrödinger Equation. This equation is a fourth order linear
difference equation of Poincaré type, i.e. an equation of the form

xn+2 + p1(n) xn+1 + p2(n)xn + p3(n)xn−1 + p4(n) xn−2 = 0

where the coefficients p1(n), . . . , p4(n) converge to constants p∗1, . . . , p
∗
4, re-

spectively, as n → ∞. For this kind of equations there is a well developed
classical theory (see e.g. Elaydi [7, Chapter 8]) providing information on the
asymptotic behavior of the solutions. The basic results of the classical theory,
however, assume that the four complex roots of the corresponding character-
istic equation

λ4 + p∗1λ
3 + p∗2λ

2 + p∗3λ + p∗4 = 0

have pairwise distinct moduli. This assumption, however, turns out to be
drastically violated by the Schrödinger equation arising in this paper. In fact,
here the characteristic equation has 1 as a fourfold root.

The way we treat the Schrödinger equation in this paper is to first exploit
the particular structure of this equation in order to reduce its order from
four to two. The resulting second order equation is of Poincaré type, too,
and the roots of the corresponding characteristic equation are +1 and −1.
They still have the same modulus, however, for this kind of problems there
is a general asymptotic theory (even for higher order equations) based on the
work of Birkhoff [3, 4], Birkhoff and Trjitzinsky [5] and Adams [1]. Since in
our setting the reduced equation is of second order, we can use a simplified
version of the general theory which is due to Wong and Li [9, 10], and since
in our setting the characteristic roots are simple, the generally very involved
expressions in Wong and Li’s work become manageable.

2 Derivation of the Model Equation

We consider the Dirac equation in one dimension for 0 ≤ x ≤ L and periodic
boundary conditions

HΨE(x) = EΨE(x), (1)
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where the Dirac operator

H = −iσx
∂

∂x
+ m(x)σy

depends on Pauli matrices σj and contains a random term m(x). The latter
is Gaussian distributed, independently for different sites x with

〈m(x)〉 = m0, 〈(m(x)−m0)2〉 = 2g.

m(x)σy can be considered as a random mass. This physical problem has some
interesting properties in terms of the solution ΨE(E) [8]. For instance, the
solution is localized for E 6= 0 and/or m0 6= 0, i.e., the average wavefunc-
tion 〈ΨE(x)〉 decays exponentially on a length scale ξ(E, m0), and ξ(E,m0)
diverges at E = m0 = 0. The Fourier transform of equation (1) in terms of
time t with

Ψ(x, t) =
∫ ∞

−∞
ΨE(x)eiEtdE and HΨ(x, t) = −i

∂

∂t
Ψ(x, t)

can be considered as an initial value problem. Starting with the initial function
Ψ(x, 0), the time evolution is given as

Ψ(x, t) = eiHtΨ(x, 0).

Assuming that the initial function Ψ(x, 0) is given as a non-random function,
the time-dependent solution Ψ(x, t) depends on the randomness of H only
through the Green’s function eiHt. In order to evaluate the average wave-
function

〈Ψ(r, t)〉 = 〈eiHt〉Ψ(r, 0)

we need the average Green’s function. The latter can be associated with the
Greens’s function of an effective non-random, translational-invariant Hamil-
tonian H, since the distribution of the random mass is translational invariant.
Then the low-energy asymptotics of the average wavefunction can be deter-
mined from the spectral properties of H. The central idea of this approach is
that the Dirac equation (1) is a one-dimensional equation which can be rep-
resented as a zero-dimensional quantum problem, using the concept of second
quantization.

2.1 Effective Non-Random Hamiltonian

For the following discussion it is convenient to use the Fourier transform of
the Green’s function, given by the resolvent G(z) = (z −H)−1 such that

eiHt = lim
ε↓0

∫ ∞

−∞
G(E − iε)eiEtdE (t > 0). (2)
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〈G(z)〉 can be formally expressed by the Greens’s function of a non-linear
supersymmetric theory [6, 11]. Using the notation of Balents and Fisher
[2] with fs (f†s ) annihilation (creation) operator of a fermion and bs (b†s)
annihilation (creation) operator of a boson with spin s =↑, ↓ , the diagonal
elements of the average Green’s function, for instance, read

〈G〉(ε; x, ↑;x, ↑) = tr(f↑f
†
↑e
−LH),

where tr is the trace with respect to bosonic as well as fermionic states. The
new Hamiltonian H is given as [2]

H = ε(f† · f + b† · b) + m0A− gA2 (3)

with Fermi (Bose) operators f (b), f† · f = f†↓f↓ + f†↑f↑, and

A = f†↑f
†
↓ − f↑f↓ + b†↑b

†
↓ − b↑b↓.

The supersymmetric Hamiltonian is translational invariant on the interval
[0, L]. It can be diagonalized with an appropriate unitary transformation. In
contrast, the Dirac operator H is not translational invariant, and to diago-
nalize it we would need a unitary transformation for each realization of the
random m(x).

2.2 Diagonalization of the Supersymmetric Hamiltonian

With the new operators Ψ = (f, b), Ψ̄ = (f†, B†σz) and B† = (b†↑, b↓) we can
introduce the current

Jab =
1
2
Ψ̄aασαβΨbβ

to write the Hamiltonian as

H = 2εJz + 2m0J
x − 4g(Jx)2

with the x and z components of Jab, Jx and Jz. The eigenfunctions of Jz,
Jz|n〉0 = n|n〉0, form a basis set {|n〉0} (n ≥ 0) with

Jx|n〉0 =
1
2
[
(n + 1)|n + 1〉0 − (n− 1)|n− 1〉0

]
(n ≥ 1)

and Jx|0〉0 = 1
2 |1〉0. Then the eigenfunction |0〉R of H with eigenvalue E = 0,

H|0〉R = E|0〉R = 0 , (4)

can be expanded in terms of the eigenfunctions of Jz as

|0〉R =
∑

n≥0

Φn|n〉0 .
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Equation (4) provides for the coefficients with n ≥ 0 the recursion equation

n
[− (n+1)Φn+2 +2nΦn− (n−1)Φn−2−2M(Φn+1−Φn−1)+2ωΦn

]
= 0 (5)

with the initial conditions Φ−1 = Φ−2 = 0. Here we have used M = m0/2g
and ω = ε/g. Equation (5) is called a discrete Schrödinger equation. It is the
main object of the mathematical study in this paper.

3 Analysis of the Schrödinger Equation

Writing the fourth order equation (5) in the form

Φn+2 +
2M

n + 1
Φn+1 − 2(n− ω)

n + 1
Φn − 2M

n + 1
Φn−1 +

n− 1
n + 1

Φn−2 = 0 (6)

we see that this equation is of Poincaré type (i.e. the coefficients converge to
constants as n → ∞), that the corresponding limiting equation is Φn+2 −
2Φn + Φn−2 = 0, and that the characteristic equation λ4 − 2λ2 + 1 = 0 has 1
as a fourfold root. This is a highly degenerate situation which looks, at first
glance, hopeless to be accessible. On the other hand, the particular structure
of equation (6) allows to rewrite this equation in the form

(Φn+2 − Φn) +
2M

n + 1
(Φn+1 − Φn−1) +

1− n

n + 1
(Φn − Φn−2) =

−2ω

n + 1
Φn (7)

which, after setting xn := Φn − Φn−2, appears as

xn+2 +
2M

n + 1
xn+1 +

1− n

n + 1
xn =

−2ω

n + 1
Φn . (8)

This equation may be viewed (if Φn is considered to be known) as an inho-
mogeneous linear equation whose homogeneous part

xn+2 +
2M

n + 1
xn+1 +

1− n

n + 1
xn = 0 (9)

is of Poincaré type, too. Moreover, the corresponding characteristic equation
λ2 − 1 = 0 has two simple roots, namely λ1 = 1 and λ2 = −1, and this
means that we have reduced the given problem to a much simpler one. But
still, standard results from the Asymptotic Theory are not applicable since
the two characteristic roots have the same modulus. However, employing a
simplified version of the Birkhoff-Trjitzinky Theory due to Wong and Li [9, 10]
we can tackle equation (9) and consequently (8), (7) and (6).

In order to do so we briefly describe the result which turns out to be useful
for the study of (9). For more details we refer to Elaydi [7, Section 8.6].
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3.1 The Birkhoff-Adams Theorem

Suppose we are given a second order linear difference equation

xn+2 + p1(n)xn+1 + p2(n) xn = 0 (10)

whose coefficient functions p1(n) and p2(n) have asymptotic expansions

p1(n) ∼
∞∑

j=0

aj

nj
and p2(n) ∼

∞∑

j=0

bj

nj
as n →∞

with real coefficients a0, a1, . . . , b0, b1, . . . . The limiting equation of (10) is
xn+1 + a0xn+1 + b0xn = 0 , and the corresponding characteristic roots are

λ1/2 = −a0

2
±

√
a2
0

4
− b2

0 .

If λ1 6= λ2, then equation (10) has two linearly independent solutions x1,n

and x2,n of the form

xi,n ∼ λn
i nαi

∞∑
r=0

ci(r)
nr

, i = 1, 2, as n →∞

where the αi and ci(r) are given as follows: For the αi we have the explicit
formula

αi =
a1λi + b1

a0λi + 2b0
, i = 1, 2,

and for the ci(r) we have the following recursion: ci(0) = 1 and

s−1∑

j=0

[
λ2

i 2
s−j

(
αi − j

s− j

)
+ λi

s∑

r=j

(
αi − j

r − j

)
as−r + bs−j

]
= 0 , i = 1, 2.

This in particular implies

ci(1) =
−2λ2

i αi(αi − 1)− λi

(
a2 + λia1 + αi(αi − 1)a0/2

)− b2

2λ2
i (αi − 1) + λi

(
a1 + (λi − 1)a0

)
+ b1

, i = 1, 2.

The case λ1 = λ2, by the way, is more involved (see Elaydi [7, Theorem 8.36]),
but it is not needed in this paper.

3.2 The Schrödinger Equation with ω = 0

In order to apply the result described in the previous subsection to the ho-
mogeneous equation (9) (which represents the case ω = 0 in equation (6) ) we
have to put the coefficients 2M

n+1 and 1−n
n+1 appearing in this equation in the

required form. Using the relation 1
n+1 = 1

n − 1
n2 + O( 1

n2 ) as n →∞ we get

2M

n + 1
=

2M

n
− 2M

n2
+ O

( 1
n2

)
and

1− n

n + 1
= −1 +

2
n
− 2

n2
+ O

( 1
n2

)
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as n →∞, and this implies

a0 = 0 , a1 = 2M , a2 = −2M ; b0 = −1 , b1 = 2 , b2 = −2 .

Recalling that λ1 = 1 and λ2 = −1 we therefore get

α1 = −M − 1 , c1(1) = M2 + 3M + 1 ,

α2 = M − 1 , c2(1) = M2 −M + 1 .

Thus, by the Birkhoff-Adams Theorem, equation (9) has a fundamental set
of solutions of the form

x1,n ∼ n−M−1
[
1 +

M2 + 3M + 1
n

+ O
(
n−2

)]
, (11)

x2,n ∼ (−1)n nM−1
[
1 +

M2 −M + 1
n

+ O
(
n−2

)]
. (12)

Going back to the original equation (7) with ω = 0 we get the two relations

Φn+2 − Φn ∼ x1,n as n →∞ , (13)
Φn+2 − Φn ∼ x2,n as n →∞ . (14)

Using the two solutions y1,n = 1 and y2,n = (−1)n of the difference equation
Φn+2−Φn = 0, the variation of constants formula stipulates that a particular
solution of (13) or (14) can be written in the form

Φn = u1,n y1,n + u2,n y2,n

where

u1,n =
n−1∑
r=0

−g(r) y2,r+1

W (r + 1)
, u2,n =

n−1∑
r=0

g(r) y1,r+1

W (r + 1)

with g(n) being x1,n or x2,n, respectively, and W (r +1) being the Casoratian

W (r + 1) = y1,r+1 y2,r+2 − y1,r+2 y2,r+1 = (−1)r+2 − (−1)r+1 = 2(−1)r.

For the asymptotic relation (13) we thus get

u1,n =
1
2

n−1∑
r=0

x1,r and u2,n =
1
2

n−1∑
r=0

(−1)rx1,r ,

and this yields for (13) the particular solution

Φ∗n ∼ 1
2

n−1∑
r=0

[
1 + (−1)n+r

]
x1,r

where x1,r is given in (11). Using the particular form of y1,n and y2,n, for
arbitrary real constants γ1, γ2 we then get the following two solutions of (13):

Φ1,n ∼ Φ∗n + γ1 and Φ2,n ∼ Φ∗n + (−1)nγ2 .
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With the same arguments as before we get two solutions of (14), namely

Φ3,n ∼ Φ∗∗n + γ3 and Φ4,n ∼ Φ∗∗n + (−1)nγ4 ,

where γ3, γ4 are arbitrary real constants and Φ∗∗n is the particular solution

Φ∗∗n ∼ 1
2

n−1∑
r=0

[
1 + (−1)n+r

]
x2,r

of (14) with x2,r given in (12). Thus, altogether we have obtained the four lin-
early independent solutions Φ1,n, . . . , Φ4,n of the special Schrödinger equation
(6) with ω = 0.

3.3 The Full Schrödinger Equation

We now deal with the full equation (6). Setting again xn := Φn − Φn−2 we
obtain the equation

xn+2 +
2M

n + 1
xn+1 +

1− n

n + 1
xn =

−2ω

n + 1
Φn (15)

which we look at as an inhomogeneous equation for the xn. The corresponding
homogeneous part

xn+2 +
2M

n + 1
xn+1 +

1− n

n + 1
xn = 0 (16)

has been investigated in the previous section. Using the two linearly inde-
pendent solutions x1,n and x2,n of (16) (see (11) and (12)) and going back
to equation (6) be resubstituting xn = Φn − Φn−2 we get the two relations
Φn+2−Φn ∼ x1,n− 2ω

n+1Φn and Φn+2−Φn ∼ x2,n− 2ω
n+1Φn, or equivalently,

Φn+2 +
( 2ω

n + 1
− 1

)
Φn ∼ x1,n , (17)

Φn+2 +
( 2ω

n + 1
− 1

)
Φn ∼ x2,n . (18)

In order to find the solutions of these relations we first solve the associated
homogeneous equation

Φn+2 +
( 2ω

n + 1
− 1

)
Φn = 0 . (19)

This equation is of Poincaré type, and the corresponding characteristic equa-
tion λ2 − 1 = 0 has the two roots λ1 = 1 and λ2 = −1. Using the relation

2ω

n + 1
− 1 = −1 +

2ω

n
− 2ω

n2
+ O

( 1
n2

)
as n →∞
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and employing the notation associated with the Birkhoff-Adams Theorem we
get

a0 = a1 = a2 = 0 ; b0 = −1 , b1 = 2ω , b2 = −2ω ,

and this implies

α1 = α2 = −ω and c1(1) = c2(1) = ω2.

Applying the Birkhoff-Adams Theorem to equation (19) we therefore get two
linearly independent solutions

z1,n ∼ n−ω
[
1 +

ω2

n
+ O

(
n−2

)]
, (20)

z2,n ∼ (−1)n n−ω
[
1 +

ω2

n
+ O

(
n−2

)]
. (21)

For the inhomogeneous relations (17) and (18) we can then find particular
solutions in the form

Ψn = v1,n z1,n + v2,n z2,n (22)

where

v1,n =
n−1∑
r=0

−g(r) z2,r+1

V (r + 1)
, v2,n =

n−1∑
r=0

g(r) z1,r+1

V (r + 1)
(23)

with g(n) being x1,n or x2,n, respectively, and V (r + 1) being the Casoratian

V (r + 1) = z1,r+1 z2,r+2 − z1,r+2 z2,r+1 .

Choosing g(r) = x1,n, this allows to compute a particular solution Ψ∗n for
the asymptotic relation (17), and with this we get two linearly independent
solutions of (17) of the form

Ψ1,n ∼ Ψ∗n + γ1 z1,n and Ψ2,n ∼ Ψ∗n + γ2 z2,n

with real parameters γ1 and γ2. Accordingly, we get two linearly independent
solutions of (18) in the form

Ψ3,n ∼ Ψ∗∗n + γ3 z1,n and Ψ4,n ∼ Ψ∗∗n + γ4 z2,n

where γ3 and γ4 are real parameters and Ψ∗∗n is a particular solution of (18)
which can be obtained from (22) and (23) by choosing g(r) = x2,n. In sum-
mary, we have obtained the four linearly independent solutions Ψ1,n, . . . , Ψ4,n

of the Schrödinger equation (6).

4 Conclusion

The purpose of this paper is to demonstrate how a physical problem of current
interest, the motion of a relativistic quantum particle with random mass,
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can be reduced to a problem on difference equations, and how the resulting
difference equation, a highly critical equation of Poincaré type, can be solved.
While the derivation of the difference equation is worked out in detail, the
limited size of this paper allows to present its solution only in its principal
steps. More details will follow in a forthcoming paper.

References

[1] Adams, C. R., On the irregular cases of linear ordinary difference equa-
tions, Trans. Amer. Math. Soc. 30 (1928), 507-541.

[2] Balents, L. and Fisher, M. P.A., Delocalization transition via supersym-
metry in one dimension, Phys. Rev. B 56 (1997), 12970-12991.

[3] Birkhoff, G. D., General theory of linear difference equations, Trans.
Amre. Math. Soc. 12 (1911), 243-284.

[4] Birkhoff, G. D., Formal theory of irregular linear difference equatiions,
Acta Math. 54 (1930), 205-246.

[5] Birkhoff, G.D. and Trjitzinsky, W. J., Analytic theory of singular differ-
ence equations, Acta Math. 60 (1932), 1-89.

[6] Efetov, K.B., Supersymmetry and theory of disordered metals, Adv.
Phys. 32 (1983), 53-127.

[7] Elaydi, S. N., An Introduction to Difference Equations, 2nd Ed., Springer,
New York 1999.

[8] Takeda, K., Tsurumaru, T., Ichinose, I. and Kimura, M., Localized and
extended states in one-dimensional disordered system: Random mass
Dirac fermions, Nucl. Phys. B 556 (1999), 545-562.

[9] Wong, R. and Li, H., Asymptotic expansions for second order linear
difference equations, J. Comput. Appl. Math. 41 (1992), 65-94.

[10] Wong, R. and Li, H., Asymptotic expansions for second order linear
difference equations II, Studies Appl. Math. 87 (1992), 289-324.

[11] Ziegler, K., Disordered system with n orbitals per site: Langrange for-
mulation without replica trick, and scaling law for the density of states,
Z. Phys. B 48 (1982), 293-304.


	Trinity University
	Digital Commons @ Trinity
	2004

	Asymptotic Solutions of a Discrete Schrödinger Equation Arising from a Dirac Equation with Random Mass
	Bernd Aulbach
	Saber Elaydi
	Klaus Ziegler
	Repository Citation


	tmp.1283456337.pdf.YNWss

