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Istheworld evolving discretely?
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Department of Mathematics, Trinity University, San Antonio, Texas
78212, USA
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|. Introduction
Difference Equations can model effectively amost all physical and artificial phenomena.

Even the highly celebrated differential system of Lorenz [6], which models afluid:

x'=0 X+0y

y'=—XZ+rXx-y
Z'=xy—bz

Can be studied effectively viafirst order nonlinear difference equations, as we will explain in

the sequel. A heat risesin afluid from the lower warm plate to the higher cool plate. If the

difference in the temperature T' TU issmall, heat is transferred by conduction and for
larger difference the fluid itself moves, in convection rolls (Figure 1).

Lorenz devised a method for studying his system by considering the successive maxima of
the z— coordinate of the orbit, which isthe vertical direction in the Lorenz attractor (Figure
2). Lorenz' s reduction method is not entirely novel and may be traced back to late
19"century discoveries of Henri Poincaré. One of Poincaré s most important innovations

was asmplified way of looking



* This article was written during the author’ s academic leave at the University of California
at Berkeley.

at complicated continuous orbits. Instead of studying the entire orbit, he found that much of
the important information was encoded in the points in which the orbit passed through a

two—dimensional plane. The order of these intersection points defines a plane map. The

G(A) =B

plane S isdefined as X3- constant. The Poincaré map is a planar map with

(Figure 4).

If one plots the next vertical maximum z"*1 asafunction f of the current Zn :
we obtain atent—like map [4] (Figure 3).

Main Point: A three-dimensional differential equation can be reduced to a one—

dimensional difference equation.

I1. Computational Complexity
Computer Science concerns itself mainly with the computational complexity of discrete
problems. However, alarge portion of Physics, Economics, Biology, and Engineering is
based on continuous models. Numerical Analysisisthe mathematical areathat concerns
itself with the discretization of the continuous modelsin order to be amenable to computer
simulations and algorithmization. Two problems arisein thisprocess. First, discretization
may be avery expensive process and, second, computer information istypically
contaminated by round off errors. To summarize, information—based complexity is the study
of the computational complexity of problems for which the information is partial,
contaminated, and priced. | must admit that thisis the type of complexity that | am least
interested in. In my view, the field of numerical analysisisnot only intellectually

uninteresting but it is also awaste of time, energy and resources.



The point | am trying to make hereisthis: starting with a discrete model isawin-win
situation. But, wait aminute!  Since computers can represent only digital quantities and
approximate real numbers with finite precision, any computer ssmulation of a chaotic system
is doomed to degrade increasingly the father into the future one triesto predict. Worsg, still,
isit possible that chaosis nothing more than a computer artifact that results from trying to
represent a stochastic world with digital numbers? The shadowing lemmais aremarkable
result that addresses some of the problems mentioned above. Anosov, in 1967, and Bowen
in 1975 introduced the idea for hyperbolic invertible maps. For non—hyperbolic maps, James

Y orke and his collaborators [1] extended the theory in 1990.

Let xn+1 =f (x N), then {Xn} issaid to be atrue orbit, a sequence {p”} isa o —pseudo—
. f .
orbit for if

‘ Prg = (p”)‘ <O Where O isthe noise amplitude.
Shadowing: The true orbit {Xn} 0 —shadows {pn}if

| Xn —Pn O0<9o

. . M

To contain atrue orbit we construct a sequence of small parallelograms{ " "}. The
parallelograms must be constructed so that the image f ( M n) liesacross M . Moreover, two

parallel sides of each M N are designated as expanding sides, and the images of the

expanding sides of M N must intersect the two contracting sides of M N+l (This can be



f

assured by imposing an upper bound on the sizes of the second partial derivativesof = .)

M.}, x,0M

To show that there exists atrue orbit {Xn} contained in n let Yo bea

curve lying wholly in Mo . Then f (VO) containsacurve Y 1 that lieswholly in M1 and
runs from one contracting side to the other. Asamatter of fact, there exist curves Y

contained in f()\”)thatliewhollyin Mn+1. Select any point in (the final) curve YN and
_ -1
catit XN, Then Xn-1 = T 00 e on Y N-1 which liesin Mn-1. Continuing
-1
backwards " is defined to be f (X”=1)for 0<n< N given then atrue orbit. To

find the shadowing distance, we compute the distance between Pn and the furthest point of

M

N and then take the maximum of these distances along the whole trgjectory (Figure 5).

1. Measurement of a physical process satisfies a difference equation.

Lo 0 :0%X0,00] - O¥

1
bea € —smooth map which is asemiflow; that is

¢ (X’ O) =X ¢ ((I) (X’ S)’t) =0 (X’ S+ t). Then ¢ represents a physical process

.k k 1
and isasolution of adifferential equation. Let h:0% - 0O bea C —smooth

measurement function such as voltmeter, thermometer, or pressure gauge.



k
A OO

isacompact invariant set for q) (an attractor of q) ). For X LA , We examine

h at times O, T, X , ?and collect the measurements h ;= h(q) (X’ jT ))

Theorem (Tempkin and Y orker [7]). Suppose that Boxdim (A) =D, 2D < n for some

positive integer n. Then for amost every measurement function h, there is a continuous

hy=fl h, .. hy)

function f such that for )

Note this result assumes the absence of noise in the measurements. It is not clear what

would happen if noise were introduced in the system. If measurement noiseis present

(errorsin making individual observations) and if the errors are bounded above by € 20,

then it is still possible that one could still find a difference equation compatible with the

O(s ) However, in the presence of dynamical noise, one

dynamics but may be with an error
must ask to what extent could a difference equation for the noiseless system be useful in

prediction for the noisy one. Another problem might arise if the variable of interest may be
difficult to measure directly. The question here: might the difference equation for different

variables be related.

| have another point of view, which confirms Tempkin and Y orke' s theorem. The continuous
evolution of objectsthat we seeisjust anillusion. Our brains are actualy digital and what
we seeisactualy afast discrete measurement. Thisillusion of the continuousdly evolving
world occursif the measurements are taking at certain threshold speed. This threshold
speed has been attained in the films and the TV programs we see nowadays. Using logical
arguments, Inagaki [5] has shown that it is the discreteness of our brains that makes our

brain works the way they are.



[11.  Differential equations vs. difference equations

Poincaré-Bendixon Theorem: Let f be a smooth vector field of the plane, for which the

' = >
equitibria v = | () we isotatedt 1f the formard ontit § & Vo) 20 ¢ bounded,

then either:
(i) w(VO) isan equilibrium, or
(ii) w(VO) is aperiodic orbit, or

(ili) For each u Dw(VO)’ o (u) and w(u) are equilibria.

If the assumption that the equilibriaare isolated is removed, then we have to include

the possibility that either w(VO) or w(u) is a connected set of

equilibria. The existence of aglobally attracting cycle is possible. Take for example,

the system (in polar coordinate)
r'=r(a-r)

o'=b

a,b>0

where

Thecircle I' = @ jsglobally attracting (every nonzero orbit converges to the limit

cycle ' = Q). The main advantage here is that the Jordan Curve Theorem applies.
The Jordan curve theorem says that a ssimple closed curve divides the plane into two

parts: abounded region (the insde) and unbounded region (the outside). In order for



apath to get from a point inside the curve to a point outside the curve, it must cross

the curve. Notethat aperiodic orbit or acycleisasimple closed curve

Difference Equations:

There are plethora of differences between the qualitative behavior of difference
equations and differential equations. In fact, it isagood project to write a book on
this subject; but there are few important differences that we are reporting here.

(A) The presence of eventualy equilibria or cyclesin difference equations. Herein
finite time an orbit may reach an equilibrium point or acycle.

Example [4] ( the tent map) .

X, 0<£x< % E
T(x)=0O 1 C
1-x), —<x<1k
LX) S xst
Notice that :
1.1 2
6 3 3 (Eventualy fixed point).
1 1 1 2 4 2
20 10 5 5 5 5

(Eventually 2—cycle.).

This phenomenon does not occur in differential equations.

Remark: A swinging pendulum would go to rest in afinite time, asit is possiblein a
difference equation model. On the other hand, a differential equation model does not
allow this phenomenon to happen; yet another verification for the inadequacy of

continuous models.



(B) Theimpossibility of globally attracting cyclesin discrete models with a

connected phase space X. Why?

Theorbitofak—cycle{xo’ Xy e Xk‘l} isfinite. If the cycleis attracting, then

for each point X , the basin of attraction w? (Xi ) isopen and invariant. If the
cycleisglobally attracting, then the phase space X isthe finite union of digoint open
sets, which violates the connectedness of X. In contrast, the orbit of acycleina
differential equation isa closed curve with infinitely many points and infinitely many
corresponding basins of attraction. In this case the connected phase space isthe

infinite union of digoint open sets, which istopologicaly valid.

Remark: This may be another confirmation of the discreteness of our world arrow of time.
Economists have known for along time that there are no globally attracting economic cycles.
The question still remains about the structure of the complement of the basin of attraction
and how higitis.

The following model of two competing species confirms one more time that there are no
globally attracting cyclesin nature.

Example: Consider Elaydi—Y akubu Model [3] of a Lotka—V olterra competition model of

two species.
X1 = %o [xp(py — 0 (%, + ¥i )+ ]
Yoot = Ynl&XP(p2 = a2 (%, + V)]

a 0(0,1)

isthe planting coefficient.



We have conjectured that this model has aglobally attracting (positive) 2—cycle. After a
month of smulations, we became skeptical about the conjecture, which led to the smple
observations mentioned above. An experiment iswaiting to verify our conclusions. In
Figure 5 we plotted the phase space of the second iterates of our map. The pointsin the 2—

cycle are fixed points under the second iterate of the map. Here we put

Gh =0 = L Py = 15a = 0'5, and we let p2vary. The gray stripes constitute the

basin of attraction of one point in the 2—cycle and the white stripes are the basin of attraction
of the other point in the cycle. The black region is the compliment of the basin of attraction

of the 2—cycle (Figure 6).
IV Chaoplexity: a new paradigm.

We may look at DNA sequences as a symbolic sequence of symbols: A-0,Co 1, T 2,
G~ 3. Hence we have 24 , the space of four symbols that now represents the DNA

sequences. TWo sequences X= XX X205 a0d ¥ = YoY1Y25 g a distant

d(x,y) =) [x-y|/4ni
1=0 .

Equipped with this metric, Y 4 becomes ametric space. A mutation map o 24 - 24 is

defined using the Fibonacci sequence rule,

X = 21031202317 321031202317 3321031202317 2332103120231?

Y- 21331202317 - 321331202317 - 2321331202317 - 12321331202317



Notice that the sequences X and y differ only in one component. But repeated application

of o leadsto increasing differences between these two sequences. This phenomenon is one of

the hallmarks of chaotic systems and is called the butterfly effect or sensitive dependence on

initia conditions.

Many theories have been developed addressing the question of the extinction of species. |
speculate that the extinct species were not chaotic enough to survive major calamities. To
demonstrate my point, let uslook at arecent study by Jim Cushing and his collaborators, the
beetles. In their study of the flour beetles, they devel oped a 3—dimensional model of
difference equations to represent Larvae (L), Pupae (P) and Adults (A). They have shown
both experimentally and mathematically that the flour beetles exhibit chaos through double
bifurcation. So you try to exterminate them but they keep coming back in greater quantities.
Plant pests have shown the same behavior. However dinosaurs were too stable to survive and
perhaps the spotted owl is also non chaotic and will not survive either.

Darwin’ stheory, the survival for the fittest may apply perhapsto individualsin a species.
But for a species as awhole to survive it has to possess chaoplexity that isit must be both
complex and chaotic. Notice that complexity isnot sufficient for survival but it is necessary.
Moreover, the presence of chaosis a sufficient condition for survivability but perhapsit is

not a necessary condition. This definition of chaoplexity is different from that of John Doyle

[2].
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