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Partitioning Multiple Objective Optimal Solutions with Applications in
Radiotherapy Design

Allen Holder!

September 13, 2001

Abstract

The optimal partition for linear programming is induced by any strictly complementary solution, and this
partition is important because it characterizes the optimal set. However, constructing a strictly complementary
solution in the presence of degeneracy was not practical until interior point algorithms became viable alternatives to
the simplex algorithm. We develop analogs of the optimal partition for linear programming in the case of multiple
objectives and show that these new partitions provide insight into the optimal set (both pareto optimality and
lexicographic ordering are considered). Techniques to produce these optimal partitions are provided, and examples
from the design of radiotherapy plans show that these new partitions are useful.
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1 Introduction

Interior point algorithms have “revolutionized” the study of linear programming [27], but there has been substan-
tially less work done in the related field of multiple objective programming, exceptions being [1], [3] and [5]. The
primary purpose of this work is to begin to develop results for multiple objective programming that rely on, and
that are similar to, recent results in the linear programming literature. The focus of this paper is on the optimal
partition, which is important in linear programming because it characterizes the optimal set. Because of this, the
optimal partition is fundamental when analyzing algorithms and performing sensitivity analysis. We define, and
show how to generate, two new partitions for multiple objective programming. We also demonstrate that these
new sets are useful in the design of radiotherapy treatment plans.
Throughout we are interested in the multiple objective linear program,

(MOLP) min{Cz: Az =b,z > 0},

where C € R?*™, A € R™*", and b € R™. Without loss of generality, we assume that the rank of A is m. The
p linear objectives are represented by the p rows of C, which are denoted by ¢’, i = 1,2, ...p. The feasible region
is denoted by P and is referred to as decision space. The set, {Cz : x € P}, is called objective space. The optimal
face for the single objective linear program min{c'z : x € P} is P;. We use R} to denote the set of vectors in
R™ with each component being non-negative, and R’ ; indicates the further restriction that the n components
are positive. The Null and Column spaces of a matrix A are null(4) and col(A), respectively. The vector e is the
all ones vector, where length is decided by the context in which it is used. Any further notation is standard, and
we refer the reader to The Mathematical Programming Glossary [13].

The “sense” of minimization is not uniquely defined when there are several objectives (the problem being
that there is not a readily available complete ordering for R", n > 2). Two standard approaches are pareto
optimization and lezicographic optimization. A pareto optimal solution is a feasible element x such that there
does not exist another feasible element y such that Cy < C'z, with strict inequality in at least one component.
The set of all pareto optimal solutions is called the Efficient Frontier, denoted by &£, and we use the phrases “x
is pareto optimal” and “z is efficient” to mean that x € £. Practitioners often desire to generate, or sample, the
entire efficient frontier. This is because a complete description of the efficient frontier shows a decision maker
how the objective functions interact. Recent techniques for parameterizing the efficient frontier are described by
Dennis and Das [21]. We make use of the well known result that a feasible element is efficient if, and only if, the
element is optimal for a weighted sum of the objectives [7]. In other words, z € £ is the same as knowing there
exists w € R% | such that = solves min {w” Cz : z € P}.

Another standard manner to optimize when there are multiple objectives is to lexicographically order the
objectives. Such an ordering scheme makes sense when the objectives are easily ranked. For example, a modeler
may prefer to minimize the function f, but only after function g is minimized. This is exactly the situation when
lexicographic optimization is appropriate. A typical sequential technique for solving the lexicographic MOLP is
discussed in section 5.

The overriding goal of this paper is to show how to ascertain whether or not a decision variable is zero in every
optimal solution. Such information is important because it supplies a decision maker with a collection of variables
that do not appear in any optimal solution. The case of pareto optimization is considered in Section 3. We begin
by defining the MOLP optimal partition, and in Theorem 1 we relate this partition to the optimal partitions of the
single objective linear programs. An algorithm that constructs the MOLP optimal partition in the special case of
two objectives is developed. An example from the radiotherapy literature is developed in Section 4, and we show
how the MOLP optimal partition is useful. In Section 5 we define the lexicographic optimal partition, and again
use the radiotherapy model as an example of its usefulness. Section 2 reviews the basic ideas of a path-following
interior point algorithm and shows how these algorithms provide a solution that induces the linear programming
(LP) optimal partition. Readers familiar with interior point algorithms will feel comfortable skipping all but the
last paragraph of this section.

2 A Brief Review of a Path Following Interior Point Algorithm

The remaining sections rely on the fact that a path-following interior point algorithm terminates with a solution
that induces the optimal partition. As such, a basic understanding of a path-following interior point algorithm is
now presented (complete algorithm developments are found in [25], [28], and [29]). Consider the linear program
(LP)min{c" % : Az = b,z > 0} and its associated dual (LD) max{b"y : ATy + s =¢,s > 0} (as in (MOLP), we
assume that A € R™*" has full row rank). The necessary and sufficient conditions for optimality are

Ar=b, ATy+s=c,2>0, s>0,and z;8,=0, i=1,2,...n.



A fundamental concept in the theory of interior point algorithms is that of the central path, which is an infinitely
smooth curve contained within the strict interior of the feasible region. (The strict interior of the primal feasible
region is {z : Az = b,z > 0}, and the strict interior of the dual feasible region is {(y,s) : ATy + s =¢,s > 0}.)
The central path is formed by replacing the complementarity constraint x;s; = 0 with x;s; = p, for i =1,2,...n
and p > 0. Notice that p being positive means that we require feasible elements such that z > 0 and s > 0.
Hence, we make the assumption that the strict interiors of the primal and the dual are nonempty. For p > 0, the
central path is defined by

Ax =0, ATy+s=c,:c>0, s>0,and z;ss=p, 1=1,2,...n.

The full row rank of A implies that this system has a unique solution for every g > 0, which we denote
(z(p),y(p),s(p)). Notationally, the primal central path is the parameterization x(u), and the dual central path is
the parameterization (y(u), s(u)). As p | 0, the central path converges to a unique optimal solution known as the
analytic center solution, denoted (z*,y",s"). A path-following interior point algorithm follows the central path
towards optimality, and hence, terminates at the analytic center solution.

Unless there is a unique solution to (LP), (z*,y", s*) is not basic. Instead, the analytic center solution is strictly
complementary, meaning that xzjs; = 0 and z; + s; > 0, for ¢ = 1,2,...,n. Strictly complementary solutions
have been known to exist since 1956 [11], but until path following interior point algorithms were implemented,
these solutions were not easily calculated [32]. Any strictly complementary solution, and in particular the analytic
center solution, induces the optimal partition, which is written (B|N) and is defined by

B={i:z; >0} and N ={1,2,...,n}\B.

These sets are important because they indicate the variables that are allowed to be positive at optimality (those in
B) and the variables that are forced to zero at optimality (those in V). Making the convention that a set subscript
on a vector (or a matrix) indicates the subvector (or the submatrix) that corresponds to the components (or the
columns) contained within the set, we have that the optimal set for (LP) is {z : Aprp = b,zp > 0,znx =0} and
the optimal set for (LD) is {(y, s) : A5y = cm, ARy + sy = cn,sx > 0,55 = 0}. Hence, the optimal partition
characterizes the optimal sets. The reason that (z*,y*, s") is called the analytic center solution is that z* is the
unique solution to

max{Zln(xi) :Apxp =b,xp > 0,zNn = 0}
i€EB

and (y*,s”) is the unique solution to

max {Zln(si) : ALy =cp, ANy + sn = cn, sy > 0} .
i€N

In general, the analytic center of a bounded polyhedron, say {z : Uz = u,z > 0}, is the unique solution to

max {Zln(ml) Uz =u,xr > 0,27 = 0} ,

i€l

where I indexes the components of x that are allowed to be positive, and I¢ is the complement of I.

Having an algebraic description of the optimal face is important because it provides a vehicle from which
to base a complete sensitivity analysis. Before interior point algorithms became viable alternatives to simplex
based procedures, sensitivity analysis was conducted with a basic optimal solution. However, in the presence
of degeneracy there are problems with a basic optimal approach to sensitivity analysis. This is because the
analysis depends on the specific basic optimal solution provided by the algorithm. In the presence of degeneracy,
the analysis provided depends on the basic optimal solution produced by the specific algorithm. However, the
optimal partition is unique, and several researchers have investigated how to base post-optimal solution analysis
on the optimal partition [2, 12, 14, 15, 18, 19, 20, 23, 24, 25, 30, 31].

Before continuing, we require some brief notes on notation. For ¢ = 1,2,...,p, the optimal partition of the
single objective linear program min{c‘z : € P} is (Bf|N*), and hence,

Pl ={x:Agizpgi =b,xg: >0,zy: =0} ={x €P: 2y =0}

The strict interior of P; is (P;)° ={z € P; : xp: > 0}.



3 The Optimal Partition for Multiple Objective Linear Pro-
gramming

In this Section we consider the case of pareto optimization. We begin by defining an analog of the LP optimal
partition, which we succinctly refer to as the MOLP optimal partition. Moreover, using parametric programming
results, we provide an algorithm that produces the MOLP optimal partition for bicriteria optimization. We
desire that the MOLP optimal partition provides information about the efficient frontier that is similar to the
information provided by the LP optimal partition. With this in mind, we make the following definition.
Definition 1 Let £ be the efficient frontier of min{Cx : Az = b,z > 0}. The MOLP optimal partition, denoted

molp molp

(B|N), is defined by
mol;
N = {i:2:=0 forallzef} and

molp

B = {1,2,3,...,n}\N.

The definition of the MOLP optimal partition retains the quality that an index being in N indicates that the
component is zero in every pareto optimal solution. Likewise, an index in B demonstrates that the component is
allowed to be positive on the efficient frontier. A property that is unfortunately relinquished is that the MOLP
optimal partition is not capable of characterizing the efficient frontier —i.e. £ # {x € P : T, = 0}. However,

we do have that £ C {z € P : z,..,, = 0}, where equality holds in the case of a single objective (and hence the
N
MOLP optimal partition reduces to the LP optimal partition).

molp .
We point out that B is not the union of the the B's, and that in general there is no simple relationship
molp .
between B and the B's. This is because the efficient frontier may contain faces that are not optimal for any of
the single objectives, and the single objective optimal faces need not be contained within the efficient frontier.
With that said, the next theorem provides relationships between the MOLP optimal partition and the single
objective optimal partitions.

Theorem 1 We have that

molp p . molp 4 .
EQP;, fori=1,2,...p, & B 2| JB and N C [N,
=1 i=1

2

and for any fized j between 1 and p,

mol; . mol; .
£ECP, & B CB and N 2N

Moreover,
P " molp P . molp p .
e=JPi = B=JB and N = N".
i=1 i=1 i=1
Proof: Suppose that £ D P/, for i =1,2,...p. Let j € JP_, B'. Then j € By for some k, and there exists

molp

x € P; C € such that z; > 0. Hence j € B, and the sufficiency of the first statement is established.

Now assume that there exists j such that P; ¢ £. We first show that (P;)°(€ = 0. Suppose for the
sake of attaining a contradiction that ¢ € (P;)°( €. Since x € £, there exists w € R% | such that x solves
min{w” Cz : Ax = b,z > 0}. Let (B'|N’) be the optimal partition of this linear program. Then O = {z € P :
Apzp =b,xp > 0,zy = 0} is contained within £. Since z € (P;)°, we have that p; > 0, and since z € O,
the only components of z allowed to be positive are indexed by B’. So, B’ C B’. We now have the contradiction
that

P, = {ze€P:Apixpi =bzp; >0,zy; =0}
g {wE’PZABIJ}B/:b,QZBI 20,.’1}1\71 :0}
c ¢

molp

So, P; ¢ € implies (P;)° N E =0, and hence there exists € (P;)°\E. Subsequently, this means that B' ¢ B,
and the necessity of the first statement is proven.



Let £ C P; for some j between 1 and p. Then every efficient element is contained in

P ={z €P:Apjxg; =bwgi >0,zy; =0},

molp . molp .
from which we have that B C B’. To establish the necessity of the second statement we assume that B C B’,
for some j between 1 and p. Then,

&

N

{.’E EP:AntyTimoy = b, Tonoty > 0, Tonory = 0}
B B B N

N

{z €P: Apjzp; =b,xp; > 0,zy; =0}
= P

molp
To prove the third implication assume that & = (Ji_; P;. Let K € B. Then, there exists € £ such that
. molp . . .
xx > 0. Since x € P;, for some j, and z >0, k € B’. So, B C J/_, B". Now let k € J/_, B'. Then, k € B’
molp

for some j, which implies there exists « in P; such that xj > 0. Since P; C £, we subsequently have that k € B .
. molp
So, J?_, B' C B, and the proof is complete. |

The last statement in Theorem 1 is not reversible as demonstrated by the following example.

Example 1 Consider the following multiple objective linear program,

1
min To 1+ xetx3s=1,21 20,22 >0,23>0
—T1 — X2

The single objective optimal partitions are
(B'IN') = ({2,3}{1}), (B’*IN?) = ({1,3}{2}), and (B®|N®) = ({1,2}|{3}).
Notice that if we add the objectives we have the linear program

min{0z; + 0x2 + 0z3 : 1 + 2 + 23 = 1,21 > 0,22 > 0,23 > 0},

molp

which means that every feasible element is pareto optimal. So € = P, and because P° # 0, we have that B =
{1,2,3}, which is equal to U?:l B*. However,
E = P
# P{UP;UP;
{reP:z:=0U{reP:z2=0}U{z €P:23=0}

The geometry of this problem is depicted in Figure 1.

Theorem 1 indicates that if the efficient frontier is comprised entirely of the single objective optimal faces,
molp molp

( B| N) may be calculated by solving the p single objective linear programs. However, the sufficient condition

that £ = (Ji_, P is not practical because the nature of the efficient frontier would have to be known apriori.
molp molp
This leads to the question of when is it possible to generate ( B | N ). In the special case of p = 2 —i.e. bicriteria

optimization, we develop an algorithm to produce the MOLP optimal partition. For the remainder of this section
we assume that p = 2. As previously mentioned, we have that x € £ is the same as z solving

(LPy) min{(wlc1 + wch)x tx € P},

for some w; > 0 and wz > 0. An observation first made by Geoffrion [10] is that the solutions to (LP,) correspond
to the solutions of

(LPp) min{(c' + 0&)z : x € P},
where 6 € (0,1) and & = ¢ — ¢'. So, x being optimal to (LP,), where w1 > 0 and w2 > 0, implies there is
8 € (0,1) such that z is optimal to (LPy). Similarly, if z is optimal to (LFy) for § € (0,1), there exists w1 > 0

and wz > 0 such that = is optimal to (LP,). This means that the efficient frontier may be parameterized for
molp molp
bicriteria optimization, and hence, ( B | N ) may be found by calculating the optimal partitions as 8 traverses the

open interval (0, 1).
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Figure 1: Every feasible element is pareto optimal, but the union of the single objec-
tive optimal faces is the boundary of the feasible region.

X1

Parametric linear programming has been studied since the middle 1950s [9, 26], and the classical question
asks how far the data describing the linear program can be perturbed so that the current optimal basis remains
optimal. However, the popularity of interior point algorithms has lead math programmers to re-think the topic of
parametric analysis, and we now understand that the analysis available from the optimal partition is substantially
more robust than the analysis allowed by a basic optimal solution [20]. The work of Monteiro and Mehrotra [23]
and Roos, Terlaky, and Vial [25] show how to generate the optimal partition under parameterization of either

molp mol

the objective coefficients or the right-hand side vector, and we use these algorithms to calculate ( B | Np). (also
see [14] for simultaneous parameterization). We review how these algorithms work, but interested readers should
see the original works for complete details.

The algorithms in [23] and [25] completely explain the classic result that z*(8) = min{(c' + 8&)Tz : = € P}
is a piecewise linear function (2*() is also concave) [8]. What the authors of [23] and [25] noticed was that
the linearity intervals of z*(6) correspond with an optimal partition. For example, suppose that we want to
parameterize between ¢' and ¢?, and that upon setting & = ¢* — ¢', we find that 2*(6) is the function depicted
in Figure 2. The optimal objective value, z*, traverses three linearity intervals as # increases from 0 to 63, and

Z'(0)

Figure 2: The optimal objective function as 6 traverses the interval [0, 03]

seven optimal partitions are observed. (Note: We use (B;|N;) for the example because (B'|N?) is the optimal

partition for the ith single objective linear program.) For § = 0 (the unperturbed problem), the components of
an optimal solution that are allowed to be positive are indexed by B!. However, as 6 increases from zero, the
optimal partition changes immediately, and a new optimal partition is defined for 0 < 8 < 6;. Similarly, as
attains the value of 8, the optimal partition changes to (Bs, N3), but only observes this partition instantaneously
because (Ba, N4) is the optimal partition for §; < § < 62. This analysis continues until 6 increases past 1, which
in this case is where 6 equals 63 and the optimal partition is (B7|IN7). The linearity of z* changes at 0, 61, 63,



and 63, and these values are called the break points of z*.

The algorithm to produce z* relies on two calculations. The first calculation figures out how much 6 can
increase from zero until the optimal partition of the unperturbed problem is forced to change. Let (B|N) be the
original optimal partition, and observe that this partition remains optimal so long as the following equations are
consistent,

Primal — { Apxp =b,xp >0 (—.e zny =0)
ALy =cp + 0k, . _
Dual — { ATy 4 s = cx + B0en, sy > 0. (—i.e s =0)

Changing 6 does not alter the primal conditions. So, to calculate the range of § over which the optimal partition
remains optimal we solve

(LPrange) max{a : Agy =cB +0&B,A%y+3N =cny +0&kn,sy > 0,0 > 0}.

We assume for the moment that (LPrqnge) has a finite optimal value, and we let (6*,y", sy ) be the analytic
center solution. There are two cases to consider. If &p ¢ col(A%), the only value of  for which ALy = cs + 0écs
is consistent is § = 0. So, in this case the optimal value is 0, and s} > 0. Otherwise, &g € col(A%) and
ALy = cp + &g is consistent for every §. In this situation, the optimal value is positive, and components of s
are zero. Notice that the value of 8* is a break point of z*. The linear program (LPRrange) has its own optimal
partition, which induces the new optimal partition at the break point. If §* = 0, as it is in our example, sy
is positive and the optimal partition has not changed. If 8* > 0, there is a non-empty subcollection of N, say
N , such that sg = 0. The indices in N switch from N to B so that the optimal partition at the break point is
(B'|N') = (BUN|N\N).

The second calculation is to find the rate at which 2™ changes over the next linearity interval. How to calculate
the rate of change of z* along d& is a question that was first answered by Mills [22] in 1956, where he showed that
the directional derivative of z*(6) is

min {&Tm :x € argmin{(c + 0"&) z:z € ’P}}
Because (B'|N') is the optimal partition for min{(c + 6*&)"« : € P}, we have that
argmin{(c+ 0*dc)'z: 2 € P} ={x € P: Apixp =b,xp,xy = 0}.
From this we see that the rate of change of z* over the next linearity interval is
(LPRgte) min {&gle: :Aprxpr =b,xpr > 0}.

As before, (LPrqte) has its own optimal partition, which is used to form the optimal partition for the next linearity
interval. If z7, is the analytic center solution, the indices of the positive components remain in B, while the indices
of the zero components move to N. Let B be the subset of B’ such that z7; > 0 and zgnp = 0. Then, the

optimal partition for the next linearity interval is (B’\B|N’ U B). The algorithm for the example illustrated in
Figure 3 proceeds as follows.



Algorithm to Calculate the Optimal Partitions as 6 traverses the interval [0, 03]

1. Find the amount of movement along d& that (B1|N1) can observe by solving

max¥ : Agly = c¢p, +0&p;
A%1y+sN1 = cn; +0kn,
SN, Z 0.

For the ezample the solution is 0. If any components of sy, had been forced to zero at
optimality, the indices for these components would have been added to By to form the partition
at the break point. However, 8 = 0 is a break point as indicated by the optimal value being
zero, and hence none of the components of sy, are forced to zero at optimality.

2. Find the rate of change for z*(6) over the next linearity interval by solving

mindp, ve, : ApzB, = b
B, > 0.

The solution is the slope of the first linearity interval, and the partition corresponding to this
interval is
By={i:z; >0,i€ B1} and No =N, U{i:z; =0,i € By},

where &, is the analytic center solution.

3. Find out how much movement (Bz|N;) can accommodate by solving

max®8 : Ag2y = c¢By, +0&B,
Aﬁgy +sn, = cny +0kn,
SNy Z 0.

The solution is 01, and the optimal partition for this break point is
B3 =ByU{i:s; =0,i € N2} and N3 = {i: s; > 0,7 € N2},

where (6",9", s,) s the analytic center solution.

4. Find the rate of change for z*(0) over the next linearity interval by solving

min&:gachs: ApszB, = b
zBy; > 0.

The optimal value is the slope for the second linearity interval, and the optimal partition for
this interval is

By={i:z; >0,i € B3} and Ny = N3 U {i: z; =0,i € B3},

where xg, 1s the analytic center solution.

5. Continue in a like fashion.

Once the optimal partitions are calculated, we use the result that the efficient frontier is parameterized as 6

mol;
traverses the interval (0, 1). Notice that (B1|N;) is optimal for § = 0 only, which means that B; € B Similarly,
molp

(B7|Nr) is optimal for § = 63, which is greater than 1. Hence, By is not a subset of B . The remaining optimal
partitions are optimal for some 6 in (0, 1), and hence,

molp 6 molp molp
B =|JBiand N ={1,2,...,n}\ B.

=2

Notice that there is a subset relationship between the optimal partition at a break point, say (B*|N?) at 61, and the
optimal partitions of the adjoining linearity intervals, (B*|N?) and (B*|N*). Specifically, we have B> O B? and
B? D B*. Such relationships hold in general, and we formalize this by defining the point-to-set map (B(8)|N(6))
to be the optimal partition for the objective coefficients ¢! + #d. The following monotonicity property was first



proven by Adler and Monteiro [2], but is also found in [4] and [16], where the latter established the result for
nonlinear perturbations.

Lemma 1 (Adler and Monteiro [2]) For sufficiently small > 0, we have
N(0) C N(0) and B(0) C B(0).

molp

Lemma 1 is useful because it shows that we do not need every optimal partition to construct B . Instead, we
only need the optimal partitions that correspond to the break points of z*. For the example depicted in Figure 2,

molp
we have that B = B3 U Bs.
molp

The following algorithm uses Lemma 1 to construct B . The concept is the same as in the example, calculate
a range of 6 over which an optimal partition remains optimal, calculate the rate of change for the next linearity

molp
interval, and repeat. From Lemma 1 we have that indices need to be added to B only after the range calculation.

molp molp

Algorithm to Calculate (B | N) for Bicriteria Optimization

mol,
Step 1 - Initial Solve: Initialize s =0, ©9 = 0, and Bpo = 0. Set c to be ¢* and & to be ¢ — ¢'. Solve
min{cz : Az = b,z > 0} with a path-following interior point algorithm to get (B'|N'). Set (B|N) to
be (B!|N).

Step 2 - Calculate Range: Calculate

0s = max{é’ : AﬁyB =cCB +0&;B,A§y1v + sy =cn + 0ken,
sw >0,0<6 <2},

Let (8*,y", s) be the analytic center solution (or any strictly complementary solution), and set
B' = BU{i:i€ N,s; =0}and
N' = {i:i€N,s; >0}
Set ©s4+1 = O + 65 (notice the difference between § and 0).
mol;
Step 3 - Build Bp:
a. If s =0 and O,y = 0, proceed to step 4.
molp molp
b. fs=0and 0<Os4y1 <1,set By41 = B;,UB'.
mol;
c. f s=0and O,41 > 1, set B = B! and go to step 6.

molp molp

d. fs>1and 0<Os41<1,set Bop1 = B,UB'.
e. If s>1and © > 1, go to step 6.

Step 4 - Update Step Index: Index s up by one.
Step 5 - Calculate Rate of Change: Solve

min{(ch/xB/ : ABI.'EBI = b, T pr Z 0}

and set

B {i:i€ B z; >0} and
N = NuU{i:ie Bz} =0},

where x5/ is the analytic center solution (or any strictly complementary solution). Go to step 2.
Step 6 - Stop: Set

molp  molp molp

mol,]
B =B.1and N ={1,2,3....0}]\'B.

The optimization problem in Step 2 calculates the range of 6 for which the current optimal partition remains
optimal (and corresponds to a linearity interval of z*). Notice that we bound 8 above by 2, which guarantees that
a linearity interval does not continue as 8 — co.



The conditional statements in 3(a) through 3(c) handle the possible situations during the first iteration. If

molp
the first range calculation returns 0, then (B'|N?') is optimal for # = 0 only, and hence B' ¢ B . In this case we
molp
do not add any components to B, and we continue by finding the rate of change for the next linearity interval.
molp
If the first range calculation returns a value between 0 and 1, we have that B C B and that the new partition
(B'|N') is an optimal partition for a break point of z*. Moreover, Lemma 1 implies B C B’, and because the

molp
range calculation returned a value between 0 and 1, we have B! C B’ C B. So, instead of adding the indices

mol;

p molp
in B' to B, we add the indices of B’ to B . Finally, if the first range calculation returns a value of at least 1,

molp mol,
then (B'|N') is the unique optimal partition for every 8 in (0, 1). In this case we have that ( BP| Np) = (B'INY).
molp

The last two conditional statements in Step 3 continue to add components to B so long as © < 1. Again, from

molp
Lemma 1 we only add indices to B after we calculate an optimal partition corresponding to a break point of z*.

4 An Example from Radiotherapy Treatment Design

The purpose of this section is to show that the MOLP optimal partition is useful in the design of radiotherapy
treatment plans. We use a modification of the model in [17]. External beam radiotherapy design is concerned
with choosing a collection of positions around a patient so that radiation from an external source is focused on a
tumorous region and not on other critical structures. Energy is produced in a linear accelerator and is directed
through a gantry, which is capable of being placed continuously around the patient. In modern treatment facilities,
the head of the gantry contains a multi-leaf collimator, which is used to “shape” the beam of energy. A treatment
plan consists of (1) a set of angles to place the gantry, (2) the amount of radiation to be administered along each
angle, and (3) the shape of the beam at each angle. Since the gantry is capable of moving continuously around the
patient, and the shape of the beams is controlled by over 50 leafs in the collimator, designing plans is a complex
procedure requiring some sort of automated aid.

The fact that the accumulative dose to a cell is additive means that linear models are natural and appropriate.
Linear models rely on the fact that there is a linear transformation that takes radiation at the gantry and deposits
this energy into the anatomy. To understand how this transformation is formed, we set x(4,;) to be the dose along

the ith sub-beam of angle a, and d; 4 ;) to be the distance from where sub-beam x(, ;) enters the image to where
it reaches pixel p. We further define A, , ;) to be the product of e~P4@.9) and the geometric area common
to both sub-beam x(, ;) and pixel p. The factor e #w.a.i) describes how the beam of radiation attenuates as it
passes through the body, and p is called the attenuation coefficient. The value of p depends on the the energy of
the beam. Gamma-rays from Cobalt-60 have a relatively low energy of 1.25 MeV and correspond to a p value of
approximately 0.06. Linear accelerators in modern facilities are capable of producing beams with intensities of up
to 15 MV, and typical values of p are 0.02 [6]. To calculate A, , ;) for the pixel, angle, and sub-beam depicted
in Figure 3, we first calculate that sub-beam 7 intersects 40% of pixel p. Second, we calculate the distance along
sub-beam 7 from the edge of the patient to pixel p. Third, we set A, i) = 0.40e~#4(P29)  where p is decided by
the energy of the beam.

The accumulative dose to pixel p is found by adding the energy deposited in pixel p from every sub-beam. We
“discretize” the angle positions so that the continuous rotation of the gantry is approximated by a set number of
evenly spaced angles. So, the accumulative dose to pixel p is

> Apai®a-

(ay%)

The dose deposition matrix, denoted by A, is formed by letting A, , ;) to be the element in the pth row and the
(a, i)th column. Allowing the vector « to be comprised of the z(, ;)’s, where the order corresponds to the columns

of A, we have that the pth component of Az is the total dose received by pixel p under plan x.

What happens in a clinical setting is that a dosimetrist highlights regions in a patient image that correspond
to the tumor and the surrounding organs. Once the image is segmented into regions, a tumoricidal dose for the
tumor is decided, and the pixels flagged as cancerous are asked to receive a tumoricidal level of radiation. At the
same time, pixels corresponding to other structures in the anatomy are given bounds on the amount of radiation
that they should receive. For example, suppose that pixel p is within the tumor and that the tumoricidal dose is
80Gy. The linear constraint

Z Apa,i)%(a,i) = 80
(@)
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Figure 3: The geometry of treating a patient image along angle a.

guarantees that pixel p receives at least 80Gy’s. Similarly, if pixel p is within the liver, and the liver’s upper
bound is 20Gy’s, the constraint

Y ApaiTai < 20

(@,1)
guarantees that pixel p receives no more that 20Gy’s.

The rows of the dose deposition matrix are partitioned and reordered into the rows that correspond to the

tumor, the rows that correspond to the critical structures, and the rows that correspond to the remaining good
tissue. This reordering is denoted with the sub-matrices A,., A, and A, as indicated below,

A, +— Tumor
A= A, <— Ciritical Structures
A +— Remaining Good Tissue.

Sub-beams that do not intersect the tumor are removed from consideration by eliminating the columns of A that
have a corresponding zero column in A, . For notational brevity, we keep the A notation for the sub-matrix with
these columns removed. In what follows, A € R™*", A, e R™7*" A, € R"¢*" and A, € R™¢*".

A prescription is comprised of a physician’s aspirations for the tumor and upper bounds for the non-tumorous
tissue. Specifically, a prescription is the 4-tuple (TUB,TLB,CUB, GUB), where

e TUB is a mr vector of upper bounds for the tumor,

e TLB is a mr vector of lower bounds for the tumor,

e CUB is a mc vector of upper bounds for the the critical structures, and
e GUB is a mg vector of upper bounds for the remaining good tissue.

Because a uniform, tumoricidal dose is to be delivered to the tumor, the lower and upper bounds for the tumor
are taken to be a fixed percentage of the physician’s goal for the tumor. Supposing that the physician’s goal
for a tumorous cell is TG, values for TUB; and TLB; are (1 + €)TG and (1 — €)TG, respectively. Here, € is a
percentage of variation for the tumor dosage and is called the tumor uniformity level. Typical values of € found in
the literature range from 0.02 to 0.15. The vector GUB describes the highest amount of radiation that any single
pixel is allowed, and in general no tissue should receive more than 10% of the tumor’s desired dose. As such, we
set GUB; = TG(1.10).
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The model we investigate is

min ea
e"B+ely

such that
TLB—a < A,z < TUB )
A,z < CUB+p
A,z < GUB+vy
0 < «a < TLB
-CUB < B
0 < v
0 < T

The first set of constraints attempts to restrict the tumor’s dose to be within its prescribed lower and upper
bounds. The discrepancy between the tumor’s lower bounds and the amount of radiation deposited in the tumor
is recorded in a. The reason that the tumor is not guaranteed to be within its limits is that & may be non-zero.
If a equals its upper bound of T'LB, no radiation is required to treat the tumor, and if « equals 0, the tumor
is receiving its prescribed minimum dose. With this interpretation we see that the first objective is to minimize
the accumulative amount the tumor is under its prescribed lower limit. The vectors 8 and v have similar roles
for the critical structures and the normal tissue. The difference between S and < is their lower bounds. If 3
attains its lower bound of —CUB, we have a plan that deposits no radiation in the critical structures. The lower
bound on 7 is zero because plans are considered acceptable once the remaining areas receive less than 10% of the
maximum tumor dose. The second objective minimizes the sum of the radiation on the critical structures and the
discrepancy on the normal tissue.

The objectives “compete” for energy in the following manner. The desire to drive eTa to zero removes low
energy plans from consideration, but the competing goal of driving e? 8 + T~y to —eT CUB removes high energy
plans from consideration. There may be plans which allow both e”a = 0 and 78+ ey = —eTCUB. Such plans
are called unencumbered because they deliver a uniform, tumoricidal dose without depositing radiation in the
critical structures. There are advantages to having the analytic center solution when such plans are available [17].

Our goal is to show the value of constructing the MOLP optimal partition for this problem. We used
Radiotherapy optim.Al Design (RAD), a free software package built in Matlab® and available at http://www.
trinity.edu/aholder/research/oncology/rad.html. The model used in RAD is identical to our model except
that it uses the single objective w - eTa + €T + T, where w weights the importance of attaining a uniform,
tumoricidal dose. The only alteration required was to change the objective to feTa + (1 — 8)(e”8 + eTv) and
implement the algorithm described in Section 3.

While Matlab® is a robust language, the path-following interior point algorithm implemented in the opti-
mization tool-box had some numerical difficulties. We declared a component of an optimal solution to be zero if
it was less than 10™2, and the problem we encountered was detecting a change in the optimal partition after some
range calculations (smaller tolerance levels, down to 107'%, led to the same problem). We handled the problem
in the following manner. If {i : 4 € N, s} = 0} = 0 in Step 2, we set ©541 = Qs + 1072 and calculated the optimal
partition for ¢! + ©,116 —i.e. we advanced our progress through the interval by 102, While we understand that
we may miss some linearity intervals with this technique, digital computation and internal algorithm tolerances
require that a threshold be used to decide if an optimal value is indeed zero. Experience shows that using 102
provides stable, reliable results.

All experiments were conducted on a 64 x 64 grid, with 72 equally spaced angles to choose from. Each angle
was comprised of 32 sub-beams, and the tumor uniformity level was +4%.

Consider the geometry in Figure 4, where a tumor is surrounded by three critical structures. We note that it

is impossible to achieve a uniform, tumoricidal dose without violating some of the other dose restrictions. The
molp mol

algorithm to calculate ( B | Np) found 194 break points. This corresponds to 399 different partitions and 195
linearity intervals, with the longest being (0.709, 0.999) and the shortest having a length of 0.001 (because of the
numerical instability previous discussed). We observed that the optimal partition became increasingly stable as
importance on treating the tumor increased. Figures 5, 6, and 7 depict how the radiation is deposited by the
optimal plan for the first, middle, and last break points: § = 0.001, § = 0.397, and 6 = 0.999. In Figure 5 we see
that the critical structures receive no radiation and that there are large portions of the tumor that are not treated.
The entire tumor is treated in the deposition pattern in Figure 6, but at the expense of the critical structures
receiving an increased dose. Also, the uniformity level is not within its prescribed deviation allowance of +4%.
In Figure 7 we have that the tumor is completely treated within its uniformity level. However, the lower part of
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the critical structure on the lower left side of the tumor is receiving levels of radiation above its prescribed upper
bound of 60 Gy’s. Similar discrepancies occur for the upper left region of the critical structure on the upper right
side of the tumor. Interestingly, the critical structure restricted to 20 Gy’s always adheres to its prescribed upper
bound.

Figures 8 and 9 provide information about which angles are used, and not used, as 0 traverses the interval
(0,1). We saved the optimal partitions at each break point, and used this information to calculate how often
an angle is used. We say that an angle is used at level k if there are k sub-beams from that angle with positive
amounts of radiation in the optimal plan. Furthermore, we say that an angle is on provided its level of use is at
least 1. In Figure 8 we calculated each angle’s level of use, and then added these together for each of the 194
break points. These values are recorded above the circle around the image. The highest peak is at 90° and has
a value of 1,424, which means that 1,424 sub-beams were used from this angle as 6 traversed the interval (0, 1).
Figure 9 is similar, but instead of accumulating sub-beams from each angle, the percentage of times an angle
is on is displayed over the circle. Angle 85° was on in 100% of the optimal partitions, and while 90° had the
highest amount of sub-beam usage, it was not on in each optimal partition (it was used in 99.75% of the optimal
partitions).

molp molp

The graphics in Figures 8 and 9 indicates which sub-beams, and hence angles, are in B and N . In either
graph, an angle having a value of zero implies that the sub-beams from that angle were not used in any optimal
plan. Such information is important because this collection of angles can be excluded from consideration when a
dosimetrist is uncertain about the relative importance of the objectives. So, no matter what importance is placed

molp

on attaining a uniform, tumoricidal dose, the angles in N are never used. Moreover, Figures 8 and 9 indicate to
a dosimetrist which angles are used in a large number of optimal plans, and hence, should be considered under
most circumstances.

5 An Optimal Partition for Lexicographic Multiple Objective
Linear Programs

In this section we develop an optimal partition when the objectives in (M OLP) are lexicographically ordered. As
is consistent with our notation, we denote the optimal set by P;. The standard manner to solve a lexicographic
MOLP is the following sequential technique.

A traditional solution procedure for lexicographic multiple-objective linear programming

e calculate z; = min{c'z : ¢ € P},
e calculate 23 = min{c’z : z € P,c'x = 2} },

e calculate 23 = min{cz : z € P,c'x = 2},c%x = 23},

e calculate z;, = min{c’z:z € Ple=z,lr=2,...,F e = Zp—1}-

The value of z, is the optimal value of the lexicographic MOLP, and the optimal set is Py = {z : ¢ € P, cz =
25, c’x =23,...,cPx = z3}. To see how the optimal partition is useful we need only recognize that

Pi={e:zePco=2z}={x: Agizp =bxg > 0,2y =0},
Hence, to calculate z5; we may instead solve
(LPQ) min{C2Bl$Bl : ABI$31 = b, gt 2 0}

The difference between solving (LP>) and the traditional approach is that instead of adding a constraint to the
original problem, we remove a collection of variables from consideration. This means that the problem size
decreases instead of increases.

The linear program (LP,) has its own optimal partition, which we denote by (BZ|N7). We use B} to calculate
23 exactly as we used B! to calculate z3. The procedure continues as follows.
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An optimal partition approach to lexicographic multiple-objective linear programming

Calculate z; = min{c'z : x € P}, and set (B'|N') = (B}|N}).

Calculate z5 = min{c},; Tpi AB}“ Tpr =bxp > 0}, and let (B}|N7) be the optimal partition.
L

Calculate z3 = min{c%% T2 AB%xB% =bzg > 0}, and let (B%|N}) be the optimal partition.

Calculate z, = min{c’]’gi_lx : ABi—lei—l = b, Tpp-1 2 0}, and let (BY|N?) be the optimal

p—1
BL

partition.

At each step of this procedure we have that B: C Bfl. Moreover, B} indexes the collection of variables that
are allowed to be positive at optimality. Setting Br, = B} and Ny = {1,2,...,n}\B%, we define the lezicographic
Optimal Partition to be (Br|Nr). We remark that since every lexicographic optimal solution is a pareto optimal

mol;

solution, we have By, C B This relation is independent of the ordering on the objectives. Notice that as in linear
programming, the lexicographic optimal partition characterizes the optimal set because P; = {x € P : zn, = 0}.
Also notice that the lexicographic optimal partition is the LP optimal partition if there is a single objective
function.

Similar to the MOLP optimal partition, the lexicographic MOLP optimal partition provides insights into the
radiotherapy design problem. As an example we consider the situation depicted in Figure 10, where a tumor
has grown around a critical structure, say the brain stem, and the optical sockets are restricted critical regions.
The difference between the approach taken in this section and that of the last, is that we now assume that the
dosimetrist has prioritized the three goals of 1) attaining a uniform, tumoricidal dose to the tumor [Tumor], 2)
designing a plan that deposits as little radiation as possible to the critical structures [Critical], and 3) keeping
the normal tissue under 110% of the tumoricidal dose [Normal]. For example, if the patient is declared terminal,
the overriding treatment objective might be to do no harm to the critical structures. In this situation, the goal
of attaining a uniform, tumoricidal dose might be last on the priority scale, and the hierarchy for the goals would
be Critical/Normal/Tumor. For this priority listing, the objective function in (1) changes to

eTB < Priority 1: Decrease Critical Structure Dose
el ¢ Priority 2: Limit Dose to Normal Tissue
efa ¢ Priority 3: Obtain Uniform, Tumoricidal Dose.

Figures 11, 12, and 13 depict optimal plans for various priority listings. While each plan is different, the most
noticeable difference is between the plans in Figure 12, where the tumor has the highest priority, and those in
Figures 11 and 13. While all of these plans exhibit a high dose to the area between the optical cavities (the
nasal cavity), the plan where the tumor is the first priority deposits high amounts of radiation in parts of the
anatomy that the other two do not. Since the plan in Figure 13 attains tumor uniformity, the high levels found
in Figure 12 do not mean that adhering to the normal tissue limits is impossible if the tumor is to be within
its prescribed limits. Rather, the high doses in Figure 12 are consequences of the combined affect of the tumor
having the highest priority and the normal tissue having the lowest priority —i.e. by the time that the tumor
attains its prescription and the critical structure dose is minimized, the only tissue remaining to focus energy on
is the normal tissue.
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Figure 10: A tumor that has grown around Figure 11: Optimal Plan for Priority List
a critical structure. Critical/Normal /Tumor.

Figure 12: Optimal Plan for Priority List Figure 13: Optimal Plan for Priority List
Tumor /Critical /Normal. Normal/Tumor /Critical.

The optimal partition approach to solving a lexicographic MOLP is useful because such an approach indicates
how the minimization of each objective function removes angles from consideration. As before, we adapted the
RAD software package by altering the objective function to the appropriate priority list, and variables with a
value less than 1072 were declared zero after each sequential linear program was solved. The remaining positive
variables were allowed in subsequent models. Table 1 provides each angles level of use after each sequential solve.
For example, the first two rows correspond to the priority listing of Tumor/Critical/Normal, and the two pictures
under 1st Priority show each angles level of use after guaranteeing a uniform, tumoricidal dose (the top graph
shows the angle use around the patient image and the lower graph is angle vs. angle use). From these two
graphs we see that no angles are excluded after minimizing the first objective. The two graphs under 1st & 2nd
Priority show that angles 95° and 275° are removed from consideration upon minimizing the dose to the critical
structures. The final two graphs under 1st, 2nd, & 3rd Priority show that many angles are no longer used
once the 3rd priority of minimizing the normal tissue dose is considered.

For all priority lists, the graphs in the last column indicate which angles are in By, those with a positive usage,
and the angles in Nz, those with a zero usage. While it may appear that the angles in N are similar for each
priority list, only 9 angles are zero under all priority choices: 55°, 75°, 120°, 125°, 205°, 225°, 250°, 3107, and
355°. These are the angles that can be excluded from consideration regardless of how the dosimetrist orders the
priorities (which means we have removed 12.5% of the angles from consideration).
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Priority

1st Priority

1st & 2nd Priority

1st, 2nd, & 3rd Priority

Tumor ’ .
Critical
Normal
I it
hdedy i,
Normal
Critical
Tumor

Table 1: How an Angles Candidacy is Affected Under Sequential Mini-

mization
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Priority 1st Priority 1st & 2nd Priority 1st, 2nd, & 3rd Priority

Critical
Tumor
Normal

Critical
Normal
Tumor

Table 1: How an Angles Candidacy is Affected Under Sequential Mini-
mization

6 Conclusions

The aspirations for this paper were to develop optimal partitions for the Multiple Objective Linear Programming
problem that were natural extensions of the LP optimal partition. The MOLP optimal partition and the lexico-
graphic optimal partition achieve this goal because 1) the definitions are equivalent if there is a single objective,
and 2) they classify the optimal set —i.e. £ C {z € P : Tonoty = 0} and P; = {z € P : zn, = 0}. Theorem 1

illustrates how the structure of the efficient frontier and the MOLP optimal partition are related. Furthermore, we
show how to produce the MOLP optimal partition for bicriteria optimization and the lexicographic optimal par-
tition for an arbitrary number of objectives. Both partitions are shown to be useful in the design of radiotherapy
treatment plans.

There are several avenues for further research. First, it would be nice to know the relationship between

molp

molp
(Br|Nr) and (B, N). For example, under what conditions is it true that the union of the Br’s, taken over
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molp
all priority lists, equal to B . Second, the authors of [5] classify objective functions as opposing, repelling, and
molp molp

allying, and these concepts might provide alternative ways to calculate ( B | N ) and (Br|Nz). We make the
following conjectures:

V4 . molp
e If all the objective functions ally with each other, |J B* = B, and
i=1
X molp
e If the objective functions oppose each other, B* ¢ B ,i=1,2,...,p.
Third, the radiotherapy plans produced by RAD are not practical because the large number of angles being
used forces exorbitant treatment times. Hence, plans must be pruned to the capabilities of the treatment facility.
Combining the partitions developed here might lead to procedures that intelligently achieve practical treatment
plans.
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