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An Extension of the Fundamental Theorem of Linear
Programming

A. Brown'™, A. Gedlaman™, A. Holder!t"* S. Martinez!ft*

September 11, 2001

Abstract

In 1947 George Dantzig developed the Simplex Algorithm for linear programming, and in
doing so became known as The Father of Linear Programming. The invention of the Simplex
Algorithm has been called “one of the most important discoveries of the 20th century,” and
linear programming techniques have proven useful in numerous fields of study. As such, topics
in linear optimization are taught in a variety of disciplines. The finite convergence of the simplex
algorithm hinges on a result stating that every linear program with an optimal solution has a
basic optimal solution; a result known as the Fundamental Theorem of Linear Programming.
We develop an analog to the fundamental theorem, and the perspective from which we view the
problem allows a much greater class of functions. Indeed, not only do we relinquish the assump-
tion of linearity, but we also do not assume the functions under consideration are continuous.
Our new result implies the Fundamental Theorem of Linear Programming.
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1 Introduction

The field of linear programming began when George Dantzig invented the simplex algorithm
in 1947, and this area of mathematics has influenced numerous disciplines (Business, Health
Care, Computer Science, Economics, and Military Science to name just a few). Today, linear
programming topics are taught within mathematics, business, economics, and computer science
courses, and the topics most commonly covered are problem formulation, geometric interpreta-
tion, and a tableau presentation of the simplex method. The motivation and finite convergence
of the simplex method rely on the Fundamental Theorem of Linear Programming, a result that
we briefly review and extend after discussing some notation.

We use R’} and R}, to indicate the collection of vectors in R™ with non-negative and
positive components, respectively. Furthermore, a subscript of L indicates that we are imposing
the lexicographic ordering —i.e. IR™ and R7 are the same set, but the vectors in IR} are
lexicographically ordered. Let ' and 2 be in R}. If £' # 22, let k be such that it is the first
index such that z}, # z2. We have that «* <z «® if x7 < 2, and that z' <r 2? if ' < «*
or z* = 2% An epsilon neighborhood of z is denoted by N.(x). Overline notation is used
to indicate the closure of a set, so Mo(z) = {y : ||z —y|| < €}. A set subscript on a vector
indicates the subvector whose elements correspond to the elements in the set. Similarly, a set
subscript on a matrix indicates the submatrix whose columns correspond to the indices in the
set. Furthermore, for z € R%} we let B(z) = {i¢ : ; > 0} and N(z) = {¢ : z; = 0}, where we do
not include the argument when it is clear which z is under consideration. As an example, we
have

1

12 -1 1 -1/ 1 2
Ax:[o 1 ] (2] :[0 _1](2)+|:1:|(0):AB$B+AN.’KN=ABJTB.

The Null Space of the matrix A is denoted by Nul(A). The difference between a term in bold face
and a term in italics is that the former is defined within the context of this work and the later
is considered common knowledge (and is found in the Mathematical Programming Glossary [1]).

Consider the linear program, (LP) min{c’z : Az = b,z > 0}, where ¢ € R™, b € R™, and
A € R™*™. We assume without loss of generality that m < n, and that A has full row rank.
The feasible region, which we denote by P = {z : Az = b,z > 0}, is a polyhedron formed
by taking the affine space {x : Az = b} and intersecting it with the positive orthant R%}. As
an example consider the linear program min{c’« : [1,2,3]z = 3,2 > 0}, whose feasible region
is depicted in Figure 1. The feasible region for this example has 3 extreme points: (3, O,O)T7
(0,3/2,0), and (0,0,1)7.

X1
Figure 1: The feasible region for Figure 2: Level sets for
min{c!z : [1,2,3]z = 3,z > 0}. min{(0,0,1)z : [1,2,3]z = 3,z > 0}.

The geometric insight into the Fundamental Theorem of Linear Programming comes from
considering level sets of the objective function. For K € R, the K™ level set is Lrx ={z:
¢’z = K}, and a solution to (LP) is the minimum K such that Lx NP # §. An example is
depicted in Figure 2, where ¢ = (0,0, l)T and any feasible element with x3 = 0 is optimal. An
important observation is that no matter which c is used in this example, there always exists an



extreme point of P that is optimal. For the example in Figure 2 we have that both (3,0,0)7
and (0,3/2,0)7 are optimal.

From this geometric insight we see that to solve (LP) we do not need to investigate every
feasible element, but rather only the extreme points of the feasible region. This means that
we need a convenient manner to identify the extreme points of a polyhedron. The following
definition defines a basic solution, and Lemma 1 shows that extreme points and basic solutions
are one and the same.

Definition 1 (Basic Solution) The vector x € P is a basic solution if the columns of Ap
are linearly independent.

Each basic solution corresponds to at least one basis for R™. If z is a basic solution and
Ap(z) is square, and hence invertible, the columns of Ap(,) form a unique basis. In this case
the basic solution is non-degenerate. Otherwise, columns of Ay ;) are needed to extend the
collection of columns of Ap(;) to a basis, and the basis is not necessarily unique. Such basic
solutions are called degenerate.

Lemma 1 (See [2] for proof) A feasible element is basic if, and only if, it is an extreme
point of the feasible region.

Lemma 1 provides an algebraic description of an extreme point, and the simplex algorithm
uses this connection to search the extreme points of the feasible region. While a complete
discussion of the simplex method is beyond the scope of this work, and is not required to
understand our new result, the following logical sequence of thought is important.

Every linear program with an optimal
solution has an extreme point solution.

and =

Basic solutions are the same as extreme
point solutions.

Every linear program with an optimal
solution has a basic optimal solution.

This conclusion is known as the Fundamental Theorem of Linear Programming.

Theorem 1 (See [2] for proof) If a linear program has an optimal solution, then there exists
a basic optimal solution.

The main objective of this work is to provide a considerably weaker set of conditions that provide
an analog to the fundamental theorem. In fact, Theorem 1 follows directly from our new result.
Section 2 motivates and develops the weaker conditions needed to prove our extension. An
example is provided to show the generality with which our result holds. The section concludes
by showing how the Fundamental Theorem of Linear Programming follows from our result.

2 An Analog to The Fundamental Theorem of Linear
Programming

In this section we consider the multiple objective program (MOP) min{F'(z) : Az = b}, where
F:R" —» RY and A € R™*" has full row rank. We denote the feasible region by P and the
optimal set by O. We further make the tacit assumption that Nul(A) # {0}, for if it were,
the feasible region would contain only a single element. The goal of this section is to develop
properties for F' that permit an extension of Theorem 1. The properties fall into two categories.
First, we need a way to define an object similar to a basic solution. The difficulty here is that
the minimization for (MOP) is over an affine space —i.e. there are no inequality constraints.
This means that the index sets B(x) and N(x) do not make sense. Notice that these index sets
rely only on the feasible element z and the coefficient matrix A, and are defined independent of
the objective function. Our approach is different in that the index sets we develop depend on
the objective function. These new index sets allow us to define a corner, which is an extension
of the idea of a basic solution (for the case of piecewise linear functions see [4]). Second, we
require that the objective function in (MOP) has a monotonicity property over line segments
passing through the optimal set. This condition is precisely defined in Definition 3.



We assume that F' has the following form,

F(z) = (Fi(z),F(z),...,Fp(x))T, where
Fi(x) = Xn:f(z’,j)(m]’), forie {1,2,...,p} and z € R".
j=1

Observe that Fi(z) is separable, meaning that f(; ;y has only z; as its argument.

We describe the behavior of a function “near” a point by saying that a function exhibits
a behavior locally at a point if there exists a neighborhood of that point over which that
behavior holds. For example, a real-valued function f is locally monotonic at z if there exists
a neighborhood of = over which f is monotonic. Similarly, f is locally constant at z if there
exists a neighborhood of = over which f is constant. We also say that a real-valued function is
strongly monotonic over an interval if it is either strictly increasing, strictly decreasing, or
constant.

Unless n = p = 1, the concept of monotonicity does not make sense for F. However, we use
the property that F' is separable to capture, in some sense, where F' changes monotonicity over
each axis. We examine those points at which F' “changes monotonicity” by defining

H; = {z;: fu; is not locally strongly monotonic at x;
for some 7 € {1,2,...,p}}.

An important observation is that each H; is closed. This follows because for an element to be
in the complement of H; means that f; ;y is locally strongly monotonic for all ¢ € {1,2,...,p}.
Hence, there is an open neighborhood about the element for which each f(; ;) remains locally
strongly monotonic.

As an example, suppose that Q is the set of rationals and that F : R? — R} is defined by

2 2 2 T
F(z) = (Fi(x), Fa(z), F3(z))" = (Z f(1,j)($j),Zf(z,j)(xj),Zf(s,j)(xj)) ,

where

f(l,l)(xl) = 1 +sinx;,

fam(@) = (22)°,

5, x1<1
fon(r) = 0, z1>1,z1€Q
1, otherwise,
f(2,2) (552) = —T2,
fen(®) = €', and
feo(e) = (z2—1)%

Notice that f(1,1) and f(3,1) are strictly increasing. Thus, they do not contribute any points to
H;. The function f(, 1) is constant over (—oo, 1), but for 1 > 1 there is no point at which f, 1)
is locally strongly monotonic. Thus f(; 1) contributes the entire interval [1, c0) to H;. We have
that f(1,2) and f(2 2y contribute no points to H2 because they are strictly monotonic. However,
f(s,2) is not locally strongly monotonic at z2 = 1, and hence, Hs = {1}.

A component z; is cornered if x; € H;. The following index sets indicate which components
are cornered and which are not,

v(z) = {j:wx; is cornered}, and

B(z) = {j:z; is not cornered}.
Notice that v(z) and B(x) are similar to N(z) and B(z), the difference being that N and B
indicate which components of z are 0 and are not 0, while v and 8 indicate which components

are cornered and are not cornered. The index sets v(z) and B(x) allow us to define a corner in
the following manner.

Definition 2 (Corner Solution) The vector x € P is a corner solution if the columns of
Ap(z) are linearly independent.



The set of corners is denoted by C. As before, a corner is non-degenerate if Ag(,) is invertible,
and is otherwise degenerate. Notice that the definition of a corner is similar to the definition
of a basic solution, the difference being in how the index sets are defined. Returning to our
previous example of F', suppose that the constraint Az = 0 is included. If A = [1, 0] the feasible
region is the x2 axis. Since 0 € Hi, x1 cannot be cornered. The component zs is cornered only
if z» = 1, since that is the only point in H,. Since 8((0,1)7) = {1}, and Ago,nry = [1], we
have that ¢ = (0,1)7 is a corner (and is in fact the only one). If A = [1, —1], the feasible region
is the line z; = w2, and we have corners at every point (z’,z')7, so long as =’ > 1. If 2’ =1,
B((z’,2")") = 0, and Ay .y is vacuous (and hence its columns are linearly independent).
For this case we have that (z,z’) is a degenerate corner. If 2’ > 1, B((z’,2)T) = {2} and
Ap((z1 »1y7y = [—1], from which we have that (z’,2')" is a non-degenerate corner.

Since our goal is to prove a result about the existence of a corner optimal solution, we need
to require that a corner exists. Hence, we make the following assumption.

Assumption 1 We assume that F' has the property that H; # 0, for all j € {1,2,...,n}.

The full row rank of A implies that, with a suitable reordering of the columns, A may be
partitioned as A = [A’|A”], where A’ is invertible. Partitioning any feasible & appropriately, we
have Az = A’z’ + A”z"”. From Assumption 1 we have that '’ may be chosen so that each of
its components is cornered. Setting z’ = (A')~'(b — A"z") provides us with a corner solution.
So, Assumption 1, and the fact that A has full row rank, guarantee the existence of a corner.
Other than making sure a corner exists, we need for F' to have a monotonicity property
along arbitrary line segments. Open and closed line segments are, respectively, denoted by

I(z',2”) = {z:z=(1-6)z"+6z"6c (0,1} and
I(z',2°) = {z:x=QQ-0)z"+62°,0€][0,1]}.

[

For an understood z! and z2, we make the notational convention that z(8) = (1 — §)z! + 02
We state that f is monotonic over a line segment if 6, < 6, implies either f(x(61)) > f(x(62))
or f(z(01)) < f(x(2)), for all 8; and 8, allowed in the definition of the line segment. Similarly,
f is strictly monotonic over a line segment if §; < 62 implies either f(z(61)) < f(z(62)) or
f(z(61)) > f(x(62)). We use this concept of monotonicity over a line segment to define what it
means for a function to be linearly monotonic.

Definition 3 (Linear Monotonicity) A real-valued function f is (strongly) linearly mono-
tonic if it is (strongly) monotonic on I(x*,x?) for all z',2> € R™. f is (strongly) lin-
early monotonic over S if it is (strongly) monotonic over I(z',z?) for all x*,z®> € S and
I(z', 2N S =1(2t, z?).

Definition 3 embodies a property that we require of F. We are interested in line segments
that intersect the optimal set with the property that all points on the line segment have the
same cornered components. To formally define the subset of interest, we define

Q) = {r+ag:aeR,qeNul(4),v(r+aq) =v(x),Tve) = (@ +aq)u@) )

The set Q(x) is the collection of feasible elements that 1) are on a line segment with z, 2) the
index set of cornered components is the same for each point on the line segment, and 3) the
cornered components have the same value along the line segment. The third condition indicates
that g,(,) must be zero for a # 0. For z € O, assumption 2 uses the line segments in Q(z) to
describe the monotonicity property that we require.

Assumption 2 For each x € O\C, we assume that F(x) = (Fi(x), F2(x),. .., Fp(x))” has the

property that each Fi(x), 1 =1,2,...,p, is strongly linearly monotonic over Q(x).

Assumption 2 asserts that the component functions of F are strongly monotonic over line
segments that contain a non-corner optimal element, provided that the cornered components
adhere to the restrictions in Q(z). We exclude the corners from the optimal set because we gain
some generality.

The following lemma shows we can increase the number of cornered components of a non-
corner optimal solution.

Lemma 2 If 2° is a non-corner optimal solution, there exists ' such that
(i) Tyao) = Toao)s

(ii) v(z°) C v(z'), and



(iii) x* is optimal.

Proof: Note that since z° is not a corner, the columns of Ag(,0y are linearly dependent. It

follows that Nul(Ag,0)) # {0}. Choose a direction vector

T
q= [ qg(mO) | q,T(mO) ] , where a8 (z0) € Nul(Aﬂ(wO))\{O} and Qy(z0) = 0.
For a € R, let xz(a) be the partitioned column vector

0
. Tg(20) T A9p(20)
)=z 4+oq=| —

xB(EO)
We have that z(a) is feasible because

Az(a) = A@=’+aq)
= Apo)[@ha0) +ads(a0)] + Ay 0 Ty e0)
= (A0 Th0) T A0 Tu0)) + @Ag(:0)25(:0)
= A+ adg0)gs0)
= b

We now find the smallest positive a that will corner a component of zg(,0y. However, we
first need to ensure that there exists j € B(z”) such that g directs % towards some h € H;.
Suppose that for all j € B(«°), either w? > sup{H;} and g; > 0, or w? < inf{H;} and ¢; < 0.
Then, for all j € B(z°) and a > 0, a:?—l—aqj ¢ H;. Thus it is impossible to corner any component
of xg(mo). However, since gg(,0) € Nul(Ag,0)), we also know that —gg,0y € Nul(Ag,0y). So, if
q does not direct w? towards h € Hj, then —q does. Hence, we may always choose ¢ € Nul(A4),
with gg(,0) € Nul(Ag(,0y) and g, ,0y = 0, such that ¢ directs x? towards some h € Hj, for some
j € B(x°). We assume throughout that ¢ has this property.

For notational brevity, we conveniently define min @) to be co. This notational convenience,
together with the fact that each H; is closed, allows us to use the min operator to define

h— 29
ay min{ q.xf . j € B(z°),h € Hj,q; >0,h>x;?}, and
J

0

& min{hqlxj Zjeﬂ(xoLheHj,Qj<0,h<$2}.
j

Let & = min{&+,&_} (notice that & is positive), and set z' = x(&) = x° + dg. Observe that

for all j € v(z°), we have that zj = x) + &g; = . We conclude that 5”,1/@0) = :cg(mo), which

proves statement (z).

By the definition of ', we know there exists j € 8(2°) such that z']l € H; and m? ¢ H;. So,
j is in v(z!) but not in v(x°). Since mll,(wo) = mg(wo), we have that v(z°) C v(z!), and statement
(1) is proven.

From the definition of & we have that z(a) € Q(z°), for o € [0,&). Since each F; is
strongly linearly monotonic over @(x°), we have that each F;(z(a)) is strongly monotonic over
[0,4). From the fact that each H; is closed we have that for each j € B(z°), there exists a
neighborhood, N, (), such that N, (z9) N H; = 0. Let a = min{% 15 € B(x°),q # 0}.
Then, for all @ € (—a,a), and all j € B(z°), z;(a) € H;. This, together with the fact that
T, (;0y(c) is constant for all a, implies that x(a) € Q, for a € (—a,a). We now have that
I(z(—@&), z(&)) is contained in Q(z°). Since each F; is strongly linearly monotonic over Q(z?),
we have that each Fj(z(c)) is strongly monotonic over [—a, @].

Since z° is optimal, we conclude that F(z°) < F(z'). Suppose for the sake of attaining
a contradiction that F(z°) <z F(z'). Let k € {1,2,...,p} be the smallest index such that
Fi(z°) < Fi(z'). First, since F;(z°) = F;(z'), for i < k, and each F;(z(a)) is strongly
monotonic over [—&,&], we conclude that F;(z(c)) is constant over [—&,&]. Second, since
Fi(2°) < Fi(«") and Fy(x(a)) is strongly monotonic over [—a,d], we have that Fy(z°) >
Fi,(2° — aq). However, this contradicts the fact that z° is optimal. So, F(z°) = F(z'), and
statement (7i%) is proven. l



Theorem 2 If min{F(z): Ax = b} has a solution, then it has a corner optimal solution.

Proof: Let z° be an optimal solution. If z° is a corner, then the proof is complete. If z° is not
a corner, Lemma 2 implies that there exists an optimal solution z' such that :c,l,(mo) = wg(mo)
and v(z°) C v(z'). This means that Ag(,1) is formed by removing columns from Ag,0y. There
are two possible cases. First, if the columns of Ag(,1y are linearly independent, z' is a corner
optimal solution, and we are done. Second, if the columns of Ag,1y are linearly dependent, we
apply Lemma 2 again to get an optimal 2> such that Apg(,2) is formed by removing columns
from Ag(y1y. In this manner we form a sequence of optimal solutions, say zt,z?%,..., 2%, such
that the columns of Ag(, ) are linearly independent (this matrix is empty if B(z*) = 0). Hence,
z* is an optimal corner. W
The following example illustrates the complexity of the functions allowed by Theorem 2

Example 1 Let A =[0,0,1] and b = [0] so that the feasible region is R* x {0}. Let Fi(z) =
S0, fajy(xs), where each term is defined by

1, z;<0
f<1’f>(xj)={ 0, z;>0.

Notice that the definition of f(1,;) implies that 0 is in Hj, for j = 1,2,3. So, Assumption 1 is
satisfied.

The second objective function is purposely more complicated so as to demonstrate the ro-
bustness of Theorem 2. Since every feasible element has x3 = 0, the contribution from f sy is
constant over the entire feasible region. As such, we set fi 3y(x3) = 0. Allowing g to be the
standard Cantor function [3] on the interval [0,1], we define fi2,1) and f(2,2) by

1-— x, r1 <1

1, z1 €[1,2]NQ
fon(e) = sin(z — (44 m)/2)+1 z1 >2

0, otherwise,

and
arctan(l —z), z2 <1

) 1-29(z—1), 1<=zy<4/3
Fon (@) =93 9z —1)—1, 4/3<as <2
In(z — 1), x2 > 2.
The geometry of these functions is depicted in Figure 2. Notice that the minimum values of both
Fi(x) and Fa(x) are zero.
The function fs 1y contributes the interval [1,2]U{2 +kw: k£ =0,1,2,...} to H1. Since the
only contribution from f 1) is zero, we have that

Hi={0}U[1,2]U{2+kr:k=0,1,2,...}.

Let C be the set of Cantor ternary decimals, and set C+1={y:y=w+ 1 for some w € C}.
With this notation we have that f2 ) contributes C +1 to Ha. As before, f(1,2) contributes only
zero to Ha, which means that

H, ={0}uU(C+1).
Since fz 3) is constant, H3 only has contributions from f(; 3y. Hence, Hs = {0}.

Every feasible element has x3 = 0, which means x3 is always cornered. As a consequence,
B(x) C {1,2} for every feasible x. Hence, Apy is a submatriz of [0,0], for every x € P.
Obviously no nonempty subcollection of these columns can be independent, which means that
every corner must have the property that B(x) = 0 —i.e. every corner is degenerate. We
conclude that the set of corners is C = H1 X Hy x Hs.

Since (1,1,0)T is a corner, and F((1,1,0)T) = (0,0)T, we have that there emists a corner
optimal solution. However, F((1,3/2,0)T) also equals (0,0)T, but (1,3/2,0)T is not a corner.
So, there are non-corner optimal solutions. These are depicted in Figure 2, where they are
represented by all open line segment with 1 € QN [1,2], zs = 0, and z2 ranging within (1,2).
To see how the proof of Lemma 2 works, suppose that z° = (1,3/2,0)T. Then, B(z°) = {2} and
Ag(z0y = [0]. We choose ¢ = (0,1, 0)7, which means

4+ = min{5/3—3/2,1—3/2} =1/6 and

&1 = minl = oo.



f(2,1) () + f(2,2) ;) ;
22 ™)

X

Figure 3: The geometry of f51)(21) and f(22)(z2) in Example 1. The shaded squares are optimal
corners and dark lines between the shaded squares are non-corner optimal solutions.

So, & =1/6. The value of & may be chosen to be any value in (0,1/6) (by an appropriate choice
of €2), and we choose & = 1/8. Setting x(a) = ° + aq, we see that F(z(a)) = (0,0)%, for all
a € (—1/8,1/6), and hence is strongly monotonic over this line segment. Since x* = z° + &g =
(1,5/3,0) is a corner, we are done after one application of Lemma 2.

We conclude by showing that the Fundamental Theorem of Linear Programming follows
from Theorem 2. We make the assumption that (LP)min{c”z : Az = b,z > 0} has an optimal
solution. For j =1,2,...,n, define d; : R® - R by

—z;, <0
s@={ 57 250

and set D(z) = ) d;(z). Notice that D has a minimum value of zero over R’}. So, the
Jj=1
definition of D, the fact that (LP) is feasible, and the lexicographic ordering imply that
argmin { ( ZT(Z ) Az = b} = argmin {cTa: Az =bx > 0} . (1)

We denote the multiple objective program on the left-hand side of the equality in (1) by MOP'.
Since the objective functions in MOP' are piecewise linear, they meet the conditions of Theo-
rem 2, and hence MOP' has a corner optimal solution. Let z be a corner optimal solution to
MOP'. Since the second objective in MOP’ is linear, we have that H; = {0}, for j = 1,2,...n.
This means that x has the following properties: 1) N(z) = v(z), 2) zny = z, = 0, and 3) the
columns of Ag,) = Ag(,) are linearly independent. The third observation, together with the
fact that z is optimal to (LP) from (1), implies that z is a basic optimal solution to (LP). Hence,
every corner optimal solution to MOP' is a basic optimal solution to (LP), and Theorem 2 im-
plies the Fundamental Theorem of Linear Programming.

3 Conclusion

We have provided a generalization of the Fundamental Theorem of Linear Programming, and
our new result depends on index sets that use information from both the constraints and the



objective function. This is in contrast to the linear programing case, where the index sets are
defined independently of the objective function. The new index sets allow the concept of a
basic solution to be extended to the concept of a corner. The objective functions allowed by
Assumptions 1 and 2 may be quite complicated as demonstrated in Example 1. Moreover,
Theorem 2 encompasses the situation of multiple objectives.

Acknowledgments

The authors would like to thank Harvey Greenberg, Ken Hummel, Stan Payne, and
Jeff Stuart for comments on earlier revisions of this work.

References

[1] Greenberg, H., Mathematical Programming Glossary, World Wide Web,http://wuw.
cudenver.edu/~hgreenbe/glossary/glossary.html, 1996-2001.

[2] Luenberger, D., Linear and Nonlinear Programming, 2nd ed., Addison Wesley, 1989.
[3] Royden, H., Real Analysis, 3rd ed, Macmillan Publishing Company, 1988.

[4] Ukovish, W., Pastore, S., and Premoli, A.,; An Algorithm for Linearly Constrained Piecewise
Lezicographic Programming Problems, Journal of Optimization Theory and Applications,
111 (2001) 195-226.



	Trinity University
	Digital Commons @ Trinity
	10-2002

	An Extension of the Fundamental Theorem of Linear Programming
	A Brown
	A Gedlaman
	Allen G. Holder
	S Martinez
	Repository Citation


	tmp.1283518147.pdf.N_Wa9

