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Dynamic Status Signal Reflects
Outcome of Social Interactions, but
Not Energetic Stress

Keith A. Tarvin 1*, L. Jin Wong 1, David C. Lumpkin 1, Gabrielle M. Schroeder 1,

Dominic D’Andrea 1, Sophie Meade 1, Pearl Rivers 1 and Troy G. Murphy 2

1Department of Biology, Oberlin College, Oberlin, OH USA, 2Department of Biology, Trinity University, San Antonio, TX, USA

Social defeat induces stress-responses in a wide array of vertebrates and can generate

winner-loser effects. Dynamic condition-dependent signaling systems that reflect

preparation for subsequent agonistic interactions, and thereby mediate winner-loser

effects, should be more sensitive to competitive history than to non-social sources

of stress. Bill color of female American goldfinches (Spinus tristus) is a dynamic

condition-dependent ornament that functions as a signal of competitive status and

mediates intrasexual agonistic social interactions. We tested the “social experience

signaling hypothesis” in female goldfinches by (1) manipulating a non-social energetic

stressor by experimentally elevating flight costs via wing-clipping in free-ranging birds,

and (2) manipulating social experience by staging competitive interactions among captive

birds. Bill color change did not differ between wing clipped and non-clipped females,

even though stress-response, as measured by the heterophil to lymphocyte (H:L) ratio,

increased significantly in clipped females relative to unclipped females. In contrast,

winners and losers in the social experience experiment differed significantly in the degree

and direction of bill color change following social contests, with bill color increasing

in winners and decreasing in losers. These results suggest that dynamic bill color of

female American goldfinches signals recent social history, but is less sensitive to some

stressors stemming from non-social sources, and thereby suggest that signals can evolve

sensitivity to specific types of processes relevant to the context in which they are used.

Keywords: social experience, stress, condition-dependent dynamic signal, bill color, American goldfinch, female

ornamentation, status signal, Spinus tristis

INTRODUCTION

Ornaments that reliably signal condition are important mediators of social interactions, including
mate choice, offspring provisioning, and social competition (Lyon and Montgomerie, 2012).
Dynamic condition-dependent ornaments have the capacity to signal recent changes in condition
(i.e., the “relative capacity to maintain optimal functionality of vital systems within the body;”
Hill, 2011), and therefore may provide information about current conditional state with very
short time lags (Sullivan, 1994a,b; Torres and Velando, 2003; Velando et al., 2006; Bamford et al.,
2010; Rosenthal et al., 2012). Because dynamic condition-dependent signals can be particularly
informative regarding short-term changes in condition, they may be especially important during
competitive social interactions because competitive ability or motivation may covary with current
physiological state.
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Dynamic condition-dependent signals may reflect
various aspects of condition, such as nutritional state,
immunocompetence, or recent exposure to stressors (Faivre
et al., 2003; Velando et al., 2006; Pérez-Rodriguez, 2008; Ardia
et al., 2010; Navarro et al., 2010; Rosenthal et al., 2012). Stress-
responses may result from physiological challenges such as
nutritional deficiencies, infection, physical trauma, or changing
abiotic conditions (e.g., Hill, 2014; Schulte, 2014), but they also
can be elicited by psychological phenomena such as perceived
predation risk and competitive social interactions (Buchanan,
2000; Creel et al., 2013; Wingfield, 2013). For example, many
studies have shown that social defeat, in which an individual
loses a competitive contest with a rival, induces a wide variety
of both transient and persistent detrimental and compensatory
physiological changes consistent with stress-responses in a
variety of vertebrates (see Buwalda et al., 2005; Hostetler and
Ryabinin, 2013 for general reviews), including birds (e.g., Zuk
and Johnsen, 2000; Carere et al., 2001, 2003; Gleeson, 2006;
Hawley, 2006; Hawley et al., 2006). Different sources and kinds of
stressors can yield dramatically different physiological responses,
involving a variety of pathways, neurotransmitters, and target
tissues (Buchanan, 2000; Armario et al., 2012; Hostetler and
Ryabinin, 2013). Therefore, it is possible that stress-responses
resulting from social interactions may manifest differently than
stress-responses derived from other sources, in which case
certain dynamic signals could be influenced more by social
experience than by other physiological perturbations.

In a handful of species, intraspecific social interactions have
been shown to affect future expression of dynamic condition-
dependent ornaments (mandrills,Mandrillus sphinx: Setchell and
Dixson, 2001; red jungle fowl, Gallus gallus: Zuk and Johnsen,
2000, Cornwallis and Birkhead, 2008; pukeko, Porphyrio
porphyria: Dey et al., 2014; zebra finches, Taeniopygia guttata:
Gleeson, 2006; red-backed fairy-wrens Malurus melanocephalus:
Karubian et al., 2011; green swordtails, Xiphophorus helleri:
Rhodes and Schlupp, 2012). Although it is clear that social
interactions can influence both stress-responses and dynamic
signal expression, it remains unexplored whether dynamic signals
that function to mediate social interactions primarily reflect
social experience, or whether social experience is but one example
of a more general class of stressors to which they respond.

Orange bill color of female American goldfinches (Spinus
tristis, henceforth goldfinch) is a dynamic condition-dependent
ornament (Kelly et al., 2012; Rosenthal et al., 2012) that
mediates competitive interactions among female goldfinches
(Murphy et al., 2009, 2014). Several studies have demonstrated
that the seasonal development of goldfinch bill color prior to
the breeding season is influenced by dietary carotenoid intake
(McGraw and Hill, 2000, 2001; Hill et al., 2009; all of these
studies focused on male goldfinches) and testosterone (in both
sexes; Mundinger, 1972). Furthermore, instantaneous “snapshot”
measures of female bill color during the breeding season are
correlated with measures of immunocompetence, recent stress-
response as indexed by the heterophil to lymphocyte (H:L) ratio,
and circulating testosterone (Kelly et al., 2012; Pham et al.,
2014). The dynamic component of goldfinch bill color also
reflects condition: bill color of both males and females declines

within hours after free-ranging birds are brought into captivity
and continues to decline for several days, and experimental
immune challenge enhances the decline (Rosen and Tarvin, 2006;
Rosenthal et al., 2012). Although the seasonal development of
bill color is influenced by intestinal parasite infection (McGraw
and Hill, 2000), “snapshot” measures of bill color of free-
ranging goldfinches during the breeding season do not reflect
current trypanosome infection status, even though plumage color
strongly predicts infection during that period (Lumpkin et al.,
2014). Although at first pass it appears that bill color reflects
a wide array of stressors, studies of short-term changes in bill
color have been conducted on captive birds (Rosen and Tarvin,
2006; Rosenthal et al., 2012), leaving open the possibility that
observed changes in bill color may have reflected either adverse
social conditions or more general non-social sources of stress.

In this study we test the hypothesis that bill color of female
goldfinches changes in response to competitive social interactions
but not in response to more generalized non-social physiological
stressors. This “social experience signaling” hypothesis stems
from work indicating that winner and loser effects (Landau,
1951a,b) can increase fitness for both winners and losers in
social groups (Dugatkin and Reeve, 2014). Thus, expression of
a dynamic signal of status tied to a competitor’s past history
(see Rutte et al., 2006) could allow superior competitors to use
their signals to preemptively avoid unnecessary costly exertion
of dominance during agonistic interactions, while also allowing
inferior competitors to avoid wasting time and energy and
incurring risk of physical harm from battling in light of a
foregone conclusion (sensu Rohwer, 1975). Moreover, recent
work suggests that we might expect a dynamic signal that
mediates competitive interactions to be affected by those very
interactions (Dey et al., 2014), given that hormonally mediated
signal expression can alter physiological state via social feedback
(Rubenstein and Hauber, 2008; Safran et al., 2008; Vitousek
et al., 2014). Because dynamic bill color of female goldfinches
appears to function exclusively to mediate competitive social
interactions with other female goldfinches (Murphy et al., 2009,
2014), it seems reasonable to expect that it may have evolved to
dynamically signal an individual’s competitive history.

The social experience signaling hypothesis predicts that bill
color should decline in response to social defeat, but not in
response to a short-term elevation of a physiological stressor
that is administered outside of the context of social interactions.
Although a signal that responds to general physiological
stressors can provide information to receivers about general
condition, a dynamic ornament that specifically signals recent
social experience can provide reliable information about winner
or loser effects. Thus, a dynamic signal linked to previous
competitive success can signal information about the likelihood
of future escalation and thus an individual’s current ability to
win an interaction. We tested these hypotheses with two separate
experiments. In the first experiment we manipulated a non-social
energetic stressor in free-ranging goldfinches by trimming the
tips of primary feathers to reduce wingspan, thus elevating flight
costs. This technique has been used successfully to elevate flight
costs in other studies (e.g., Mauck and Grubb, 1995; Carrascal
and Polo, 2006; Tieleman et al., 2008). We compared changes

Frontiers in Ecology and Evolution | www.frontiersin.org 2 June 2016 | Volume 4 | Article 79

http://www.frontiersin.org/Ecology_and_Evolution
http://www.frontiersin.org
http://www.frontiersin.org/Ecology_and_Evolution/archive


Tarvin et al. Bill Color Signals Social Experience

in bill color between manipulated and unmanipulated birds 1–3
weeks following the treatment. In a second experiment we staged
competitive interactions among pairs of goldfinches over a 2-day
period and compared changes in bill color before and after social
competition between dominant (i.e., winners) and subordinate
birds (i.e., losers).

METHODS

General
Wemanipulated themagnitude of an energetic stressor and social
experience in separate experiments to test their effects on bill
color change. Both experiments were conducted after migration
and seasonal development of bill color (from gray to orange) was
complete, but before the onset of nesting. In each experiment, we
measured bill color with an Ocean Optics USB4000 spectrometer
and a PX2 xenon strobe lamp (Ocean Optics, Dunedin, FL USA)
using a probe with a 3 mm aperture held 5 mm from the bill.
Each bill color sample was made by taking 4 replicate measures
on the right side of the bill ∼1 mm anterior to the nares with
the probe held at a 90◦ angle. We calibrated the spectrometer
using a Spectralon white standard and a dark standard before and
after each set of replicate measures. We used CLR version 1.05
and RCLR version 0.9.28 (Montgomerie, 2008a,b) to calculate
bill brightness as the mean percent reflectance across the avian
visible-spectrum (320–700 nm, in 1 nm increments), yellow
saturation as the sum of percent reflectance between 550 and
635 nm divided by the sum of percent reflectance across the
entire avian-visible spectrum, and hue as the wavelength (in
nm) corresponding to the midpoint of the highest and lowest
reflectance values.

All statistical analyses were conducted with IBM SPSS
Statistics version 21 (Armonk, NY, USA). We tested all relevant
variables for normality with Kolmogorov–Smirnov tests.

Energetic Stressor Experiment
We captured goldfinches at Carlisle Reservation, Lorain County
Metro Parks, OH USA (41◦17′22.33′′N, 82◦ 9′49.63′′W) from 07
June to 02 July 2010, and from 06 June to 06 July 2011 inmist nets
and basket traps at feeders (see Lumpkin et al., 2014 for details).
We captured 3 additional birds at a second field site ∼17 km
distant during this same period (late June, 2011).

To increase energetic stress, we elevated flight costs by
trimming the tips of three to four outer primary feathers so
as to reduce the wing span by ∼7%. We used Pennycuick’s
(2008a,b) Flight for Windows program to estimate the effect
of wing clipping on flight costs on a sample of eight
female goldfinch specimens collected during earlier studies. We
measured wingspan of the specimens to the nearest mm and
traced the fully extended right wing on 0.5 cm gridded paper to
estimate wing area. We then trimmed 3.5% of the wingspan from
the distal tip of the right folded wing with scissors, and traced the
manipulated wing to estimate the modified wing area. In most
cases, the clipping procedure removed the tips of primaries 7–9
but left other primaries and secondaries intact; occasionally the
tip of primary 6 also was removed. We used the mean mass of
live female goldfinches captured in our study to calculate the

change in flight costs for female goldfinches at the altitude of
our field site (∼66 m) to account for air density. Averaged over
the 8 specimens, we estimate that, following our treatment, the
rate of fuel energy consumption when flying level at minimum
power velocity (Vmp) would increase from 0.779 to 0.927 W,
and that when flying at maximum range velocity (Vmr) it would
increase from 1.027 to 1.225 W (i.e., increases of 19.0 and 19.3%
respectively). Female goldfinches spend much time flying long
distances to forage at widely scattered and temporally ephemeral
food patches prior to the onset of nesting, and therefore our
manipulation is likely to have impacted their daily energetic
expenditure.

In the field, the first bird that was captured was randomly
allocated to the clipped or unclipped (control) treatment;
thereafter, we alternated the treatment for birds captured
subsequently. At first capture for an individual goldfinch, we
measured bill color immediately after capture (mean ± s.e. = 22
± 2.4 min; max 95 min), collected a blood sample (see below),
banded the bird with a uniquely numbered metal leg band, and
measured the outstretched wing to the nearest mm from the root
to the primary feather exhibiting the greatest projection.We then
calculated the length that represented 7% of the intact wing and
clipped the primaries as described above. For our control birds,
we conducted the same measures, collected a blood sample, held
the birds for the same length of time, and held scissors near
the wing to mimic the manipulation. All birds were released
following the manipulation. We recaptured birds 1–3 weeks later
(mean 12 d, s.e. 1.07 d, range 7–22 d) and again measured bill
color, collected a blood sample, and released the birds. In total, we
captured 133 individual female goldfinches for this experiment,
and were able to recapture 23 of them 1–3 weeks after the initial
capture for use in the analysis. We also captured 150 males (51
were recaptured) and treated them in the same manner (see
Supplemental Material).

We tested whether the wing clipping procedure led to
increased physiological stress-response using the ratio of
heterophils to lymphocytes (H:L ratio) in blood smears. The
H:L ratio reflects recent stress-response because glucocorticoids
increase the production of heterophils and decrease the
production of lymphocytes (Davis et al., 2008); thus, higher H:L
ratios indicate higher stress-response. We collected ∼20–100 µL
of blood from the brachial vein and made two blood smears
on microscope slides which were air dried and stained with 3
Step Stain Set (Richard-Allan Scientific, Kalamazoo, MI, USA)
or Harleco Hemacolor R© (EMD Chemicals, Inc., Gibbstown, NJ,
USA). For each sample, we scanned the smear with the most
uniform monolayer of cells at 100× until we had identified 100
leukocytes, and used data from that smear for analysis.

Wemeasured the change in each tristimulus bill color variable
as the color value at capture 2 minus that at capture 1. Similarly,
we measured the change in H:L ratio between captures as the H:L
ratio at capture 2 minus the H:L ratio at capture 1. We evaluated
the change in bill color (tristimulus values analyzed separately)
and H:L ratio using generalized linear models with a linear
response distribution and identity link function, with treatment
(clipped or not clipped) as a factor, and used the following as
covariates: timespan in days between first and second capture,
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the interaction between treatment and timespan (to account for
temporal effects of the treatment), and the initial value of the
dependent variable under consideration (to account for variation
in initial state among individuals due to capture date, etc.).

Social Experience Experiment
We captured goldfinches at several sites within Lorain County,
OH during June 2013 and brought them into animal care
facilities at Oberlin College. We staged pair-wise agonistic
contests between focal and stimulus (competitor) females and
compared bill color change in focal birds that were dominant
to their partners with bill color change in focal birds that were
subordinate to their partners.

Females were caught in groups of 6–9 birds per day (a cohort)
on 18, 20, 22, 24, 27, and 28 June 2013 and brought into
captivity; all members of a given cohort were on a common
schedule once in captivity. Birds captured on 18 and 20 June
were combined into a single cohort and randomly assigned to
be focal or stimulus birds. Thereafter, focal birds from a cohort
were used as stimulus birds for the subsequent cohort. When we
captured more individuals than needed for a cohort, we used the
six individuals that best matched the stimulus birds that were
already designated to be used for that cohort (see below), and
used the extra birds for other experiments or released them.
Experimental pairs comprised individual birds captured from
sites at least 8 km apart and so were unlikely to have encountered
each other prior to their social trial. Focal birds in each of the five
cohorts and the stimulus birds used for Cohort 1 weremaintained
for 5–9 days (mean = 7.87 d) in individual cages separated by
opaque partitions such that they could not see other individuals
prior to social trials (birds in Cohort 1 were held captive for 5
days prior to trials; those in Cohorts 2–4 were held for 9 days;
in Cohort 5, four individuals were held for 7 days and two were
held for 8 days prior to the trial). Two days before the social trials
for a given cohort, we measured bill color and weighed the focal
birds, and placed a single metal USFWS band on the leg opposite
to the banded leg of the stimulus bird with which they would be
paired and returned them to their cages; they otherwise were not
handled prior to the day of the social trial. On the morning of
a trial, each focal bird and a stimulus bird were matched into
a dyad based on similarity in mass and bill color (based on a
visual comparison of bill color). To conduct the trial, the dyad
of females was placed into a cage in an experimental room that
was separate from the housing room. Dyads were visually isolated
from other dyads with opaque partitions, although the front of
each cage was open to the room so that we could video-record
interactions. Each experimental cage had a single food dish at the
lower front center of the cage, a “low perch” that ran parallel to the
front of the cage and provided access to the food dish, a smaller
“high perch” near the top of the cage near the back, and a water
dispenser placed in the middle of one side of the cage (Figure 1).
The cage was designed to allow monopolization of resources and
space: only a single bird could feed, drink, or occupy the high
perch at a given time. Focal birds remained with stimulus birds
in the experimental cage for ∼26 h (from ∼08:30 of day 1 of
the trial through ∼10:30 of day 2 of the trial), at which time
they were removed to their individual cages in the housing room.

FIGURE 1 | Design of experimental cages used for social trials in the

social experience experiment. The sides of the cages were covered with

opaque brown paper to preclude visual contact between different

experimental dyads. Each cage contained a short high perch suspended from

the top of the cage near the back, a long low perch from which they could

obtain food from a single dish a the lower front center of the cage, and a single

water dispenser mounted on the side of the cage. Objects pictured in cage are

not drawn to scale.

For cohort 1, we again measured bill color, weighed each focal
bird, and collected a blood sample 4 days after the conclusion of
the social trial. For the remaining cohorts, we conducted these
procedures ∼4 h after the conclusion of the social trials. We
changed the schedule of the protocol following cohort 1 because
an interruption in field work necessitated that we reduce the
time-span between remaining cohorts in order to complete trials
for all five cohorts before the onset of nesting, when female bill
color begins to decline. All birds were released at their original
capture site∼1 week after serving as a stimulus bird.

We video-recorded social interactions for 60 min at three
different points during trials to assess whether focal birds were
dominant or subordinate to the stimulus birds with which they
were paired. We sampled behavior from the first recording ∼60
min after the two birds were placed in the experimental cage and
researchers had left the experimental room (09:30). The second
video began at∼15:00 on the same day, and the third video began
at ∼08:30 on the second day of the trial. Because we had to enter
the room to turn on the video cameras during the second and
third recordings, we allowed a 5 min acclimation period after we
left the room to pass before the scoring period began. During each
video recording, we quantified the number of times each bird
supplanted the other, the number of times each bird chased the
other, and the number of times each bird lunged at or bill-fenced
at the other, following Ardia et al. (2010) (see also Coutlee, 1967).
For analyses, we simply tallied the total number of aggressive
interactions initiated by each bird during the observation periods.
We defined winners as those birds that initiated more aggressive
interactions than their partners. On average, the 16 focal winners
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initiated 61.9 (s.e. = 15.2) more interactions than their partners,
whereas the 14 focal losers initiated 49.7 (s.e. = 17.2) fewer
aggressive interactions than their partners (t = 4.876, df = 28,
P < 0.0001).

We calculated the change in bill color over time as the
difference in a tristimulus variable measured before and after
social trials (i.e., bill color following completion of the trial minus
bill color 2 days before the onset of the trial). We tested the effect
of social competition on the change in bill color by comparing
the change in color of dominant vs. subordinate focal birds
using generalized linear models with social fate (dominant vs.
subordinate) and cohort as factors and the initial pre-trial bill
color tristimulus value as a covariate to account for individual
variation in bill color prior to the onset of trials (see Rosenthal
et al., 2012; Dey et al., 2014). Each tristimulus variable was
analyzed separately.

Because we detected statistically significant changes in bill
color tristimulus values in response to social competition (see
Results), we tested whether the magnitude of bill color change
was likely to be detectable by receivers based on chromatic
distance (1S; Vorobyev et al., 1998) and achromatic distance
(1L; Siddiqi et al., 2004), measured in units of “just noticeable
differences” (JND; Vorobyev et al., 1998). A difference of 1.0
JND is considered to reflect a detectable change in color or
brightness (Vorobyev et al., 1998; Siddiqi et al., 2004). We
used the program pavo in R (Maia et al., 2013) to calculate
1S and 1L within dominants before and after trials, and
within subordinates before and after trials. We calculated 1S
and 1L across the avian visual spectrum (320–700 nm) using
an American goldfinch visual model (Baumhardt et al., 2014),
assuming a standard daylight illuminant (“D65” in pavo)
and an idealized homogeneous background based on formulae
presented in Vorobyev et al. (1998) and Siddiqi et al. (2004) as
executed in pavo (Maia et al., 2013).

We tested whether social interactions differentially affected
stress-response in winners vs. losers by measuring H:L ratio from
the blood samples collected following the conclusion of social
trials. We compared H:L ratio between winners and losers with a
generalized linear model with a linear response distribution and
identity link function and with cohort and social fate as factors.
We did not measure the change in H:L ratio before and after
social trials in order to avoid bleeding birds prior to trials, which
would have increased the stress-response.

Direct Comparison of Magnitude of Color
Change between the Two Experiments
We directly compared the magnitude of bill color change
observed in the two experiments with a single generalized
linear model with change in the tristimulus variable as the
response variable and treatment group (clipped, unclipped,
dominant, subordinate) as a factor; we included the initial value
of the color parameter and the timespan between measures as
covariates.

The use of animals in this study was approved by the
Oberlin College Institutional Animal Care and Use Committee
(#S10RBKT-13, #S13RBKT-1), and was covered by USFWS Bird

Banding Permit 23065, USFWS Scientific Collecting Permit
MB044805 and Ohio Department of Natural Resources Scientific
Collecting Permit 14-214.

RESULTS

Effect of Energetic Stressor vs. Social
Experience on Bill Color
In the Energetic Stressor experiment, the wing-clip treatment did
not affect the change in bill color between the first and second
captures (Table 1). Clipped birds (n = 11) did not differ from
control birds (n= 12) in the change in bill brightness (likelihood
ratio χ2 = 2.689, df = 1, P= 0.101), yellow saturation (likelihood
ratio χ2 = 2.079, df = 1, P = 0.149), or hue (likelihood ratio
χ2 = 0.435, df = 1, P = 0.510; Figure 2) when controlling
for timespan, the interaction between treatment and timespan,
and the initial value of the dependent variable. Likewise, the
interaction between treatment and timespan did not influence
the change in bill brightness (likelihood ratio χ2 = 2.494,
df = 1, P = 0.114) or hue (likelihood ratio χ2 = 0.606,
df = 1, P= 0.436), although this interaction indicated a marginal
but non-significant effect on yellow saturation (likelihood ratio
χ2 = 3.471, df = 1, P = 0.062). These results were qualitatively
unchanged when we included year as a factor or omitted the

TABLE 1 | Results of generalized linear models testing for change in bill

color and H:L ratio in response to wing clipping in the Energetic Stressor

experiment.

Response

variable

Predictor variable Likelihood

ratio χ
2

df P

Brightness Wing clip 2.689 1 0.101

Timespan 8.128 1 0.004

Clip × timespan 2.494 1 0.114

Initial brightness 10.821 1 0.001

Intercept 2.258 1 0.133

Yellow saturation Wing clip 2.079 1 0.149

Timespan 7.066 1 0.008

Clip × timespan 3.471 1 0.062

Initial saturation 12.848 1 < 0.0004

Intercept 10.290 1 0.001

Hue Wing clip 0.435 1 0.510

Timespan 0.504 1 0.478

Clip × timespan 0.606 1 0.436

Initial hue 13.206 1 < 0.0003

Intercept 8.713 1 0.003

H:L ratio Wing clip 13.969 1 < 0.0002

Timespan 3.639 1 0.056

Clip × timespana 12.739 1 < 0.0004

Initial H:L ratio 18.423 1 < 0.0001

Intercept 2.061 1 0.151

aH:L ratio of clipped females increased when timespan between captures was relatively

short, but not when timespan was long (see Figure S1).
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FIGURE 2 | Bill color change of female American goldfinches in response to elevation of an energetic stressor (A–C) and recent competitive

experience (D–F). Means and standard errors in the top panels are adjusted for effects of the timespan between captures, the interaction between timespan and

treatment, and initial tristimulus color value prior to treatment. Means and standard errors in the bottom panels are adjusted for effects of cohort category and initial

tristimulus color value prior to the onset of social interactions. See text for further details of the analyses. Note the difference in scale on the Y-axis of the graphs

depicting change in hue. Dom, dominant; Sub, subordinate.

birds from the second capture site (data available upon request).
Because our sample size was small for this experiment, we
repeated the analyses with an additional 51 males included in the
data set. We detected no interaction between sex and treatment,
indicating that including those males was a valid means of
increasing the sample size for the experiment. The results from
the analyses based on females and males were qualitatively
identical to those based only on females (see Supplementary
Material). To test whether our inability to detect an effect of wing-
clipping on bill color was a result of including birds for which
considerable time had lapsed between the onset of the treatment
and the bill color measurement (see Effect of Energetic Stressor
and Social Experience on H:L ratio, below), we used a one-way
ANOVA to test for a difference in change in each tristimulus
variable based only on birds recaptured 7–9 days after the initial
capture (n = 7 clipped, 5 control). We did not include initial
tristimulus value, timespan or the interaction between timespan

and treatment as covariates in those analyses because of the
small sample size. Those analyses similarly failed to detect an
effect of treatment on any of the bill color tristimulus variables
[brightness: F(1,10) = 0.345, P= 0.570; saturation: F(1,10) = 0.212,
P = 0.655; hue: F(1,10) = 0.053, P = 0.823].

In the Social Experience experiment, dominant (n = 16)
and subordinate (n = 14) females differed significantly in the
change in bill color over the course of social interactions when
controlling for cohort and initial bill color (Table 2), with social
fate affecting the change in bill brightness (P= 0.002) and yellow
saturation (P = 0.018). Brightness increased in dominants and
decreased in subordinates, whereas yellow saturation decreased
slightly in dominants and increased in subordinates (Figure 2).
The change in bill hue did not differ between dominants and
subordinates (P = 0.237; Figure 2).

The mean within-individual chromatic change in bill color in
response to social interactions was detectable in both dominant
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TABLE 2 | Results of generalized linear models testing for change in bill

color in response to social interactions in the Social Experience

Experiment.

Response

variable

Predictor variable Likelihood

ratio χ
2

df P

Brightness Social fate 9.848 1 0.002

Cohort 14.419 4 0.006

Initial brightness 8.650 1 0.003

Intercept 0.109 1 0.741

Yellow saturation Social fate 5.639 1 0.018

Cohort 13.954 4 0.007

Initial saturation 3.672 1 0.055

Intercept 1.203 1 0.273

Hue Social fate 1.400 1 0.237

Cohort 16.513 4 0.002

Initial hue 2.228 1 0.135

Intercept 11.162 1 0.001

“Social fate” refers to the outcome (dominant or subordinate) of competitive interactions

over a 26 h period.

(mean 1S = 7.91 JND, s.e. = 1.25, n = 16) and subordinate
(mean 1S = 7.60 JND, s.e. = 1.01, n = 14) females. The
achromatic change also was likely detectable, though to a lesser
degree (dominants: mean 1L = 1.55, s.e. = 0.23, n = 16;
subordinates: mean 1L = 1.77, s.e. = 0.31, n = 14). The results
were similar when we used the “forest shade” illuminant in
pavo (dominants: 1S = 6.56 JND, s.e. = 1.12; 1L = 1.76 JND,
s.e.= 0.26; subordinates: 1S= 5.82 JND, s.e.= 0.91; 1L= 1.79,
s.e.= 0.34).

A comparison of the magnitude of color change between the
two experiments confirmed that the magnitude of change in bill
brightness in the Social Experience experiment was significantly
greater than that in the Energetic Stressor experiment. When
controlling for initial bill brightness and timespan between
measurements, treatment (clipped, unclipped, dominant,
subordinate) explained a significant amount of variation in the
change in brightness (χ2 = 9.526, df = 3, P = 0.023), with
post-hoc analyses revealing a significant difference between
dominants and subordinates (P = 0.005), but not between
clipped and unclipped individuals (P = 0.577). The magnitude
of change did not differ between the two experiments for yellow
saturation (χ2 = 2.719, df = 3, P = 0.437) or hue (χ2 = 3.506,
df = 3, P = 0.320).

Effect of Energetic Stressor and Social
Experience on H:L Ratio
In the Energetic Stressor experiment, birds that received the
wing-clip treatment (n = 10) differed significantly from birds in
the control treatment (n= 12) in the change in H:L ratio between
first and second captures, with H:L ratio tending to increase in
clipped birds and decrease in control birds (likelihood ratio χ2 =

13.969, df = 1, P < 0.0002; Table 1; Figure 3) when controlling
for the timespan between the two measures, the interaction
between treatment and timespan, and initial H:L ratio. This

result was not affected by inclusion of year as a factor or by
omitting the birds captured at the second field site (data available
upon request). To increase the sample size, we also ran this
analysis with data from 47 additional males; that analysis yielded
qualitatively identical results (see Supplementary Material).
Because the interaction between treatment and timespan also was
significant (Table 1), we divided the sample into birds that were
recaptured 7–9 days after the initial capture (7 clipped, 5 control)
and those that were recaptured 12–22 days after initial capture
(3 clipped, 7 control), and used a one-way ANOVA to test for
an effect of the wing-clipping treatment in each group (we did
not include initial H:L ratio, timespan, or the interaction between
timespan and treatment because of the small sample size). We
found a significantly higher H:L ratio in clipped birds than in
control birds in the group that was recaptured 7–9 days after the
initial capture [F(1,10) = 5.92, P = 0.035], but not in the group
that was captured 12–22 days after initial capture [F(1,8) = 1.28,
P = 0.290], indicating that the effect of the stressor may have
waned over time.

In the Social Experience experiment, the H:L ratio of
dominant birds (n = 16) was not different from that of
subordinate birds (n = 13; we were unable to obtain a blood
smear from one subordinate bird) following social interactions
(likelihood ratio χ2 < 0.001, df = 1, P = 0.999; Figure 3). The
time lapse between the onset of the experimental stimulus (wing
clipping or social interactions) and measurement of the H:L ratio
was substantially shorter in the Social Experience experiment
(mean = 1.6 d, s.e. = 0.22 d, range 1–4 d) than in the Energetic
Stressor experiment (mean = 11.5 d, s.e. = 1.02 d, range 7–
22 d; mean = 7.92 d, s.e. = 0.19 d, range 7–9 d in the subset
for which the treatment effect was strongest). If the time lag
between onset of a stressor and manifestation as an increase
in H:L ratio is greater than a day or so, we may have been
unable to detect an effect of social experience on H:L ratio in
cohorts 2–5 of the experiment because we measured H:L ratio
in those cohorts about 4 h after the conclusion of social trials.
Therefore, we examined H:L ratio more closely within cohort
1, which experienced a time lag of 4 d between the conclusion
of trials and collection of a blood sample. In that cohort, we
obtained blood samples from 4 dominant and 1 subordinate bird.
The H:L ratios of the dominant birds ranged from 0.10 to 0.49
(mean = 0.215, s.e.= 0.0918), whereas the H:L ratio of the single
subordinate was 0.50. A one-sample t-test comparing the H:L
ratio of the single subordinate bird to the mean H:L ratio of
the dominant birds indicates a marginally significant difference
(one-sample t = −3.105, df = 3, P2−tailed = 0.053; Figure 3),
thus providing weak evidence that the outcome of competitive
interactions may have led to differences in stress-response levels
in this experiment. We note that stress-response levels of newly
captive birds are expected to be much higher than those of free-
ranging birds (Dickens et al., 2009), and therefore the observed
difference in H:L ratio between our two experiments by itself is
not informative (birds in social experience experiment, winners
and losers combined: mean H:L = 0.903, s.e. = 0.145, n = 29;
birds in the Energetic Stressor experiment at their second capture
when they exhibited a higher H:L ratio: mean = 0.146, s.e. =
0.019, n= 22; Mann-Whitney U = 58.0, P < 0.00001). However,
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FIGURE 3 | Influence of an energetic stressor and social experience on the heterophil: lymphocyte (H:L) ratio in female American goldfinches. (A)

Change in H:L ratio between first and second captures of free-ranging birds that either did or did not have their wingspan trimmed by 7%. Means and standard errors

are adjusted for effects of timespan between captures, the interaction between timespan and treatment, and initial H:L value prior to treatment. (B) H:L ratio of

dominants and subordinates following ∼26 h of social interaction in captivity. Means and standard errors are adjusted for the influence of cohort category. (C) H:L ratio

of dominants and subordinates from cohort 1, in which H:L ratio was measured 4 days after the conclusion of the social interaction trials. Only one bird sampled from

cohort 1 was subordinate; hence, the symbol for that bird does not show standard error bars. Mean and standard error are shown for dominants. See text for further

details of the analyses.

the critical issue is the difference in H:L ratio between treatments
within each experiment.

DISCUSSION

Our study provides support for the hypothesis that dynamic
condition-dependent bill color change in female American
goldfinches signals the outcome of prior social interactions.
Furthermore, our results indicate that bill color of winners and
losers of competitive social interactions changes in opposite
directions, with winners becoming brighter and losers becoming
more drab. Interestingly, the magnitude of color change appears
similar in both groups, suggesting that bill color may reflect
both winner and loser effects. These results are consistent with
those of previous experiments showing that bill color of female
American goldfinches functions as a signal of competitive status
in interactions with other female goldfinches (Murphy et al.,
2009), but does not appear to function in other social contexts
(Murphy et al., 2009, 2014). In addition, our findings add to a
growing body of literature showing that socially-mediated change
in expression of a dynamic status signal can affect the outcome of
future competitive interactions (Zuk and Johnsen, 2000; Setchell
and Dixson, 2001; Gleeson, 2006; Cornwallis and Birkhead, 2008;
Karubian et al., 2011; Rhodes and Schlupp, 2012; Dey et al.,
2014). Taken together, these results challenge traditional models
of condition-dependent signaling that assume that signals reflect,
but do not influence, the physiological processes that mediate
competitive ability (Rubenstein andHauber, 2008; Tibbetts, 2014;
Vitousek et al., 2014).

Our Social Experience experiment clearly demonstrates a
response to social interactions that is manifested as a change
in expression of bill color consistent with the social experience

signaling hypothesis. Although the color changes we observed
were subtle (the difference in bill brightness between dominants
and subordinates increased by 2%), the dynamic fluctuation in
color represents roughly 15% of the range of bill brightness
observed in our experiment (minimum observed % reflectance
= 23.7; maximum = 36.9). Moreover, the magnitude of the
chromatic changes that we observed in both winners and
losers were sufficiently large to be easily detectable by goldfinch
receivers. The changes in the achromatic component of bill color
were less intense, and were likely on the edge of detectability
by receivers. Additionally, the females in our Social Experience
experiment exhibited substantial stress-response that was likely
due to captivity (Dickens and Romero, 2009; Dickens et al.,
2009; Rosenthal et al., 2012), and this background stress-response
may have limited the magnitude of their potential responses to
social stressors relative to changes that occur under more natural
conditions. Interestingly, we note that while both this study
and our other study of short-term bill color change in female
goldfinches (Rosenthal et al., 2012) found that bill brightness
decreased while yellow saturation increased in response to
perturbation, our previous studies of “snapshot” measures of bill
color have revealed positive correlations between current yellow
saturation and current indices of condition (Kelly et al., 2012;
Pham et al., 2014). At present we do not clearly understand
the mechanisms of bill coloration in goldfinches, but these
patterns suggest that in addition to carotenoids, bill color is
likely affected by other mechanisms such as hemoglobin, and that
short- and longer-term changes may involve somewhat different
mechanisms (see Rosenthal et al., 2012 for a fuller discussion
of this issue). Moreover, these patterns suggest that different
components of bill color may reflect condition on different time
scales.
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In contrast to results from our Social Experience experiment,
we found no effect of energetic stress associated with elevated
flight costs on bill color, even though our wing-clip treatment
significantly elevated stress-response levels of goldfinches. The
sample size for our Energetic Stressor experiment was moderate
(22–23 females, depending on the analysis), but the inclusion of
an additional 47–51 males in those analyses yielded far greater
power and yet results were qualitatively identical, suggesting
that our inability to detect an effect of wing-clipping on bill
color change among females is not simply due to small sample
size. Taken together, the social experience and energetic stressor
experiments reported here suggest that at least some components
of bill color change are more sensitive to the outcome of
competitive social interactions than to a non-social stressor such
as an increase in general energy demands.

We note that two earlier studies demonstrated short-term
changes in bill color in captive goldfinches that were not
subjected to social defeat (Rosen and Tarvin, 2006; Rosenthal
et al., 2012). Likewise, studies of seasonal development of bill
color that measured changes in captive birds over a span of 4–
6 weeks demonstrate that the seasonal development of colorful
bills in male goldfinches is influenced by diet and gut parasites
(McGraw and Hill, 2000; Hill et al., 2009). Hence, bill color
change responds to at least some kinds of perturbations other
than social interactions. We find it compelling, however, that this
signal is modified by competitive experience, but not modified
by all forms of non-social stressors, which suggests that the
signal primarily reflects information that is relevant to the
signaling context. Future research should investigate whether
female goldfinch bill color, which functions as a status signal
(Murphy et al., 2009), best reflects those stressors that have the
greatest impact on an individual’s ability to invest in competitive
interactions.

We also note that in the earlier studies of short-term bill
color change in goldfinches, birds were kept in individual cages
from which they could see and hear finches in adjacent cages,
but could not physically interact (i.e., bill fence, chase, supplant)
with them. Such conditions may have represented adverse social
conditions that interfered with the normal social feedback that
goldfinches would experience when foraging in groups in the
wild, and therefore it is possible that they could have represented
a form of social stressor similar to that resulting from separation
anxiety, which has been demonstrated in other species (Kikusui
et al., 2006). Thus, in the earlier goldfinch studies social stressors
could have contributed to bill color change, even as bill color
change was exacerbated by other sources of stress such as
immune system activation (Rosenthal et al., 2012). Importantly,
the Social Experience hypothesis would be supported even if
goldfinch bill color change is indeed sensitive to moderate levels
of non-social energetic stressors, if individuals compensate for
the energetic “drain” on bill color by shunting those costs to
other physiological processes so that elevated bill color can be
maintained. Future experiments should attempt to tease apart
these alternative explanations.

Although our study suggests that female goldfinch bill color
change may be more sensitive to social experience than to a
non-social energetic stressor, the time lag between the onset of

our experimental stressors and our measurements of their effects
differed between the two experiments, raising the possibility that
our manipulation of energetic stress induced a change in bill
color which we did not detect because we measured color too late
after the onset of the stressor. This is unlikely to be the case for
two reasons: (1) we did not detect an effect of wing clipping on bill
color even in those individuals measured only 7–9 days following
the administration of the treatment when the H:L ratio measures
indicated the birds were stressed in response to the treatment (see
Supplemental Material); (2) in an earlier experiment we found
that bill color declined continuously for at least 4 days and then
remained depressed for at least two more days after bringing
goldfinches into captivity, with no indication of abatement prior
to their release at the end of the experiment (Rosenthal et al.,
2012), suggesting that bill color remains dampened for the
duration that a chronic stressor is applied. Another alternative
explanation for our results is that the difference in response
of bill color to stressors in the two experiments stemmed
from a difference in the magnitude of the stressor, as opposed
to the kind of stressor, imposed by the treatments. However,
although birds in our Social Experience experiment appeared to
be more stressed than those in the Energetic Stress experiment
based on H:L ratios, the critical comparison is the difference in
stress-response level between treatments within an experiment.
Although both dominant and subordinate individuals appeared
to be highly stressed by the time we measured H:L ratios, the
difference in H:L ratio between them following the experiment
was small relative to the difference between treatments in the
Energetic Stressor experiment. This suggests that if the significant
difference in bill color change between winners and losers truly
resulted from a difference in stress per se, we should have seen
a much greater difference in bill color change in the Energetic
Stressor experiment. Moreover, we suspect the energetic stress
induced by our wing clipping treatment was substantial, as
other studies have detected significant effects on life history
allocation in response to smaller increases in flight costs than
those imposed in our study. For example, Tieleman et al. (2008)
found that tropical house wrens (Troglodytes aedon) that had
flight costs elevated by an estimated 7.5% provisioned their
broods 23–31% less frequently than control birds. Therefore,
it seems our manipulation of goldfinch flight costs by almost
20% is likely to have imposed important constraints on energetic
balance.

Our results suggest that goldfinch receivers may be able
to assess the recent social experience of potential competitors
based on the dynamics of their bill color expression. Female
goldfinches avoid competitive interactions with other females
that express colorful bills (Murphy et al., 2009), so the fact
that bill color changes in response to competitive interactions
means that the outcome of those interactions may potentially
influence the outcome of future interactions, which could lead
to winner-loser effects—the phenomenon in which winners of
social contests experience a higher probability of winning future
contests while losers experience a lower probability, independent
of their respective intrinsic resource holding power (e.g., Landau,
1951a,b; Hsu et al., 2006, 2009; Hock and Huber, 2009; Fawcett
and Johnstone, 2010; Fuxjager and Marler, 2010; Dugatkin
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and Reeve, 2014). Because both winners and losers stand to
benefit from reliable information about the likelihood that losers
will challenge winners in future contests, a signaling system
that provides such information could evolve in species that
live in stable groups in which individuals directly compete
for resources. American goldfinches live in loose flocks in
which individuals forage closely together in concentrated but
spatially and temporally ephemeral food patches. Individuals
within captive flocks of goldfinches appear to discriminate the
relative dominance ranks of competitors at feeders by visual
inspection and thereby avoid competing with more dominant
individuals (Popp, 1987), and they appear to exhibit winner-
loser effects (Popp, 1988), although both of those studies were
conducted during winter when goldfinch bills were brown
instead of orange. Whether flock composition of free-ranging
goldfinches during the breeding season (when colorful bills are
expressed) is stable enough to provide benefits from signals of
winner-loser effects remains unstudied. Social network analysis
in relation to the social experience signaling system could shed
much light on the implications of bill color change for fitness in
goldfinches.

Recent work has suggested that if both signal expression
and competitive status are dynamic and hormonally mediated,
social feedback during competitive interactions may lead to
alteration of both signal expression and competitive ability
(Rubenstein and Hauber, 2008; Dey et al., 2014; Tibbetts,
2014), yielding a signaling system in which signal expression
and competitive status covary and simultaneously affect each
other. Dynamic condition-dependent ornament expression of
several bird species, including female goldfinches, appears to
be correlated with circulating testosterone and/or corticosterone
(Eens et al., 2000; McGraw, 2006; Ardia et al., 2010; McGraw
et al., 2011; Pham et al., 2014). Circulating levels of each of
these hormones can be affected by social interactions (Goymann
et al., 2007; Safran et al., 2008; but see Rosvall et al., 2014),
providing a feedback mechanism by which hormonal state
influences ornament expression, ornament expression influences
the nature and outcome of social interactions, and social
interactions influence hormonal state (Rubenstein and Hauber,
2008; Maia et al., 2012; Leary and Knapp, 2014; Vitousek et al.,
2014). Although “snapshot” measures of bill color of female
goldfinches appear to correlate with circulating testosterone
levels (Pham et al., 2014), experiments in which hormone levels
are manipulated will be necessary to confirm whether rapid bill
color change is hormonally mediated in goldfinches as it is in

other species (Eens et al., 2000; McGraw, 2006; Ardia et al., 2010;
McGraw et al., 2011).

In sum, our study provides evidence that the dynamic
component of bill color of female goldfinches reflects the
outcome of recent competitive interactions, but appears to be
less sensitive to a more general non-social stressor such as
that stemming from elevated flight costs (this study) or from
stressors such as current blood parasite infection (Lumpkin
et al., 2014). A signaling system such as this, in which a
dynamic signal influences the outcome of social interactions and
social interactions in turn rapidly influence signal expression,
exemplifies a level of complexity that is not present in

communication systems based on relatively static condition-
dependent signals.
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