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Abstract

We discuss the problem of global invertibility of nonlinear maps defined on the finite

dimensional Euclidean space via differential tests. We provide a generalization of the

Fujisawa-Kuh global inversion theorem and introduce a generalized ratio condition

which detects when the pre-image of a certain class of linear manifolds is non-empty

and connected. In particular, we provide conditions that also detect global injectivity.

Keywords: Global inversion theorem, Global diffeomorphism, Fujisawa-Kuh

Theorem, Ratio condition, Global injectivity

1. Introduction

The problem of deciding whether a local diffeomorphism f : Rn → R
n of class

C1 is a global diffeomorphism (or globally invertible) is a fundamental question in

mathematics. It has applications in diverse areas such as differential geometry, dif-

ferential equations, numerical analysis, algebraic geometry, statistics, general theory

of optimization, nonlinear circuit theory, and economics to name a few. In our work

we consider results establishing global invertibility by providing analytical conditions

that detect it as a topological phenomena.

A classical result in the theory of global invertibility is the Hadamard-Lévy-

Plastock Theorem (see [4], [5], and [9]) which states that a local diffeomorphism f of

class C1 between two Banach spaces E and F is bijective if it satisfies the following

integral condition

∫ ∞

0

min
‖x‖=r

‖f ′(x)−1‖−1dr = ∞.

Email addresses: mradulescu.csmro@yahoo.com (Marius Radulescu),
mradulescu.csmro@yahoo.com (Sorin Radulescu), ebalreir@trinity.edu (E. Cabral Balreira)

Preprint submitted to Journal of Mathematical Analysis and Applications May 10, 2011



This result has been very influential in the theory of global inversion and other

areas. The finite dimensional case is due to Hadamard [4], and it was extended to

infinite dimensional Banach spaces by Lévy [5]. The original proofs of Hadamard

and Lévy were very intuitive and less rigorous. In [9], Plastock gave a proof of the

Hadamard-Lévy result, in the framework of Banach spaces of arbitrary dimension,

based on topological arguments of covering space theory. A self-contained proof of

the Hadamard-Lévy based on arguments from a first course in mathematical analysis

can be found in [12].

An interesting aspect of the Hadamard-Lévy-Plastock Theorem is that it provides

a simple integral condition to invertibility. However, in applications it can be very

difficult and sometimes impossible to check such integral conditions. In fact, there

are several global diffeomorphisms that are not detected by the integral condition

above. For instance, it fails to detect that the simple planar map f(x, y) = (x, x3+y)

is invertible. Hence new formulations of global invertibility theorems in terms of

other differential tests are desirable. We remark several global invertibility criteria

by Radulescu and Radulescu in [11, 13, 14] that are more suitable to applications.

Meanwhile, there have been several results in the last few years dealing with

global invertibility from the point of view of geometry and topology. See for instance,

Balreira [1, 2], Nollet and Xavier [6, 7, 8].

In this paper, we focus on the results of Fujisawa-Kuh [3] who provided an

interesting analytical test to detect global invertibility as a result of their work in

Nonlinear Circuit Theory. We remark that the differential test below works only in

finite dimensional Euclidean spaces.

Theorem 1.1 (Fujisawa-Kuh, [3]). Let f : Rn → R
n be a C1 map. For k = 1, 2, . . . , n

let Jkf (x) denote the determinant of the matrix consisting of the entries in the first

k rows and first k columns of the Jacobian matrix f ′ (x). Suppose that the following

conditions hold:

(i) Jkf (x) 6= 0 for every x ∈ R
n and k ∈ {1, 2, . . . , n}.

(ii) There exists ǫ > 0 such that for every x ∈ R
n we have:

|J1f (x)| ≥ ǫ,

∣

∣

∣

∣

J2f (x)

J1f (x)

∣

∣

∣

∣

≥ ǫ, . . . ,

∣

∣

∣

∣

Jnf (x)

Jn−1f (x)

∣

∣

∣

∣

≥ ǫ

Then f is a global diffeomorphism.

Condition (ii) is known as the ratio condition. We note that the planar map

f(x, y) = (x, x3 + y) does satisfy conditions (i) and (ii) consequently Theorem 1.1

detects its invertibility. Since any map of Rn onto itself defined by a simple relabeling
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of the coordinates is a global homeomorphism it follows as a corollary of the above

theorem that any nested sequence of n-submatrices of the Jacobian matrix f ′ (x) can

be used as a sequence in condition (ii).

The proof of Theorem 1.1 given in [3] is very short and it lacks the proper

mathematical formalism. Hence a mathematician can consider it only as a hint. Since

the original result in [3], no other proof has been given in the mathematical literature.

In our work, we provide a generalization of Theorem 1.1 with less restrictive and

natural conditions. We also address in our paper the interesting question of what are

the properties of the mapping f if some of the inequalities from the ratio condition are

missing. We prove that if only a subset of the inequalities from the ratio condition

hold then the pre-images of a certain class of linear manifolds are non-empty and

connected. As an application of our new ideas, we provide a result establishing a

differential test to detect global injectivity of maps.

Now, let us state our main result which we refer to as the generalized Fujisawa-

Kuh global inversion theorem.

Theorem 1.2. Let f : Rn → R
n be a C1 map. Let J0f(x) = 1 and for k = 1, 2, . . . , n

let Jkf (x) denote the determinant of the matrix consisting of the entries in the first

k rows and first k columns of the Jacobian matrix f ′ (x). Suppose that each k ∈
{1, 2, . . . , n}, we have Jkf (x) 6= 0 for every x ∈ R

n and that there exists continuous

functions ck : Rn−k+1 → R+, such that the following conditions hold:

(i)

∫ 0

−∞

ck (s, xk+1, xk+2, . . . , xn) ds =

∫ ∞

0

ck (s, xk+1, xk+2, . . . , xn) ds = +∞ for

every x = (x1, x2, . . . , xn) ∈ R
n and k ∈ {1, 2, . . . , n}.

(ii)

∣

∣

∣

∣

Jkf (x)

Jk−1f (x)

∣

∣

∣

∣

≥ ck (xk, xk+1, xk+2, . . . , xn) for every x = (x1, x2, . . . , xn) ∈ R
n and

k ∈ {1, 2, . . . , n}.

Then f is a C1 global diffeomorphism.

We note that Theorem 1.1 follows from Theorem 1.2 by simply taking the func-

tions ck, for k ∈ {1, 2, . . . , n} to be positive constants. We will show later that

Theorem 1.2 is in fact an effective improvement of Theorem 1.1 as there are maps

that satisfy the conditions in Theorem 1.2 but do not satisfy Theorem 1.1.

The condition (ii) from the theorem above seems quite arbitrary since ck depends

only on the last n−k+1 variables. Consequently it would be natural to consider the

generalization of Theorem 1.1 by the following integral conditions

∫ 0

−∞

∣

∣

∣

∣

Jkf (x)

Jk−1f (x)

∣

∣

∣

∣

dxk =

∫ ∞

0

∣

∣

∣

∣

Jkf (x)

Jk−1f (x)

∣

∣

∣

∣

dxk = ∞ (1.1)
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for every x1, . . . , xk−1, xk+1, . . . , xn ∈ R. The question is if the above condition (1.1)

implies that f is a global diffeomorphism. The answer to the above question is

negative. The map f : R2 → R
2 given by f(x, y) = (x − y, arctanx + arctan y),

satisfies (1.1) but f is not a bijection as its second component is a bounded function.

Before we state our next results, we consider a weaker ratio condition, in the

sense that we look at a ratio condition that could possibly involve less than the n

inequalities as in Theorem 1.2.

Definition 1.3. Let f : Rn → R
n be a map of class C1and k ∈ {1, 2, . . . , n} . Let

J0(x) = 1 and for i = 1, 2, . . . , k, let Jif (x) denote the determinant of the matrix

consisting of the entries in the first i rows and first i columns of the Jacobian matrix

f ′ (x). We say that f satisfies the k-ratio condition if the following hold:

(i) Jif (x) 6= 0 for every x ∈ R
n and i ∈ {1, 2, . . . , k}.

(ii) For each i ∈ {1, 2, . . . , k}, there exists a continuous function ci : R
n−i+1 → R+

such that for every x =(x1, x2, . . . , xn) ∈ R
n we have

∫ 0

−∞

ci (s, xi+1, xi+2, . . . , xn) ds =

∫ ∞

0

ci (s, xi+1, xi+2, . . . , xn) ds = +∞

(iii) For each i ∈ {1, 2, . . . , k} and for every x = (x1, x2, . . . , xn) ∈ R
n, we have

∣

∣

∣

∣

Jif (x)

Ji−1f (x)

∣

∣

∣

∣

≥ ci (xi, xi+1, xi+2, . . . , xn)

Simply put, we say that f satisfies the k-ratio condition if it satisfies the first k

inequalities from the ratio condition. Geometrically, we note that when the k-ratio

condition is satisfied, then the map f can be viewed as a local diffeomorphism in the

first k coordinates. In view of this remark, we obtain an interesting result describing

the underlying topological phenomena. For k ∈ {1, 2, . . . , n− 1}, let us consider the
decomposition of Rn as Rn = R

k ×R
n−k. Let the canonical projections onto the first

k coordinates and onto the last n − k coordinates be given by ρ1 : Rn → R
k and

ρ2 : Rn → R
n−k, respectively. For v ∈ R

k, we say that L(v) is the linear manifold

spanned by the last (n−k)-axes orthogonal to v if L(v) =
{

(v,w) ∈ R
n| w ∈ R

n−k
}

,

that is, L(v) = ρ−1

1 (v). Our next result is as follows.

Proposition 1.4. For n ≥ 2, let f : Rn → R
n be a C1 map, k ∈ {1, . . . , n− 1},

and L be a linear manifold spanned by the last (n− k)-axes. Suppose that f satisfies

the k-ratio condition, then f−1(L) is non-empty and connected. In fact, f−1(L) is

diffeomorphic to L.
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By applying Proposition 3.1 and Lemma 2.2 we prove the following important

result that detects global injectivity.

Corollary 1.5. For n ≥ 2, let f : Rn → R
n be local diffeomorphism of class C1.

Suppose f satisfies the (n− 1)-ratio condition, then f is injective.

The statement from the above corollary appeared for the first time in [14] without

a proof. We also note that under Definition 1.3, Theorem 1.2 can be simply stated

as follows: A C1 map f : Rn → R
n that satisfies the n-ratio condition is a global

diffeomorphism.

We emphasize that the proof of Proposition 1.4 will be a consequence of The-

orem 1.2 where we look at the map f restricted to linear manifolds of dimension k.

However, we now are able to reveal how the analytical conditions are in fact a man-

ifestation of a topological phenomena that can also be used to establish injectivity.

This type of argument is related to the work in [2] where analytical conditions in-

volving the rows of the Jacobian matrix are used to establish topological properties

of pre-images of linear manifolds under a local diffeomorphism. In fact, the results

in [2] also establish a global inversion theorem and a global injectivity result.

2. Proof of the Main Result

In this section, we provide the proof of our main result in Theorem 1.2 on global

invertibility and give an example to show that we indeed have an improvement over the

Fujisawa-Kuh global inversion theorem. The main idea of the proof is to understand

how the Jacobian matrix of a map changes when we restrict it to an implicitly defined

submanifold. In fact, using a modified form of the implicit function theorem, we show

that the Jacobian matrix changes in a surprisingly elementary way. Before we embark

in its proof, we need some preliminaries results.

Lemma 2.1. Let f : Rn → R be a C1 map. Suppose that there exists a continuous

function c : Rn → R+ such that

(i)

∫ 0

−∞

c(s,y)ds =

∫ ∞

0

c(s,y)ds = +∞ for every y ∈ R
n−1.

(ii) f ′
x (x,y) 6= 0 for every x ∈ R, y ∈ R

n−1.

(iii) |f ′
x (x,y)| ≥ c(x,y) for every x ∈ R, y ∈ R

n−1.

Then there exists a continuous function φ : Rn → R such that φ (·,y) is differentiable
for every y ∈ R

n−1 and f (φ (x,y) ,y) = x for every x ∈ R, y ∈ R
n−1.
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Proof. From conditions (i)-(iii) above it follows that for every y ∈ R
n−1 the function

f (·,y) : R → R is a bijection. Hence there exists a function φ : Rn → R such that

f (φ (x,y) ,y) = x for every x ∈ R, y ∈ R
n−1. It follows from the implicit function

theorem that φ is continuous and φ (·,y) is differentiable for every y ∈ R
n−1.

For easiness of notation, given M an n × n matrix, for k ∈ {1, . . . , n} let Mk

denote the k × k submatrix obtained from the first k rows and columns of M .

Lemma 2.2. Let f : Rn → R
n be a C1 map and p ∈ {1, 2, . . . , n}. Assume that for

every y =(xp+1, . . . , xn) ∈ R
n−p the map ϕy : Rp → R

p given by ϕy(x1, x2, . . . , xp) =

(f1(x), . . . , fp(x)) is a global diffeomorphism where x = (x1, . . . , xn). Then the map

g : R
n → R

n given by g(x) = (f1(x), . . . , fp(x), xp+1, . . . , xn) ,x = (x1, . . . , xn) ∈
R

n is a global diffeomorphism. Moreover, if we denote h = f ◦ g−1, then h is the

identity of the first p coordinates, that is h(x) = (x1, x2, . . . , xp, hp+1(x), ..., hn(x))

and Jkh (x) = det (h′(x))k = 1 for k = 1, . . . , p and for k = p+ 1, . . . , n, we have

Jkh (x) =
Jkf (g

−1 (x))

Jpf (g−1 (x))
. (2.1)

Proof. In order to prove that g is a global diffeomorphism considerw = (w1, . . . , wn) ∈
R

n and the equation g(x) = w. Let y =(wp+1, . . . , wn). Then xi = wi for every

i ∈ {p+ 1, ..., n} and fi(x) = wi for every i ∈ {1, ..., p}. One can easily see that

g−1 (w) =
(

ϕ−1
y

(w1, . . . , wp) , wp+1, . . . , wn

)

and g is a global diffeomorphism.

Next, let us write the Jacobian matrix of g as a block matrix as follows:

g′(x) =

(

(f ′(x))p B(x)

0 1q

)

(2.2)

where (f ′(x))p is the submatrix of f ′(x) formed by the first p rows and p columns of

f ′(x), 1q is the identity matrix of order q = n− p, and B(x) is the p× q submatrix of

f ′(x) formed by the first p rows and the last q columns. For simplicity, let us write

(f ′(x))p = A and B(x) = B. In this notation, we can compute the inverse of g′(x) as

(g′(x))−1 =

(

A−1 −A−1B

0 1q

)

(2.3)

observing that by hypotheses A is invertible. Let us also write f ′(x) = P in block

notation as

P = f ′(x) =

(

A B

C D

)

(2.4)

where C is a q × p matrix and D is a q × q matrix.
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We now define the map h : Rn → R
n given by h(y) = (f ◦ g−1)(y). It is clear

that h is the identity on the first p coordinates of y and therefore Jkh (x) = 1 for

k = 1, 2, . . . , p. In the case k ∈ {p+ 1, . . . , n} we can compute Jkh (x) as follows.

Since h ◦ g = f , by the chain rule we have h′ (g(x)) · g′(x) = f ′(x), thus h′ (g(x)) =

f ′(x) · (g′(x))−1. From (2.3) and (2.4), we have

h′ (g(x)) =

(

A B

C D

)(

A−1 −A−1B

0 1q

)

=

(

1p 0

CA−1 D − CA−1B

)

(2.5)

We note that the block matrix D − CA−1B is the Schur complement of A in

f ′(x), see [10]. We denote it by (P |A). Applying the determinant operator to the

above identity we obtain:

det(P |A) = detP

detA
. (2.6)

In fact, we can now easily relate Jkh (x) to Jkf(g
−1 (x)). Indeed, a simple com-

putation shows that for k ≥ p we have (Pk|A) = (P |A)k−p, and using (2.6) we have

Jkh (x) = det (h′ (x))k = det
(

f ′
(

g−1 (x)
)

|A
)

k−p
=

det(f ′(g−1 (x)))k
detA

=
Jkf(g

−1 (x))

Jpf(g−1 (x))

which is the desired conclusion.

We are now ready to prove our main theorem which will follow from the previous

two lemmas.

Proof of Theorem 1.2. We shall prove the result by induction. For n = 1 we see

that the statement of Theorem 1.2 is as follows. Let f : R → R be a map of class

C1 and c : R → R+ be a continuous function such that f ′ (x) 6= 0 for every x ∈ R,

|f ′ (x)| ≥ c (x) for every x ∈ R and
∫

0

−∞
c (s) ds =

∫∞

0
c (s) ds = ∞. Therefore

applying Lemma 2.1, the map φ is the inverse of the function f , and this establishes

the result for n = 1.

Let us suppose that the statement of Theorem 1.2 holds for every function

f : Rn → R
n satisfying the hypotheses of the theorem. We now consider a map

f = (f1, f2, . . . , fn, fn+1) : R
n+1 → R

n+1 of class C1 and continuous functions

ck : R
n+2−k → R+, for k ∈ {1, 2, . . . , n+ 1} such that the following conditions hold:

(i)

0
∫

−∞

ck (s, xk+1, xk+2, ..., xn+1) ds =

∞
∫

0

ck (s, xk+1, xk+2, ..., xn+1) ds = ∞ for every

x2, x3, . . . , xn+1 ∈ R and k ∈ {1, 2, . . . , n+ 1}.

(ii) Jk (x) 6= 0 for every x =(x1, x2, . . . , xn+1) ∈ R
n+1 and k ∈ {1, 2, . . . , n+ 1} .
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(iii) For every x =(x1, x2, . . . , xn+1) ∈ R
n+1 and k ∈ {1, 2, . . . , n+ 1}, we have

∣

∣

∣

∣

Jk (x)

Jk−1 (x)

∣

∣

∣

∣

≥ ck (xk, xk+1, xk+2, . . . , xn+1) .

For each y ∈ R we consider the map ϕy : R
n → R

n given by

ϕy(x1, . . . , xn) = (f1(x1, . . . , xn, y), . . . , fn(x1, . . . , xn, y)) .

Then for k ∈ {2, . . . , n}, it is trivial to see that

det(ϕ′
y(x1, . . . , xn))k

det(ϕ′
y(x1, . . . , xn))k−1

=
Jkf(x1, . . . , xn, y)

Jk−1f(x1, . . . , xn, y)

From the induction hypotheses, we have that ϕy is a global diffeomorphism. Now

we can apply Lemma 2.2 and obtain that the map g : Rn+1 → R
n+1 given by

g(x1, . . . , xn, xn+1) = (f1(x), . . . , fn(x), xn+1)

is a global diffeomorphism. Let h : Rn+1 → R
n+1 be given by h = f ◦ g−1. Note that

h(x) = (x1, . . . , xn, hn+1(x)) and hn+1(x) = fn+1 (g
−1 (x)). Since the last component

of the map x →g−1 (x) is the identity it follows that

∣

∣

∣

∣

∂hn+1

∂xn+1

(x)

∣

∣

∣

∣

= |Jn+1h(x)| =
∣

∣

∣

∣

Jn+1f(g
−1 (x))

Jnf(g−1 (x))

∣

∣

∣

∣

≥ cn+1(xn+1) (2.7)

Therefore, an application of the obvious modification of Lemma 2.1 to the map

hn+1 with condition (2.7) shows that there exists a differentiable map ψ : Rn+1 → R

such that for any x ∈ R

hn+1(x1, . . . , xn, ψ(x1, . . . , xn, x)) = x

Hence, given w =(w1, . . . , wn, wn+1) ∈ R
n+1, we have that

h(w1, . . . , wn, ψ(w1, . . . , wn, wn+1)) = w.

This shows that h is a diffeomorphism and since f = h ◦ g we have that f is a

bijection as we wished to prove.

�

In order to see that our generalized Fujisawa-Kuh Theorem (Theorem 1.2) is

in fact a generalization of the original Fujisawa-Kuh Theorem (Theorem 1.1), we

provide in the example below a map that satisfies Theorem 1.2 but does not satisfy

Theorem 1.1.
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Example. Let f : R
2 → R

2 be the map f (x, y) = (φ (x) , φ (y)) where φ(x) =

ln
(

x+
√
1 + x2

)

, x ∈ R. Consider the functions c1 : R2 → R+ , c1(x, y) =
1√

1 + x2

and c2 : R → R+, c2(y) =
1

√

1 + y2
. Note that J1 (x, y) = φ′(x), and J2 (x, y) /J1 (x, y) =

φ′ (y) have both 0 as infimum, hence the conditions from the original Fujisawa-Kuh

Theorem are not satisfied. Note also that |J1 (x, y)| ≥ c1(x, y), |J2 (x, y) /J1 (x, y)| ≥
c2(y), x, y ∈ R and

∫ 0

−∞

c1 (s, y)ds =

∫ ∞

0

c1 (s, y)ds = +∞ for every y ∈ R

∫ ∞

0

c2 (s) ds = +∞

Thus f verifies the conditions of Theorem 1.2.

3. Topological Result

In this section, we prove Proposition 1.4 and establish Corollary 1.5 detecting

global injectivity. We consider maps that satisfy the k-ratio condition and apply

Lemma 2.2 to obtain topological information on the pre-images of hyperplanes. A

geometrical interpretation of the proof of Lemma 2.2 reveals how the image of the map

f : Rn → R
n can be decomposed as R

k × R
n−k and hence we obtained the desired

topological conclusions. These ideas are related to the work in [1] and [2] where

topological hypotheses on the pre-images of hyperplanes imply global invertibility

and injectivity. First, let us state the following result.

Proposition 3.1. For n ≥ 2 let f : Rn → R
n be a C1 map, k ∈ {1, . . . , n}. Assume

that f satisfies the k-ratio condition. Then there is a global diffeomorphism g : Rn →
R

n such that h = f ◦ g−1 is the identity on the first k coordinates, i.e. h(x) =

(x1, . . . , xk, hk+1(x), . . . , hn(x)).

Proof. For each fixed y = (xk+1, . . . , xn) ∈ R
n−k we define the following function

ϕy : Rk → R
k given by

ϕy(x1, . . . , xk) = (f1(x), . . . , fk(x)) , x = (x1, . . . , xk, xk+1, . . . , xn) ∈ R
n

Since f satisfies the k-ratio condition, then ϕy also satisfies the k-ratio condi-

tion. An application of Theorem 1.2 to the function ϕy shows that ϕy is a global

diffeomorphism. From Lemma 2.2 the conclusion follows.
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We are now ready to provide a simple proof for our result.

Proof of Proposition 1.4. From Proposition 3.1, we see that for v ∈ R
k and L(v) =

{

(v,w)| w ∈ R
n−k
}

, we consider the diffeomorphism g : Rn → R
n given by

g(x) = (f1(x), . . . , fk(x), xk+1, . . . , xn).

Then f−1(L(v)) = g−1(L(v)) which is diffeomorphic to L(v) via g. This is the

desired conclusion. �

Next, the proof of Corollary 1.5 follows directly from Proposition 3.1 and Lemma 2.2.

Indeed, suppose f is a local diffeomorphism that satisfies the (n − 1)-ratio condi-

tion. From Proposition 3.1 there is a global diffeomorphism g : Rn → R
n such that

h = f ◦ g−1 is the identity on the first n− 1 coordinates. Now, apply Lemma 2.2 for

k = n and p = n− 1. From (2.1) we obtain

∣

∣

∣

∣

∂hn
∂xn

(x)

∣

∣

∣

∣

= |Jnh(x)| =
∣

∣

∣

∣

Jnf(g
−1 (x))

Jn−1f(g−1 (x))

∣

∣

∣

∣

6= 0.

It follows that for every y = (x1, x2, . . . , xn−1) ∈ R
n−1 the function uy(t) = hn(y, t),

t ∈ R, is injective. This implies h is injective. Since f = h ◦ g it follows that f is also

injective. We note that we can prove injectivity of f in more general hypotheses. For

instance, one can prove that f is injective if f satisfies the (n − 1)-ratio condition,

Jnf(x) does not change the sign, and its set of zeros contains no non-trivial segment

parallel to the last coordinate axis.
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