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Abstract 

The main objective of this work is to present a general framework for the notion of the strong Allee effect 

in population models, including competition, mutualistic, and predator-prey models. The study is 

restricted to the strong Allee effect caused by an interspecific interaction. The main feature of the strong 

Allee effect is that the extinction equilibrium is an attractor. We show how a "phase space core" of three 

or four equilibria is sufficient to describe the essential dynamics of the interaction between two species 

that are prone to the Allee effect. We will introduce the notion of semistability in planar systems. Finally, 

we show how the presence of semistable equilibria increases the number of possible Allee effect cores. 

 

Keywords: Population biology, competition models, Allee effect, semistability, extinction region. 

 

1. Introduction 

In their book, Courchamp et al. (2008) [4], the authors described the Allee effect in a straight forward 

manner: "The more the merrier: This effect is simply a causal positive relationship between the number of 

individuals in a population and their fitness. The more individuals there are (up to a point), the better they 

fare." So as population size approaches a threshold, favorable influences stimulate its growth and when it 

goes below it, unfavorable influences inhibit its growth. From their point of view, the Allee effect may be 

described as a notion of positive density dependence in which "the overall individual fitness, or one of its 

components, is positively related to population size or density" [4]. However, Lidicker (2010) [15] recently 

proposed that Allee effects be described and defined in terms of demographic processes. He explained that 

"Allee effects are expressed at the population level of organization, and the parameters of interest are the 

population properties of growth rates, recruitment rates, loss rates, equilibrium densities, and perhaps, 

success in establishing new populations". All the above authors indicated that they are using size and density 

interchangeably, unless otherwise explicitly stated. 

Allee et al [1,2] provided experimental and field studies that confirmed the presence of the Allee effect 

among many species. The examples include bobwhite quails (Colinus virginianus) that huddle together to 

lower the surface presented to cold weather, and the disappearance of tsetse fly from an area in which the 

density of the flies fall below a threshold minimum density. (See also [11,13-16,19,20].) 
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Let nx  denote the size or density of species x  at time period or generation n. Then, we define the 

fitness of species x  as the per-capita growth of its population, represented by the function nnn xxxf /)( 1 . 

Thus, the difference equation that models the growth of the population is given by 

)()(1 nnnn xgxfxx  , with )()( xfxxg   , 3Cf  . (1) 

- Definition: Model (1) is said to have a strong Allee effect if the following conditions hold true: 

(i) 0)(  xf  for ),0( x  for some 0  , 

(ii) 1)0( f  , 

(iii) There exists a unique K > 0, such that 1)K( f , 0)K( f . 

- Remark: It follows from the above conditions that there exists a fixed point A, 0<A<K, such that 1)A( f  

and A is unstable. 

In the absence of the Allee effect, the fitness is expected to decrease when the population increases, 

most likely as the result of interspecific competition, difficulty in finding mates, or/and limitation of 

resources. On the other hand, a strong Allee effect is exhibited by an increase in per-capita growth with 

increasing population size. These competing mechanisms can be readily modeled for a single species x as 

follows. The fitness of the population is represented by the product 

)()()( 0 xIxfxf   , (2) 

where 0)(0  xf , 0)(  xI ; )(0 xf  is the fitness function if there is no Allee effect, and )(xI  represents the 

Allee effect on the fitness of the population. The assumption 0)(0  xf  ensures the negative correlation of 

the fitness with the population size (in the absence of the Allee effect), i.e., the fitness decreases when the 

population increases (negative density dependence). On the other hand, 0)(  xI  produces the required 

dynamics of Allee effect that may lead to extinction of the population if it falls below a certain threshold 

(positive density dependence). 

An example of a model having the dynamics of (2) is the λ-Ricker Map [11], 

}exp{1 nnn xbkxx 

λ
 , (3) 

where }exp{)(0 xbkxf   and 1)(  λxxI  , 1λ . The physical meaning of the exponent λ in (3) is given 

by the percentage rate of change nnn xxR /  as follows 
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This may be easily shown by taking the derivative of (3) near the fixed point 0x , i.e., 
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λ  and then dividing this by (3), where we obtain λ )log(/)log( 1 nn xdxd . 

For two species models representing two species x  and y , the difference equation is given by the 

planar system 
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General planar models with the Allee effect caused by an interspecific interaction may be written in a form 

extending equation (2) to two-species model, 
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Furthermore, extending the λ-Ricker model to two species, we get the following planar system 
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with 0,0  nn yx  and 0, 21 λλ . 

For suitable selection of the parameters there can be up to seven fixed points: 

- Origin: )0,0(  

- Two fixed points on the x-axis, given implicitly by the roots of 
xbk

exe 111 1 


λ , when 11 /)1(1 be
k


 λ . 

- Two fixed points on the y-axis, again given implicitly by 
yck

eye 222 1 


λ , when 22 /)1(2 ce
k


 λ . 

- Two fixed points in the interior, given by the system yckxb
eeex 1111 1 


λ  and 

xbkyc
eeey 2222 1 


λ

. In the 

case of a symmetric model, i.e., λλλ  21 , kkk  21 , bbb  21 , ccc  21 , two fixed points exist in 

the interior, if )/()1( cbe k  λ . 

Another interesting example of a planar model that describes a two species competition model 

exhibiting contest inter-specific competition [18] is the following [10]. 

,
1

1

2

2

2

2
1

1

2

2

1
1

nn

n
n

nn

n
n

xby

ya
y

ybx

xa
x











 (8) 

with 0,,0,0 2,12,1  bayx nn . This model may have up to nine fixed points: 

- Origin: )0,0(  

- Two fixed points on the x-axis,   1
2

22
11 

aa
x , when 21 a . 

- Two fixed points on the y-axis,   1
2

22
22 

aa
y , when 22 a . 

- Four fixed points in the interior. We can easily compute these fixed points for the symmetric case, where 

21 aaa   and 21 bbb  . They are given by   1
2

22
  babayx , for 2 ba , and 

  22

22 1 bx baba   ,   22

22
1 by baba    , for 212 bba  . 

Next, we will introduce the notion of semistability in planar systems. 

 

2. Semistability 

Let us start by defining the notion of semistability in the one dimensional case. 



- Definition. A fixed point *x  is said to be semistable if there exists an interval ),( **   xxI , such 

that *x  is attracting from one side and repelling from the other side. It is said to be semistable from the left 

{right} if it is attracting on ),( ** xx   { ),( ** xx }. 

We will start our exposition by stating the main result of semistability for single species (one-

dimensional maps). 

- Theorem 1 [6]. Consider the one-dimensional difference equation )(1 nn xgx  . If 
2Cg  and *x  is a 

fixed point of the map g(x), such that 1)( *  xg  for 0)(  xg , then *x  is semistable from the left if 

0)(  xg  and semistable from the right if 0)(  xg . On the other hand, if 1)( *  xg , then the fixed point 

*x  is either asymptotically stable or unstable but not semistable. 

Now we are going to study semistability for planar maps. Let us extend the notion of semistability to 

the two dimensional case by the following definition: 

- Definition. A fixed point *X  is said to be semistable, if there exists a central manifold cW  that is 

semistable at *X . 

Let the map  ),(),,(),( 21 yxgyxgyxG  , 22: RRG  . Let )( *XJG  be the Jacobian matrix of G at 

the fixed point ),( *** yxX  . Then, the map G may be written in the form of the following difference 

equation 
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where the map G
~

 contains all the higher order terms  2
~)(

~
nn XOXG  [12]. Let us assume that one of the 

eigenvalues of, say 11  , and the other eigenvalues is 12  . Without loss of generality, we may assume 

that JG  is the following diagonal matrix 
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Now Eq. (9) may be written as 
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The existence of a center manifold for Eq.(11) is guaranteed by the following theorem. 

- Theorem 2 (Invariant manifold theorem) [3,16]. Assume that 11   and 12  . For 11   the 

eigenvector is cE . Let us split the case of 12   into two subcases, 12   and 12  , where uE  and sE  

are the corresponding eigenvectors. Suppose now that 2CF  . Then there exist a center manifold cW  and a 

stable sW  (or an unstable uW ) manifold, respectively tangent to cE  and sE  (or uE ) at the fixed point X=0. 

Moreover, all the manifolds cW , sW  and uW  are invariant (both positively and negatively invariant). 

Now let the center manifold be given by )(xhy  . Throughout this section we consider the case where 

11  . Then substituting in Eq.(11), yields )(1 nn xux   where the map )(xu  is given by 



))(,(
~

)( 1 xhxGxxu  , with 1)( *  xu , (12) 

where *x  is the first component of the fixed point *X . In order to have semistability on the center manifold 

)(xh  of the map )(xu , one must have, 1)( *  xu , and 0)( *  xu  (Theorem 1, [6]). We demonstrate the 

semistability by the two following examples for the two cases (i) 12  , and (ii) 12  . Furthermore, we 

provide two additional examples that show how this semistability may be destroyed if 0)( *  xu . 

Example 1. Semistability with 11   and 12  : 
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We write the central manifold as )(xhy  , and substituting in (13) we obtain 
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that is 
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2
1
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that is 

2

2
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2
1 )()( xHxhHh   , (17) 

where we set )(xhxH  . Then, we easily conclude that 2)( xxh   by comparing both sides of (17). Now 

1)0( H , 02)0( H , and thus, the central manifold is semistable from the left by Theorem 1. 

Example 2. Semistability with 11   and 12  : 
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There is a unique fixed point )0,0(* X . Again, substituting )(xhy   in (18) we obtain 
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that is 

)(2)()(2))(( 22 xhxxhxxhxhxh   , (20) 

or 

22 )]([2)(2))(( xhxxxhxhxh   , (21) 

that is 

22 2)(2)( xHxhHh   , (22) 

where again we set )(xhxH   and conclude that 2)( xxh  . Now 1)0( H , 02)0( H . Hence, the 

central manifold is semistable from the left by Theorem 1. 



Example 3. 11   and 12   without semistability: 
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There is a unique fixed point )0,0(* X . We write the central manifold as )(xhy  , and substituting in (23) 

we obtain 
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that is 
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where we set )(xhxxH  . Again we conclude that 2)( xxh  . Equation (26) becomes 

)(1

3

1 nnnn xgxxx  , where 0)0(1 g , 1)0(1 g , 0)0(1 g , 6)0(1 g . By a theorem in [9], if 0)0(1 g  

and 0)0(1 g , the fixed point 0x  is unstable under the map )(1 xg . Hence, the center manifold cW  is 

unstable. Therefore, in order to obtain semistability, it is necessary to have 0)0(1 g . 

Example 4. 11   and 12   without semistability: 
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The reader may easily show that the central manifold cW  is 2)( xxh  , but similar to the previous example, 

we have )(1

3

1 nnnn xgxxx  , with 0)0(1 g  and 0)0(1 g , and thus, cW  is unstable again. 



 

Figure 1. Phase space showing semistability (from the left) in accordance with the Examples 1-4. (a) 

Example 1: 11   ( cW ), 12/12   ( sW ). The left hand side of the phase space imitates an Attractor (A) 

and the right hand side a saddle point (S). The semistable point is indicated by HA. (b) Example 2: 11   

( cW ), 122   (
uW ). The left hand side of the phase space imitates a saddle point (S) and the right hand 

side a Repeller (R). The semistable point is indicated by HR. (c) Example 3 (without semistability): 11   

(
uW ), 12/12   (

sW ). The fixed point is a saddle point (S). (d) Example 4 (without semistability): 

11   (
uW ), 122   (

uW ). The fixed point is a Repeller (R). 

 

- Remarks: 

1. In the case of negative eigenvalues 02   we obtain the same dynamics but with oscillations. We omit 

the discussion of this case. 

2. In the case of negative eigenvalue 11  , the center manifold dynamics do not involve semistability as 

was explained earlier. The central manifold may be stable or unstable so that the fixed point in the plane is 

either a repeller (R), a saddle (S), or an attractor (A) (depending on the second eigenvalue). 

 

In Figure 2 we demonstrate the creation of a semistable fixed point associated with 11   and (a) 

12  , (b) 12  , by "merging" through bifurcation the two fixed points of stability R (or A) and S. The 

yellow shaded region in each panel shows the degenerated orbits of the discrete flow. In Figure 2(a) the 

degenerated orbits start near R, passing asymptotically near S, and diverge to infinity. As the R and S fixed 



points are getting closer to each other (by setting suitably the map’s parameters), the yellow regions shrink 

while the outer dynamics remain basically the same. The first eigenvalue that in our example operating on 

the horizontal axis, 11   on the left-hand side graph of the R fixed point, and 11   on the right-hand side 

graph of the S fixed point, approaches 11  , where the bifurcation occurs. Similar explanation may be 

given for Figure 2(b). The degenerated orbits of the discrete flow come from infinity, passing asymptotically 

near S, and converge to A. The first eigenvalue 11  ,on the left-hand side graph of the fixed point A, and 

11  ,on the right-hand side graph of the fixed point S, approaches 11   where bifurcation occurs. The 

second eigenvalue, operating on the vertical axis, retains its dynamics in this bifurcation, that is (a) 12   

and (b) 12  . Thus, the “created” semistable fixed points have 11   and (a) 12   or (b) 12  , denoted 

by HR or HA, respectively. 

 

Figure 2. Two different types of semistable points HR and HA can be seen as "merging" two ordinary fixed 

points through a bifurcation, that is a repeller (R) + a saddle (S) (upper graphs) (see also Figure 1(b)), and an 

attractor (A) + a saddle (S) (lower graphs) (see also Figure 1(a)). 

 

In all the above, we defined and described in detail, planar semistable fixed points that have only one 

eigenvalue that equals one ( 11  ). Now we explore the cases when both eigenvalues equal one 

( 11  , 12  ). Though this case will not be studied here, we will, however, demonstrate all the possible 

scenarios of this semistability. One possible combination is the utilization of R and A fixed points, as shown 

in Figure 3(a). The resulting semistable fixed point has both eigenvalues equal to one. The vertical axis is a 

separatrix, dividing the outward discrete flow on the left-hand side with the inward discrete flow on the 

right-hand side. For this reason, we denote this semistable fixed point as HRA. 



The three semistable fixed points HR, HA, and HRA are created through a new type of bifurcation of the 

fixed points of regular stability R, A, and S (first generation semistability). More complicated structures may 

be obtained through the bifurcation of any two semistable fixed points (second generation semistability). As 

an example, we depict the case of the bifurcation of HR and HA in Figure 3(b). The result is a fixed point with 

different dynamical behavior in each quadrant. In particular, in the first quadrant the created fixed point 

behaves as an attractor A, while in the third quadrant as a repeller R; in the second and fourth quadrants the 

fixed point behave as a saddle S. The dynamics of this semistable point is similar to HRA. The main 

difference is that when HRA is created through bifurcation of R and A (first generation semistability), the 

saddle behavior degenerates into a separatrix (coinciding with the vertical axis). 

 

Figure 3. Semistable point HRA is created through a bifurcation of the ordinary fixed points of stability R and 

A, or of the first-generation semistability points HR and HA. The semistable point HRA on the top-right figure, 

is a special case of the semistable point HRA depicted on the lower-right figure, where the second and fourth 

quadrants that behave as a saddle S degenerate to a separatrix (coinciding with the vertical axis) that consists 

entirely of fixed points. 

 

- Remark: 

In the case of eigenvalues 11   and 12  , and if both of the central manifolds exist, then we will have 

the same dynamics as in the case of 11   and 12   (or 12  ), but with oscillations, leading again to the 

semistable fixed points HA and HR. This is due to the fact that the center manifold corresponding to 12   

is either stable or unstable and cannot be semistable (Theorem 1). 

 



In the sequel, we will utilize the fixed points R, A, S and HR, HA, HRA to characterize the Allee effect in 

planar models. 

 

3. General Allee effect 

We start our approach by using the planar λ-Ricker map (5). In Figure 4 we plot the phase space for 

values of the parameters 221  λλ , 12121  ccbb , 7.121  kk . There are seven fixed points, with 

an attractor A at the origin (0,0), a pair of S and A at each axes, and a pair of R and S in the first quadrant. 

Furthermore, each species possess the strong Allee effect that is represented by the well-known one-

dimensional Allee effect, located between the S fixed point on each axis and the attractor A at the origin. 

Moreover, we have two new fixed points, a repeller R, called the planar Allee point, and a saddle S, called 

the planar carrying capacity. The separatrices are heteroclinic orbits. 

 

Figure 4. The phase space for the planar λ-Ricker map (5) with parameters 221  λλ , 

12121  ccbb , 7.121  kk  (symmetric map). 

 

An interesting scenario occurs when two heteroclinic orbits connect two saddle points S on the two 

axes with an interior repeller point R (Figure 4). The two orbits lie on the stable manifolds of the saddle 

points on the axes. These two manifolds separate the extinction region (yellow) from the exclusion regions of 

species x (light red), and y (red). Notice that the boundary of the extinction region consists of the above 

mentioned two stable manifolds and the two axes x and y. Therefore, if the initial point ),( 00 yx  lies in the 

extinction region, then both species will go extinct. Now we formalize the above discussion. 

- Definition: The planar extinction region or Allee basin is the basin of attraction of the origin; its boundary 

in the interior of the first quadrant defines the planar Allee curve. Moreover, a planar Allee point is any 

positive fixed point that lies on the planar Allee curve. 

- Remarks: 

1. Notice that the Allee curve encloses the extinction region, but not the two axes that correspond to one 

dimensional Allee effect and include only the Allee point. 

Extinction 

Exclusion of x 

 

 

 

Exclusion of y 



2. An Allee point must be either of type R, S, or H, but cannot be of type A; this is self-evident, since then 

part of the extinction region will be in the basin of attraction of the Allee point A, an absurdity. 

3. The notions of planar Allee curve and planar Allee point generalize, in a natural way, the Allee point 

threshold point in the (1-dimensional) dynamics of single species. 

4. The planar extinction region generalizes the one-dimensional extinction interval of each species that is 

each axis segment bounded by the origin and the 1-dimensional Allee point S. 

5. The certain arrangement of the four fixed points located on the boundaries of the extinction region (e.g., 

A-S-R-S in Figure 4) is not random. On the contrary, this certain permutation of fixed points is valuable for 

having the Allee effect and it is called “core” of the Allee effect. In the next section we will expose all the 

possible arrangements of fixed points that construct a core. 
 

The planar Allee point R in the above remarks leads to the following definition. 

- Definition: A planar competition model is said to possess the strong Allee effect properly if its phase space 

exhibits an extinction region and a non-extinction region separated by an Allee curve. 

We now resume our investigation of the planar map (8) of two competing species exhibiting contest 

inter-specific competition. As we mentioned, depending on the parameter values we may have nine fixed 

points (see Introduction). A diagram of the phase space is given in Figure 5 for 5.21 a , 5.22 a , 1.01 b , 

1.02 b . We observe the presence of an Allee curve that passes through three planar Allee points (similar to 

Figure 4). Two of the planar Allee points are the fixed points S that correspond to 1-dimensional Allee 

points (placed on the axes); the third Allee point is the interior fixed point R. In addition, the two 1-

dimensional carrying capacities points A are present. The interior saddle point S in Figure 4, that is changed 

to A in Figure 5, is a planar carrying capacity point. Moreover, in Figure 5 there are two new interior S fixed 

points surrounding the mentioned planar carrying capacity point A. Both the interior saddle points S and the 

attractor A are characterized by a stable manifold emanating from the R Allee point. Therefore, we give the 

following definition for the planar carrying capacity curve and points. 

Definition: A planar carrying capacity is a fixed point with one stable manifold emanating from an Allee 

point. The planar carrying capacity curve may connect all or a subset of the planar carrying capacities. The 

dynamics of the planar carrying capacities have to be A, S, or H, and not R (since R has no stable 

manifolds). 

The two planar carrying capacities S (Figure 5) separate the exclusion regions from the coexistence 

region. It is noteworthy to mention that the four regions of (1) extinction (yellow), (2) exclusion of species y 

(red), (3) exclusion of species x (light red), and (4) coexistence (light blue), are either the basin of attraction 

of A fixed points or the stable sets of H fixed points. 



 
Figure 5. The phase space for the planar map of (8) (competition model that exhibits contest inter-specific 

competition) and a selection of the parameter values 5.221  aa , 1.021  bb  (symmetric map). 

 

Generally speaking, planar maps may exhibit only two of the critical regions of extinction, exclusion, 

and co-existence. The example in Figure 4 shows a case with extinction and exclusion regions, while for 

planar maps that do not exhibit strong Allee effect there are only exclusion and coexistence regions. 

Theoretically, we may be able to observe phase spaces with only extinction and coexistence regions, as 

shown in Figure 6. This is the phase space of Figure 4, after exchanging the S carrying capacity points to A, 

and vice versa. 

 

Figure 6. A hypothetical phase space with only extinction and coexistence regions. 

 

Moreover, Figure 7 demonstrates how the Allee point R merges with the carrying capacity S through a 

bifurcation, by varying suitably the parameters (while keeping the symmetry of the system). The result of the 

bifurcation is a semistable fixed point HR, as defined in Section 2. The core is still present but is constructed 

by different permutation of fixed points since R is replaced by HR. 

Extinction 

Exclusion of x 

Exclusion of y 

Coexistence 



 

Figure 7. In the symmetric planar λ-Ricker map, the two interior fixed points of a repeller (R) and a saddle 

(S) are merged through a bifurcation into one semistable fixed point when k=ln(2). Panels show a gradual 

decrease of k:(a) k=1.7, (b) k=1, (c) k=ln(2). The generated semistable point (indicated by H) is of type HR 

(see Figure 2). 

 

Notice that in the case of the symmetric planar λ-Ricker map, the semistable point in the interior 

appears for )]1/()ln[(  λcbk . For other selections of the parameters, the two fixed points on each of the 

axes may be merged through a bifurcation into a semistable point. The bifurcation leads to a semistable fixed 

point HA. For the symmetric λ -Ricker map, this occurs when )]1/(ln[  λbk  for the x-axis and 

)]1/(ln[  λck  for the y-axis. Figure 8 shows a hypothetical case where all three semistable points (two HA 

fixed points at each axis and one HR fixed point in the interior) appear simultaneously. 

 

Figure 8. Phase space with three semistable points (indicated by H), two HA fixed points at each axis and 

one HR fixed point in the interior. 

 

Finally, we are in a position to give details and explanations of the notion of the "core" of the Allee effect. 

 

4. The core of Allee effect 



Different arrangements of the surrounding fixed points may lead to different cores of the Allee effect. 

Figure 9 shows the three possible different cores of the Allee effect, one with three fixed points (A-R-S) and 

two with three fixed points (A-S-R-S, A-R-S-R). 

 

Figure 9. The three possible arrangements of fixed points that construct a core of the Allee effect. 

 

The semistable fixed points HR, HA, and HRA increase the possible permutations of the core. This can 

be realized in two possible ways. (i) By replacing fixed points of regular stability A, R, S; (ii) Having double 

role as fixed points. For example, in the upper panels of Figure 10 we observe semistable fixed points HR 

and HA replacing regular fixed points R and S, respectively. However, in the lower panels we observe the 

double role of HR (as R and S) and HA (as A and S). 

 

 

Figure 10. Semistable fixed points HR and HA replace regular fixed points R and S, respectively, as it is 

shown in upper middle and right panels. The double role of HR (as R and S) and HA (as A and S) is shown in 

the lower panels. (Both HR and HA are indicated by H.) 

 

5. Discussion and conclusions 



In [4] the authors laid down the consequences of Allee effects for population and community 

dynamics. We see at least two fruitful avenues for future research on Allee effect. The first avenue is to learn 

much more about effects of positive density dependence on population dynamics by recognizing and 

modeling impacts of multiple Allee effects, i.e., in two or more fitness components [4]. The second avenue, 

which is more relevant to this paper, is to investigate the Allee effect for multi-species systems. 

In a series of papers, Deredec and Courchamp [7,8] studied the impact of Allee effect on host 

populations in a host-parasitoid systems. Like most of the literature on population dynamics (e.g., [5]), they 

used differential equations for modeling populations with Allee effect.  

In this paper, we have developed a theoretical foundation for discrete models of populations with 

strong Allee effect, described by difference equations. These models describe populations that exhibit a 

"critical size" below which the population declines on average and goes to extinction, and above which it 

increases on average. To illustrate our concepts, we investigated two planar models with Allee effect and 

showed all the related possible scenarios of phase space diagrams. These are (i) the λ-Richer competition 

model, and (ii) a specific model of contest inter-specific competition. These models belong to a class of 

systems that possess "intraspecific" Allee effect, in which the Allee effect is caused by the intraspecific 

competition (competition among members of the same species), and not by the interspecific competition 

(competition between individuals of different species). This work may be applicable to both intraspecific and 

interspecific competition models.  

Moreover, we presented a general framework for the notion of strong Allee effect in planar discrete 

semi-dynamical systems but restricted to the dynamics of equilibria, as shown by the following four 

paragraphs: 

- A significant idea in the paper is the introduction of the "Allee curve", which is the boundary of the 

basin of attraction of the origin (0,0) that separates the extinction region from the rest of the phase space, and 

thus generalizing the concept of "Allee-point" in one-dimensional dynamics. 

- We described the essential dynamics that characterize the strong Allee effect within the basin of 

attraction of the origin that is bounded by the Allee curve. This is called the “phase space core” of the Allee 

effect and consists of only 3 or 4 fixed points. The regular type of fixed points (repeller, saddle, attractor) 

combine three different types of cores. However, semistable fixed points increase the variety of "phase space 

cores". 

- We introduced and thoroughly characterized the notion of semistability in planar discrete semi-

dynamical systems, and showed its crucial role in the Allee effect dynamics. Two categories of semistable 

fixed points are defined, and their phase spaces are studied in accordance with the regular type of fixed 

points. 

In a future work, we will investigate thoroughly the dynamics of both scrambled competition models 

with strong Allee effect and contest competition models with strong Allee effect. Moreover, we will study 

the cases of periodic orbits in the presence of strong Allee effect. 
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