7-2012

Cell Theory and Cell Function [7th grade]

Daisy Wang
Trinity University

Amber Schumacher
Trinity University

Follow this and additional works at: http://digitalcommons.trinity.edu/educ_understandings

Part of the Education Commons

Repository Citation
http://digitalcommons.trinity.edu/educ_understandings/193

This Instructional Material is brought to you for free and open access by the Understanding by Design at Digital Commons @ Trinity. For more information about this unie, please contact the author(s). For information about the series, including permissions, please contact the administrator: jcostanz@trinity.edu.
Unit Title: Cell Theory and Cell Function

Grade Level: 7th

Subject/Topic Area(s): Science

Designed By: Daisy Wang and Amber Schumacher

Time Frame: 19 days, 50 minutes

Brief Summary of Unit (Including curricular context and unit goals):
In this unit on cell theory and cell structure and functions, 7th grade students will be able to recognize the different levels of organization in plants and animals including cells, tissues, organs, organ systems, and organisms (7.12C). Students will also learn to differentiate between structure and function in plant and animal cell organelles (7.12D) as well as relating how the functions of the cell helps the organism to carry out the functions necessary for survival (7.12E) Students will be able to recognize the characteristics of the cell theory and that all cells need energy from food to sustain life (7.12F).
Stage 1: Desired Results

Established Goals (Standards)

- **SCI.7.12C** Recognize levels of organization in plants and animals including cells, tissues, organs, and organisms.
- **SCI.7.12D** Differentiate between structure and function in plant and animal cell organelles including membrane, cell wall, nucleus, cytoplasm, mitochondrion, chloroplast, and vacuole.
- **SCI.7.12E** Compare the functions of a cell to the functions of organisms such as waste removal.
- **SCI.7.12F** Recognize that according to cell theory all organisms are composed of cells and cells carry on similar functions such as extracting energy from food to sustain life.

Understandings

Students will understand that...

- All living things are made of one or more cells.
- Living things have basic levels of organization.
- There are differences and similarities between the structure and function of cell organelles in plant and animal cells.
- Cells and organisms carry on similar functions such as extracting energy from food to sustain life.

Essential Questions

- How do you know if something is a living thing?
- How are plant cells and animal cells alike?
- How do different parts of the plant and animal cells keep them alive?

Knowledge

Students will know...

- The levels of organization of living things, beginning with the cell.
- All living things are composed of cell(s).
- All cells come from existing cells.
- Organelles are specialized structures inside a cell that help the cell to function.
- The structure of organelles in animal and plant cells is related to their function.
- Cells carry out functions similar to functions carried out by the whole organism.

Skills

Students will be able to...

- Identify levels of organization in living things.
- Differentiate between structure and function of a plant and animal cells.
- Identify organelle functions in the plant and animal cell.
- Compare the function of a cell to the function of organisms.
- Identify the characteristics of the cell theory.
Stage 2: Assessment Evidence

<table>
<thead>
<tr>
<th>Performance Task: See Attached</th>
</tr>
</thead>
</table>

Other evidence:
(quizzes, tests, academic prompts, self-assessments, etc.
note – these are usually included where appropriate in Stage 3 as well)

- Quizzes – levels of organization, cell theory, functions of organelles
- Exit ticket, Academic Prompt, verbal informal assessment during project work time

Stage 3: Learning Activities

(Steps taken to get students to answer Stage 1 questions and complete performance task)

Day 1: EQ1: How do you know if something is a living thing?
Concept Attainment: Living vs. non-living thing.
Ice-breaker: If you were stranded on a desert island and could only take three things with you to help you survive, what three things would you bring? Discuss what are something we would need to survive, and where we get it.
Pre-assessment / self-assessment (Know/Want to learn/Learned KWL Chart)

Day 2: Review living things and Cell Theory: *All living things are made one or more cells; cells are the smallest unit of a living organism, and all cells come from previously existing cells.*
Define organelles as a smaller structure inside of a cell that performs a special function to keep cells alive.
Levels of organization: Define cell, tissue, organ, organ system, organism – model/demo with nesting dolls or boxes. Rap/song:
http://www.youtube.com/watch?v=KzMviiBoRtA&feature=related
Show Legos animation: http://www.youtube.com/watch?v=ODfjJMaQmvA

- Have students illustrate the different levels of organization.

Day 3: EQ2: How are plants and animal cells alike?
Plant vs. Animal Cells Exploratory Lab: Look at slides (cheek cell vs. onion cell). Illustrate cells and identify parts they might already know. At the end of class, have students look at a diagram of the plant and animal cell, add to their picture and label all parts of the cell. Have students observe and identify similarities and differences between the two cells, including the shape of the cell.

Day 4: Academic prompt: Have students reflect and write a paragraph summary answering the question “Both plants and animals need energy to survive. How do plants get the energy they need to live (what are some things they need to have and why)? How do animals get the energy they need to survive (what are some things they need to have and why)?”

- Using their diagrams of the plant and animal cell, create a Venn diagram on plant vs. animal cell structures and functions.
Define and discuss mitochondria and chloroplast. Discuss the importance of having energy for
survival and how plants and animals get the energy they need. Review photosynthesis, cellular respiration, autotrophs and heterotrophs.

Add to their academic prompt: What part of the plant cell helps them to get energy for survival? What part of the animal cell helps the animal to get energy for survival?

Day 5: Review + Quiz

Day 6: BUFFER DAY / Go over quiz
Have students collect and bring in “junk”, recyclables, or household items to put into a community bin. Students will not know what these are for yet until day 9. Students will have a week to bring items in.

Day 7: EQ3: How do different parts of the plant and animal cells keep them alive? http://www.youtube.com/watch?v=-zafJKbMPA8&feature=related rap on organelles
Notes on all organelles – Note taking/foldable (magic window panes).

Day 8: Recap on organelles – Play mile-a-minute. Give students a few minutes to review organelles, and then pair up with a partner. A list of words with be on the screen, and the partner facing the screen will have to give clues to have the partner guess the word. Vocab words can be mixed in with other words.
Discussion: How are these organelles like parts of your body? Make connections card-sort with pictures– nucleus like the brain, cell membrane like the skin, vacuoles like the stomach or bladder, lysosomes like the large intestines etc. See if they can come up with any other connections.

Day 9: Introduce project guidelines – have students look for things that could relate to a cell organelle and continue to bring in items.
Give students a short review sheet for the quiz, including levels of organization, cell theory and organelles.

Day 10: “I have who has” organelles review + Quiz (Community bin items due)

Day 11: Go over project guidelines again, form partners, brain storm ideas with partner.
Day 12: Begin building models
Day 13: Project workday
Day 14: Project workday
Day 15: Projects due – Gallery walk: students will take notes on their favorite items to represent each organelle.

Day 16: Class models – student will vote for their favorite item to represent each organelle in a large class model of the plant and animal cell. Review structure and functions of organelles.
Day 17: Revisit KWL. Quiz (Use pre-assessment) + review sheet
Day 18: Review
Day 19: TEST
Pre-Assessment

1. How do you know if something is a living thing?

2. What do animals need for survival?

3. How do animals get energy?

4. How does a plant get energy?

5. What is a cell?

6. What is an organelle? Do you know any examples?

7. Fill in the Venn diagram on the similarities and differences between the plant and animal cell.
Living Vs. Non-Living Things Concept Attainment

Name: ____________________

Listed below are two groups of objects. The items listed on the Example side all have a common feature. The items on the Non-examples list do not share this feature.

Examine the list of items and determine the common feature. Write it down in the Feature Box.

Next, decide if each of the testers fits in the examples or non-examples list. Record the appropriate word on each line.

<table>
<thead>
<tr>
<th>Examples</th>
<th>Non-Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spider</td>
<td>Car</td>
</tr>
<tr>
<td>Tree</td>
<td>Rock</td>
</tr>
<tr>
<td>Slug</td>
<td>DVD</td>
</tr>
<tr>
<td>Cat</td>
<td>Soda can</td>
</tr>
<tr>
<td>Buttercup</td>
<td>Glass</td>
</tr>
<tr>
<td>Eagle</td>
<td>Running Shoes</td>
</tr>
</tbody>
</table>

Feature:

Testers:

<table>
<thead>
<tr>
<th>Testers</th>
</tr>
</thead>
<tbody>
<tr>
<td>TV</td>
</tr>
<tr>
<td>Pond Water</td>
</tr>
<tr>
<td>Virus</td>
</tr>
<tr>
<td>Snake</td>
</tr>
<tr>
<td>Bacteria</td>
</tr>
<tr>
<td>Cloud</td>
</tr>
<tr>
<td>Fire</td>
</tr>
<tr>
<td>Forest</td>
</tr>
<tr>
<td>Light</td>
</tr>
<tr>
<td>Mold</td>
</tr>
<tr>
<td>Sand</td>
</tr>
<tr>
<td>Hurricane</td>
</tr>
</tbody>
</table>

Turn over the sheet to complete the next assignment.

Now that you have determined which feature the examples have in common your next task is to come up with the characteristics that all items must have to fit into the Example group.

Use the space below to record the characteristics and then explain how each of the items listed on the previous page (examples, non-examples and testers) fits the characteristics.
<table>
<thead>
<tr>
<th>I have</th>
<th>I have</th>
<th>I have</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cells</td>
<td>Prokaryotic Cell</td>
<td>Eukaryotic Cell</td>
</tr>
<tr>
<td>Who has?</td>
<td>Who has?</td>
<td>Who has?</td>
</tr>
<tr>
<td>A cell that lacks a nucleus and membrane bound organelles.</td>
<td>A cell that has a nucleus and membrane bound organelles.</td>
<td>A group of cells working together.</td>
</tr>
<tr>
<td>I have</td>
<td>I have</td>
<td>I have</td>
</tr>
<tr>
<td>Tissues</td>
<td>Cell/Plasma Membrane</td>
<td>Nucleus</td>
</tr>
<tr>
<td>Who has?</td>
<td>Who has?</td>
<td>Who has?</td>
</tr>
<tr>
<td>A group of tissues working together.</td>
<td>The cell organelle where most of the cell’s DNA is found. This organelle directs most of the cell’s activity.</td>
<td>The jelly-like fluid region between the nucleus and the cell membrane that holds organelles in place.</td>
</tr>
<tr>
<td>I have</td>
<td>I have</td>
<td>I have</td>
</tr>
<tr>
<td>Organs</td>
<td>Cytoplasm</td>
<td>Vacuole</td>
</tr>
<tr>
<td>Who has?</td>
<td>Who has?</td>
<td>Who has?</td>
</tr>
<tr>
<td>A group of organs working together.</td>
<td>The cell organelle that is used as storage for water or food.</td>
<td>The cell organelle that is the powerhouse of the cells, that does cellular respiration to break down sugar for ATP energy.</td>
</tr>
<tr>
<td>I have</td>
<td>I have</td>
<td>I have</td>
</tr>
<tr>
<td>Organ systems</td>
<td>Mitochondria</td>
<td>Chloroplast</td>
</tr>
<tr>
<td>Who has?</td>
<td>Who has?</td>
<td>Who has?</td>
</tr>
<tr>
<td>The barrier that regulates what enters and exits the cell.</td>
<td>The cell organelle that does photosynthesis, helping the plant to use sunlight to produce sugars.</td>
<td>The smallest unit of all living things?</td>
</tr>
</tbody>
</table>
(Performance Task)

Name: _____________________________________

Partner’s Name: _____________________________

Due date: _________________________________

Goals:

Use every day household items to create your own plant and animal cells with a partner.
- Each item will represent a different organelle in each cell.
- Explain how your item’s structure relates to the function of that organelle.

Supplies:

Examples of things you can use are: Ziploc bags, buttons, yarn, string, pipe cleaners, beads, tissue boxes, old pens, cotton balls, old watches, kitchen items, etc… or anything else you can find!

Guidelines:

- The shape of your model should correspond to the shape or your cell.
- Label each organelle on your item in your model.
- If an organelle is in both the plant and animal cell, use the same item to represent it in both models.
- Use your imagination and be creative!!
Complete the chart according to your cell models for all organelles.

<table>
<thead>
<tr>
<th>Organelle</th>
<th>Item</th>
<th>Function of organelle. How does the structure of the item relate to the organelle’s function?</th>
<th>Plant cell, animal cell or both?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cell membrane</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cell wall</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nucleus</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cytoplasm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mitochondria</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chloroplast</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vacuole</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lysosome</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

___________ points / 25 points
Student questions

1. Explain two limitations to your model. For example, how is your model not a perfect representation of the real cell?

2. Which organelle was difficult for you to represent, and why?

3. How are plant and animal cells similar? Why is this important?

4. How are plant and animal cells different? Why is this important?

5. Are plant cells always rectangular/square in shape? Are animal cells always circular? Why?

6. How do plants and animals get energy? What parts the cells help them to do so?

___________ points / 25 points

Partner’s name: ________________________________

My partner performed:

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>highest</th>
</tr>
</thead>
<tbody>
<tr>
<td>lowest</td>
<td></td>
</tr>
</tbody>
</table>
Cell Model Rubric

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Models</td>
<td>All organelles are represented and labeled in both models.</td>
<td>All organelles are represented and labeled in both models.</td>
<td>1-2 organelles or labels are missing.</td>
<td>What happened? Missing labels and organelles.</td>
</tr>
<tr>
<td></td>
<td>25 points</td>
<td>20 points</td>
<td>15 points</td>
<td>10 points.</td>
</tr>
<tr>
<td>Creativity</td>
<td>This is amazing! Original thinking.</td>
<td>Nicely done, but not much creativity.</td>
<td>Shows lack of creativity.</td>
<td>Shows lack of effort or understanding.</td>
</tr>
<tr>
<td></td>
<td>5 points</td>
<td>4 points</td>
<td>2 points</td>
<td>1 points</td>
</tr>
<tr>
<td>(neatness)</td>
<td>10 points</td>
<td>8 points</td>
<td>4 points</td>
<td>0 points</td>
</tr>
</tbody>
</table>

TOTAL POINTS:

- Chart: _____ /25
- Questions: _____ /25
- Peer Evaluation: _____ /10
- Model: _____ /40

TOTAL SCORE: _____ /100
Teacher Notes

Teacher can show students a sample project:

Modification: Have partners work on one cell model together. Teacher can assign a plant cell for a slightly higher challenge than the animal cell. Teachers can also pre-pick relevant items for the students, and have students make their own connections.

Extension: Can you think of an analogy for a plant or animal cell? Make 5 comparisons.

For example, an animal cell is like a car because
1. The engine is like the nucleus because it controls the whole car.
2. The exhaust is like the lysosome because it helps get rid of waste.
3. The gas tank is like the vacuole because it stores the "food" and energy needed.
4. Gas is like the sugars made by the mitochondria; it provides energy.
5. The metal on the car is like the cell membrane because it protects the inside.