Forensic Chemistry

Carrie Duesing
Trinity University, churd@trinity.edu

Bonnie Brawner
NEISD, bbrawn@neisd.net

Follow this and additional works at: http://digitalcommons.trinity.edu/educ_understandings

Repository Citation
http://digitalcommons.trinity.edu/educ_understandings/296

This Instructional Material is brought to you for free and open access by the Understanding by Design at Digital Commons @ Trinity. It has been accepted for inclusion in Understanding by Design: Complete Collection by an authorized administrator of Digital Commons @ Trinity. For more information, please contact jcostanz@trinity.edu.
Forensic Chemistry - UbD

Stage 1 – Desired Results

<table>
<thead>
<tr>
<th>Established Goals (e.g., standards)</th>
<th>Transfer</th>
<th>Meaning</th>
<th>Acquisition</th>
</tr>
</thead>
<tbody>
<tr>
<td>(C.8) Science concepts. The student can quantify the changes that occur during chemical reactions. The student is expected to calculate percent composition and empirical and molecular formulas; Supporting Standard</td>
<td>Students will independently use their learning to… --apply chemistry knowledge in a real-world situation. --use problem-solving skills to investigate a mock crime --integrate multiple skills, techniques, chemistry tools, chemistry (or physics or biology) concepts to solve a real-world problem.</td>
<td>Students will understand that… - Chemistry has practical applications that extend across specific content areas. - Not all problems in the real world have formulaic solutions.</td>
<td>Students will know… - general rules regarding solubility - the definition for acids and bases and the difference between Arrhenius and Bronsted-Lowry definitions -units of concentration - molar mass</td>
</tr>
<tr>
<td>(C.10) Science concepts. The student understands and can apply the factors that influence the behavior of solutions. The student is expected to develop and use general rules regarding solubility through investigations with aqueous solutions; Readiness Standard</td>
<td></td>
<td>Essential Questions - How can chemistry knowledge, principles and skills be used to solve a real-world problem? -In a court of law, how much information/evidence is needed to prove “guilt beyond the shadow of reasonable doubt?” - How can the scientific method be used to further a criminal investigation?</td>
<td>Students will be able to… - calculate percent composition and empirical and molecular formulas; -calculate the concentration of solutions in units of molarity; - predict products in acid-base reactions that form water; - plan and implement investigative procedures, including asking questions, formulating testable hypotheses, and selecting equipment and technology - organize, analyze, evaluate, make inferences, and predict trends from data</td>
</tr>
<tr>
<td>(C) calculate the concentration of solutions in units of molarity; Supporting Standard</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(G) define acids and bases and distinguish between Arrhenius and Bronsted-Lowry definitions and predict products in acid-base reactions that form water; Supporting Standard</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(C.2) Scientific processes. The student uses scientific knowledge</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Supporting Standard

- Units of concentration
- Molar mass
methods to solve investigative questions. The student is expected to
(E) plan and implement investigative procedures, including asking questions, formulating testable hypotheses, and selecting equipment and technology
(H) organize, analyze, evaluate, make inferences, and predict trends from data;

Stage 2 – Evidence

<table>
<thead>
<tr>
<th>CODE (M or T)</th>
<th>Evaluative Criteria (for rubric)</th>
<th>Performance Task(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>M</td>
<td>- A description of the tests run by the Investigative Team and the results of these tests - An overview of the crime and the proposed sequence of events</td>
<td>Students will demonstrate meaning-making and transfer by…</td>
</tr>
<tr>
<td>M</td>
<td></td>
<td>- Solving the crime and creating a Video Crime Report with their lab groups</td>
</tr>
<tr>
<td>T</td>
<td></td>
<td>- Completing a detective report which outlines the tests they performed and their conclusions about the crime</td>
</tr>
</tbody>
</table>

Other Evidence (e.g., formative)
- Warm-up over review topics from Lesson 1
- Progress Monitoring sheet for Lesson 2
- Ongoing conversations with detectives on progress

Stage 3 – Learning Plan
<table>
<thead>
<tr>
<th>CODE</th>
<th>Pre-Assessment</th>
<th>Learning Activities</th>
<th>Progress Monitoring</th>
</tr>
</thead>
</table>
| (A, M, T) | How will you check students’ prior knowledge, skill levels, and potential misconceptions? | Lesson 1: Review and Advance Preparation
- Review of topics from the year to prepare students for forensic investigation.
 - pH scale, common acids and bases
 - solubility and solvents
 - flame test lab
 - properties of gases (for fuming chamber)
 - molar mass
 - What techniques and skills do you need to know to investigate a problem?
 - review the scientific method
 1. Determine the nature of the problem (Who committed a crime and how?)
 2. Collect and analyze all relevant data. (Consider all physical evidence, witness statements, lab and medical reports, etc. Decide which information is helpful, and which is not relevant.)
 3. Form an educated guess, called a hypothesis as to what happened (The butler did it in the library, with a candelstick.)
 4. Test the hypothesis (Test alibis, reconstruct the crime scene, consider timelines, eliminate possibilities, etc.)
 5. If your hypothesis holds up to the testing, you are finished. If not, go back to step two.
 - What makes a persuasive argument?
 - How many sources or pieces of definitive data are enough?
 - In a court of law or in a science experiment, what do you need to “prove” that something is true?
 - What is more compelling - one piece of evidence that points towards a suspect or five pieces of evidence | - Warm-up over review topics from Lesson 1
- Progress Monitoring sheet for Lesson 2
- Ongoing conversations with detectives on progress |
| A | | Lesson 2: Introduce the crime and explain task, begin investigation | |
| M | | You are all detectives being asked to solve the possible poisoning of a chemistry teacher. In order to solve the crime, you will work with other detectives, collect data, make hypotheses and synthesize your results into a final video crime report. You will be evaluated on your chemistry knowledge and skills, and your ability to present a convincing and accurate case. | |
| M | | The scene: | |
The science teachers at Lee and ISA were having a meeting one morning when something went horribly wrong. Several hours after the meeting Ms. Victim was found unconscious in her chemistry lab. At first, the police thought that she had accidentally inhaled some chemical fumes, but upon further investigation, it appeared that there may have been foul play. You may read depositions (statements) from suspects and witnesses, then perform a variety of tests to gather evidence and solve the crime.

Possible tests to perform:

- Illicit substances confirming test
- Flame test lab
- Saliva swab - acid/base
- Mass spec results - molar mass calculation
- Chromatography (ink on coffee filter)
- Fingerprinting

Saliva swab - acid/base

- Victim reportedly seen drinking coffee.
- Students will use swabs from victim’s mouth to test for the presence of an acid or base. (Swabs, ziploc bags, indicators/pH paper).

Flame test lab

- Test to identify unknown white powder on floor next to victim. Possible results: the presence of calcium ion (red-orange), from antifreeze reaction and barium ion (pale green), found in rat poison (barium carbonate). Give them 4-5 samples to compare to.

Illicit Substances Confirming test

- Detectives will be given a sample of crystals found in the victim’s urine. Using nitric acid, students will confirm the presence or absence of illicit substances in the victim’s system.

Fingerprinting

- Teacher will demonstrate how to develop fingerprints with superglue. Students will scan QR codes to reveal images of the fingerprints found in different areas of the crime scene. They will then compare these fingerprints to real fingerprints collected from different teachers around the campus.

Molar mass

- GCMS printed analysis of compound found at scene. Tiering - give higher readiness groups the structure and they must figure out the number of each element and the molar mass. Lower readiness groups - give formula, they must determine molar mass.

Chromatography

- Analysis of “threatening note” left by suspect. Using filter paper and 4 other pens from different suspects, determine which pen was used to write the note. (4 pens, filter paper/coffee filters, isopropyl alcohol, beakers, parafilm).

Lesson 3: Video crime report

Based on the data you collected and the tests that you
performed in the past few days, you will now make a 1 minute video report on your findings. In your video you must include:

- A description of the tests run by your Investigative Team and the results of these tests
- An overview of the crime and your proposed sequence of events
- Your final conclusion on the guilty suspect, based upon the clues and evidence.

Calendar