Document Type

Post-Print

Publication Date

10-19-2005

Abstract

The molecular recognition of peptides and proteins in aqueous solution by designed molecules remains an elusive goal with broad implications for basic biochemical research and for sensors and separations technologies. This paper describes the recognition of N-terminal tryptophan in aqueous solution by the synthetic host cucurbit[8]uril (Q8). Q8 is known to form 1:1:1 heteroternary complexes with methyl viologen (MV) and a second aromatic guest. Here, the complexes of Q8·MV with (i) the four natural aromatic α-amino acids, (ii) four singly charged tryptophan derivatives, and (iii) four tryptophan-containing tripeptides were characterized by isothermal titration calorimetry, mass spectrometry, and UV−visible, fluorescence, and 1H NMR spectroscopy. We find that Q8·MV binds Trp−Gly−Gly with high affinity (Ka = 1.3 × 105 M-1), with 6-fold specificity over Gly−Trp−Gly, and with 40-fold specificity over Gly−Gly−Trp. Analysis of the nine indole-containing compounds suggests that peptide recognition is mediated by the electrostatic charge(s) proximal to the indole, and that the mode of binding is consistent for these compounds. Complex formation is accompanied by the growth of a visible charge-transfer band and the quenching of indole fluorescence. These optical properties, combined with the stability and selectivity of this system, are promising for applications in sensing and separating specific peptides.

Document Object Identifier (DOI)

10.1021/ja0548440

Publication Information

Journal of the American Chemical Society

Included in

Chemistry Commons

Share

COinS