Document Type

Post-Print

Publication Date

10-2010

Abstract

A new class of maps called unimodal Allee maps are introduced. Such maps arise in the study of population dynamics in which the population goes extinct if its size falls below a threshold value. A unimodal Allee map is thus a unimodal map with tree fixed points, a zero fixed point, a small positive fixed point, called threshold point, and a bigger positive fixed point, called the carrying capacity. In this paper the properties and stability of the three fixed points are studied in the setting of nonautonomous periodic dynamical systems or difference equations. Finally we investigate the bifurcation of periodic systems/difference equations when the system consists of two unimodal Allee maps.

Document Object Identifier (DOI)

10.1080/10236190902794951

Publication Information

Journal of Difference Equations and Applications

Included in

Mathematics Commons

Share

COinS