Document Type

Article

Publication Date

2012

Abstract

David Chalmers has defended an account of what it is for a physical system to implement a computation. The account appeals to the idea of a “combinatorial-state automaton” or CSA. It is not entirely clear whether Chalmers intends the CSA to be a full-blown computational model, or merely a convenient formalism into which instances of other models can be translated. I argue that the CSA is not a computational model in the usual sense because CSAs do not perspicuously represent algorithms, and because they are too powerful both in that they can perform any computation in a single step and in that without so far unspecified restrictions they can “compute” the uncomputable. In addition, I suggest that finite, inputless CSAs have trivial implementations very similar to those they were introduced to avoid.

Publisher

Seoul National University

Publication Information

Journal of Cognitive Science

Included in

Philosophy Commons

Share

COinS