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Abstract

The Crab Nebula contains a number of regions of anomalous elemental abundances, including a
large band of nearly pure helium and several pockets that display unusually strong nickel lines.
Previous attempts at their explanation have proven unsatisfactory, so we turn our focus to the
pulsar which powers the nebula. Following the suggestion that positive ions could be removed
from the surface of the central neutron star (rich in iron-peak nuclei), we have examined this
possibility within the framework of the Ruderman & Sutherland polar gap magnetospheric model.
We identify two processes, surface irradiation by electrons and subsurface electron flows, that,
owing to the Crab Pulsar’s youth, appear to raise the surface temperature of the magnetic polar cap
region to levels at which significant thermionic emission ofiron-peak nuclei occurs.



Figure 1: False color X-ray image of the Crab Nebula. The arrowindicates the position of the
pulsar. We note two jets leading away from the pulsar toward the upper right and the lower left
of the image. These reveal the pulsar’s magnetic poles and give us a sense of orientation of the
neutron star relative to the nebula. The prominent high-energy torus (in blue) appears to be in the
pulsar’s equatorial plane. This is distinct from the heliumtorus discussed in this paper, which is
not visible in this image. Image: NASA, Chandra X-Ray Observatory
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Introduction

Young supernova remnants, such as the Crab Nebula, provide a rare opportunity to study nucle-
osynthesis and other elemental processing that takes placewithin the core of an active star. A great
deal of additional elemental processing takes place duringand after the supernova event, produc-
ing metals beyond the iron-peak. The Crab Nebula, in particular, provides a wealth of information
about these important processes. It has been linked to the (Type II) supernova event recorded
by Chinese and Arab astronomers in the year 1054 C.E. It is centered about a highly energetic
pulsar which provides sufficient power that the nebula emits primarily via synchrotronradiation
(MacAlpine et al. 1996). In addition to its youthful high energy, the Crab Nebula is also important
in the investigation of the origin of elements because it is relatively nearby. Additionally, it sits
about 180 parsecs away from the galactic plane, significantly increasing the likelihood that the
observed material originated in the progenitor star (or subsequent intra-nebular processing) and is
unadulterated by interstellar media (MacAlpine et al. 2007).

There have been several surveys of the structure and composition of the Crab Nebula (Miller
1978; Fesen & Kirshner 1982; Henry 1984; Uomoto & MacAlpine 1987; MacAlpine 1989;
MacAlpine & Uomoto 1991; MacAlpine et al. 1996; MacAlpine etal. 2007). Together, they in-
dicate that the nebula alone contains less than 2 solar masses of visible material, most of which
is helium. This is unusual among supernova remnants. There is also a strong nitrogen pres-
ence, suggesting the helium was produced through the CNO-cycle. Roughly 25% of the helium
is contained in a torus that stretches east-west, appearingto cover the pulsar. There is also a
nitrogen-poor/sulfur-rich area just south of the pulsar, indicating that shell oxygen-burning took
place in the progenitor star pre-supernova. Remaining anomalies include pockets extremely rich in
[C I] (upwards of 7 times more than expected based on models),as well as areas producing strong
[Ni II] λ7378 lines, believed to be neutron-rich nickel some 5-50 times more abundant than solar
values. The nickel also seems to be paired with iron emissions, though the latter are much less
enhanced; the nickel/iron ratio is roughly 60-75 times solar (MacAlpine et al. 2007), such that iron
abundances are less than solar levels. This is likely due to the association of iron and dust in the
nebula. We choose to investigate the departure of iron from the neutron star surface in this paper
because of the availability of binding energy calculationsfor iron in the literature, and because the
conclusions made for iron are easily generalized to similiar iron-peak and nickel nuclei.

As for the helium observed in the nebula, the bulk of it likelyoriginated as ejecta from the inner
mantle of the progenitor star in the course of the supernova event. The formation of the helium
torus and the origin of the nickel, however, are only weakly understood. MacAlpine et al. (2007)
suggest that the surface of the neutron star is a source of theheavy nuclei (like nickel). Ruderman &
Sutherland (1975), representing the standard model for pulsar magnetospheres, argue that positive
ions cannot be lifted from the surface of a neutron star, except possibly in the case of young, hot
remnants, like that found in the Crab Nebula. We seek to evaluate the plausibility of this scenario.
Section 1 is a brief sketch of the changes that occur when a star undergoes Type II supernova,
as well as an outline of the properties of the Crab pulsar that will be used in all calculations that
follow. In Section 2 we examine arguments given by Michel (1975) that the iron lattice which
makes up the surface of a neutron star must also be covered with a thin layer of helium. If this is
the case, its subsequent ejection could be an explanation for the odd helium torus. It is important
to note that Michel does not work under Ruderman & Sutherland’s so-called “standard model,”
which is presented in Section 3 along with comments concerning its applicability. We then turn
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our attention to the anomalous nickel, which we approach by first examining determinations of the
binding energy of iron at the neutron star surface that are inthe literature. This is done in Section 4.
Section 5 examines the ability of cascades of electrons produced in the magnetosphere and flows
of electrons under the surface to provide sufficient heat that positive ions may be thermionically
emitted. Utilizing these heat sources, we calculate the amount of iron emitted from the surface
over the Crab’s lifetime in Section 6, allowing us to speculate on surface nickel and its emission
into the nebula.

1 Supernovae and the Crab Nebula

Supernovae are so named because they appear in the night (andsometimes day) sky as brilliant,
sustained flashes where there had previously been little or no light observed; they seem as if a new
star has been born. The reality is actually quite the opposite, as supernovae herald the explosive
deaths of either white dwarfs or massive main-sequence stars. The former are known as Type I
Supernovae, occurring when a binary white dwarf, whose companion star has remained on the
main sequence, pulls enough material onto its surface from its companion to reignite fusion in its
degenerate core. The massive outflux of energy tears the dwarf apart in a supernova. Isolated stars
may undergo Type II supernovae, but they must leave the main sequence with the right mass: a
minimum of 8 - 11M⊙.

1.1 The Death of Massive Stars

All stars begin life as a massive cloud of (mostly) hydrogen which has self-attracted to form a
spherical object. The cloud collapses until the temperature in its core has escalated to the point that
sustainable fusion spontaneously occurs. This thermonuclear fusion process provides the necessary
energy to balance the tremendous force of self-gravity attempting to further collapse the newly
birthed star. Stars near the lower end of the mass scale, suchas our Sun, spend most of their energy-
generating lives converting hydrogen into helium in their cores. When the core hydrogen has been
completely consumed, helium-burning begins in the core. Lower mass stars cannot achieve the
core temperatures necessary to begin burning the products of helium fusion (carbon and oxygen),
so gravity is suddenly unbalanced. Further collapse ensuesuntil an object-wide degenerate electron
state forms, the pressure of which can offset the object’s own gravity.

Stars that are massive enough to burn carbon and oxygen within their cores do so. Meanwhile,
the mantle hydrogen closest to the core is sufficiently heated that it will fuse. Its helium product,
deposited close to the core, will also burn. This state, in which several fusion processes take place
around the core, along with a single process throughout the core itself, is known asshell burning,
and is illustrated in Figure 2.

As seen in the diagram, successive products undergo fusion themselves until iron is produced
through silicon-burning. Iron-burning is an endothermic reaction, so its formation signals im-
minent core collapse. Unlike lower mass stars, gravity is able to overcome electron degeneracy
pressure and collapse continues until the formation of a degenerate neutron state. At this point, the
core is stable but the outer layers (where shell burning had been taking place) are continuing to fall.
The innermost layers bounce off the core, sending an explosive shock outward which contributes
to ripping apart all of the former star but its core (an incredible outflow of neutrinos from the col-
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Figure 2: Dying massive stars undergo a single fusion process throughout their core, along with
layers of shell burning around the core where abundances andtemperatures are sufficient. Once a
particular fuel is exhausted in the core, it will begin to burn in a shell, and its product will begin
burning throughout the core. This continues until the production of iron. As the fusion of iron
absorbs energy, rather than releasing it, the star as illustrated is on the brink of core collapse.
Diagram not to scale. By: R. J. Hall, released under CC Attribution 2.5 license.

lapsed core is also responsible for much of the destruction). The aftermath of a Type II supernova
sees the formation of a neutron star and a surrounding nebulaof processed gases and light metals.

The most massive main-sequence stars (> 11M⊙) almost certainly undergo supernova with
an iron core. The fates of 8 - 11M⊙ stars, such as the progenitor of the Crab pulsar, are less
well known. It is possible that they also attained an iron core, though studies have shown that
a degenerate oxygen-neon-magnesium core is also possible (Nomoto 1985). The surface of the
resultant neutron star, however, would still contain neutron-rich nickel and iron-peak nuclei due to
the existence of the neutron superfluid just below the crust (discussed below).

1.2 The “Discovery” of Neutron Stars

In 1933, Walter Baade and Fritz Zwicky proposed that some supernovae resulted in the formation
of neutron stars. This is particularly remarkable as Chadwick had discovered the neutron only a
year prior. Baade & Zwicky had been working on an explanation for the origin of supernovae. A
number of years passed and great strides were made in the theoretical understanding of neutron
stars. Theories were proposed as to their internal structure, surface characteristics, magnetospheric
properties and so forth. This represented excellent foundational work, but there was little indication
that neutron stars actually existed.

Then, in 1967, Jocelyn Bell Burnell, under the direction of Anthony Hewish, observed a hand-
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Zone Density Thickness Temperature
Atmosphere 102 10 cm ?

Plasma Envelope 1010 100 km
Crust (Crystalline Lattice) 4× 1011 ∼ 106 K

Crust (Solid with Free Electrons) 1014 1 km
Neutron Superfluid 2× 1015 9 km 108 K

Core 3× 1015 108 − 1010 K

Table 1: Parameters for the interior of “typical” neutron star. The units of density are g/cc. Data
compiled from Ginzburg (1971), Kaspi et al. (2006), and Lyne& Graham-Smith (2006).

ful of objects that emitted radio signals that disappeared and reappeared at regular intervals. They
named the objectspulsars (due to the radio pulses they produce) and work commenced on ex-
plaining their origin. Researchers came to realize that pulsars are, in fact, rapidly rotating, active
neutron stars. Active neutron stars have immensely powerful magnetic fields, which beam photons
and particles outward from the magnetic poles. The magneticpoles are not necessarily aligned
with the rotational axis, causing alighthouse effect in which the beam sweeps across an observer’s
field of view.

The connection between pulsars and neutron stars allowed for the verification of many theo-
retical neutron star properties. A model for the “typical” neutron star emerged and is illustrated in
Table 1.

In many ways, a neutron star can be thought of as a single, massive neutron in space. The
composition of its core is currently unknown, owing to its immense density, though suggestions
have been made that it consists of a pion condensate or a quarksuperfluid. The bulk of the object (9
km out of a typical 10 km radius) exists as a hot, roughly isothermal, degenerate neutron superfluid.
Though the object was once composed of iron nuclei and electrons, the temperatures and densities
achieved upon core collapse eventually force the protons and electrons to merge, forming neutrons.
It is not until the outer 1 km that electrons and protons are free to exist, though the electrons
generally form a degenerate state. This area is known as the crust, the uppermost layer of which is
primarily a crystalline lattice of iron-peak nuclei, surrounded by a “sea of electrons,” and studded
with heavier nuclei formed through spallation processes (Jones 1977). This state is discussed in
great detail at the beginning of Section 4. As examined in Section 2, Michel (1975) argues that a
thin layer of helium may exist on top of the iron lattice.

The next two zones exist separately from the rest of the neutron star, and are the subject of
much debate in the literature. Their values in Table 1 represent a compromise situation of sorts.
A relatively small vacuum exists between the crust and the plasma envelope, as enunciated in the
Ruderman & Sutherland model (see Section 3). In this model, the plasma envelope is in a state of
constant flux, being fed by electrons leaving the surface of the neutron star, as well as positrons
formed in the vacuum gap. These particles are later ejected into the surrounding nebula. Before
their departure from the neutron star environment, the particles pass through a thin, relatively
rarefied atmosphere. Our areas of interest for this investigation are the crystalline lattice and the
lower portions of the plasma envelope.
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1.3 Specific Properties of the Crab Pulsar

We now realize that a Type II supernova may result in the formation of a pulsar surrounded by a
gaseous nebula. The pulsar is a highly energetic, rapidly rotating neutron star, which enables it to,
for instance, illuminate its companion nebula through synchrotron radiation. This is beautifully
illustrated by the Crab Nebula (Figure 1). The following listcollects the various parameters of the
Crab Pulsar that we will use in all calculations for this investigation.

• Neutron Star Radius: In the typical neutron star,1.4 M⊙ of material occupies a sphere of
radius 10 - 20 km. The Crab is estimated to have a radius of15.6 km (Kaspi et al. 2006).

• Neutron Star Rotational Period: As stated above, pulsars are powered by rapidly rotating
neutron stars. Their velocity is due to conservation of angular momentum from the progeni-
tor star. The period of the Crab pulsar has been determined to be33 ms(Kaspi et al. 2006).

• Pulsar Magnetic Field: The literature aptly describes the magnetic fields found in the vicin-
ity of a neutron star assuperstrong. As with angular momentum, the progenitor star’s mag-
netic flux is also conserved, leading to an exponentially more intense field on the much,
much smaller neutron star. The strength typically ranges from (1− 5) × 108 tesla. We will
use2× 108 T (2× 1012 gauss) for the Crab pulsar (Kaspi et al. 2006).

• Field Line Distortion: There is an area of the magnetosphere surrounding a neutron star that
corotates with the object. This is known as thelight cylinder. Magnetic field lines which
originate in the polar cap region become distorted as they cross the light cylinder. This
distortion must be corrected for when calculating the area of the polar cap, accomplished
through the use of the constantκ. We will use the standard value,κ = (2

3)(3/2)π (Ruderman
& Sutherland 1975).

• Gap Particle Acceleration: Under the Ruderman & Sutherland pulsar model (Section 3),
a very large potential develops across a gap that forms between the neutron star surface and
the magnetosphere above the magnetic poles. If we use an approximation adapted from Ru-
derman & Sutherland (1975),∆V ≈ 1.2 × 1011B−1/7P−1/7ρ4/7 (ρ defined by equation (22)),
the voltage is roughly∆V = 1.1× 1013 volts. Particles in the gap are accelerated to ultrarel-
ativistic speeds, reaching Lorentz factorγ = 2.2× 107.

2 The Helium Problem

The majority of the roughly 2M⊙ comprising the Crab Nebula is helium. For the most part, it is
well understood as mantle material ejected during the supernova event. There is, however, a torus
containing∼ 0.5 M⊙, 95% of which is helium, that stretches across the pulsar region and has not
been given a satisfactory explanation (MacAlpine et al. 2007). The question arises whether the
torus has been built over the 1000 years since the supernova by helium leaving the surface of the
neutron star located at the center of the nebula.

To a first-order approximation, the outer surface of a neutron star is modeled as a crystalline
lattice of iron-peak nuclei (De Blasio & Lazzari 1996). Underthe standard model (Section 3),
the electric fields that develop in the surrounding magnetosphere are unable to lift these heavy
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positive ions from the surface; only the much less bound electrons will escape. F. C. Michel (1975),
however, was interested in developing a model for the pulsarmagnetosphere that was driven by
positive ions. He reasoned that if Fe ions were too strongly bound, there might be a sufficient
amount of helium present on the surface to power his model. Based on calculations presented in
Section 4, helium ions on the surface of a neutron star would have roughly 3% the binding energy
of iron nuclei, owing to their much lower charge number. Helium ions are therefore considered to
be as free as electrons. The following argument is presentedin Michel (1975):

Assume that there are some quantities of positive ions (likehelium) on the surface of a neutron
star, and that they are freely able to escape into the surrounding space. Their departure produces
a torque on the neutron star, stealing some rotational energy (and causing the object to slow by a
small amount). We relate the number of ions leaving the surface,N, to the angular velocity,ω:

N =
∫ ω

ωo

Ṅ
ω̇

dω . (1)

As ions leave the surface, they build up in the area immediately above the surface, accumulating a
space charge density, ρS , given by:

ρS = 2ǫo ω · B . (2)

This ion cloud limits the number of ions which can leave through the polar cap region, which has
an area of:

A =
κωR3

c
, (3)

whereκ is a correction for field line distortion away from the surface andR is the radius of the
neutron star. If we multiply equations (2) & (3) together, along with c, we can find thespace-
charge limited current produced by the departing ions:

I = (2ǫo ω · B)
κωR3

c
c (4)

= −2κǫoR3Bω2 . (5)

This assumes thatω is anti-parallel toB, following the definition for a pulsar given in section 3.
Dividing this current by the charge per escaping ion,Ze, we can determine the ion number loss
rate,Ṅ:

Ṅ = −
2κǫoR3B

Ze
ω2 . (6)

The angular acceleration, ˙ω, is simply the torque caused by the mass loss divided by the neutron
star’s moment of inertia,I :

ω̇ =
2πκ2(R3B)2

µoc3I
ω3 . (7)

Using equations (6) & (7) in equation (1), and evaluating theintegral, we find:

N =
( c
eπκ

)

I

ZR3B
ln

(

ω

ωo

)

. (8)

As we have basically just solved a growth equation, the quantity multiplying ln
(

ω

ωo

)

is the number
of ions initially present on the surface,No. Michel (1975) went on to establish the “helium budget”
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for the average neutron star, concluding that the initial amounts available, as well as the modest
loss rates, indicated that neutron stars could retain surface helium for “considerable lengths of
time.”

Using the standard values for the Crab Pulsar (Section 1.3, page 5), we determine that:

No =
1.25× 1044

Z
ions, (9)

or, 4.16×1017 kg of ionized helium were present on its surface when the neutron star was born.As
such, the surface of the neutron star cannot be considered a source for roughly 1030 kg of helium
orbiting the pulsar in the yet-unexplained torus.

3 The Pulsar Model

Michel’s (1975) approach to the neutron star surface composition, utilized in Section 2, did not
require a fully enunciated electrodynamical model of surface and magnetosphere physics. It was
based only on the assumptions that charges were present on the surface, and that these charges
could freely leave said surface. Though they may not accurately reflect the reality of the situation,
these assumptions still allowed us to determine a maximum amount of ionized helium present on
a neutron star armed only with the knowledge of its mass, radius and magnetic field strength. If
anything, the assumptions are far too generous and likely overestimate the amount of the helium
available; still, our calculated value was some 12 orders ofmagnitude less than the amount ob-
served in the torus we sought to explain. Correcting the assumptions would require introducing
some binding to the surface of the helium (the ions are no longer free) and an accurate knowledge
of the forces removing the ions. These would increase the difficulty of removing helium and drive
the “initial” amount of helium,No, down.

Though a more rigorous analysis was not necessary in the caseof helium, it will now be re-
quired for investigating the problem of anomalous nickel observed in the Nebula. In looking to the
surface as a possible source, we must certainly take into account the degree to which the nuclei are
bound to the surface, as well as the processes that could supply the energy needed to break the ions
free. For this, we require a developed model of the pulsar near-surface magnetosphere, and have
turned to the landmark paper produced by M. A. Ruderman & P. G. Sutherland in 1975.

3.1 Charge Separation in the Magnetosphere

Once again, we imagine that a pulsar is a neutron star which israpidly rotating with an extremely
strong magnetic field. The characteristics of the corotating magnetosphere were first advanced by
Goldreich and Julian (1969). For now, we assume that the surface contains a collection of both
positive and negative charges, free to move about the surface. The field lines for the magnetic field
penetrate the surface; that is, the charges are able to “interact” directly with the lines. We describe
the electromagnetic field of the magnetosphere, from an observer’s frame, in the traditional way:

E = −(Ω × r ) × B, (10)

whereΩ is the angular frequency of the magnetosphere at a distance rfrom the neutron star center.
For distances r less thanRc the magnetosphere perfectly rotates with the neutron star.Rc is a radius
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Figure 3: Sketch of the Goldreich & Julian model for the lightcylinder about a neutron star. Line
(a) is the last closed field line within the light cylinder, allowing for particles to return to the surface
of the neutron star. Particles traveling along lines from (b) to the polar cap may leave the region,
as these lines are considered “open.” Image from Ruderman & Sutherland (1975).

that delimits an area known as thelight cylinder and is defined:

Rc ≡
c
Ω
. (11)

Roughly, space inside the light cylinder outpaces that outside, and so magnetic field lines are
“broken” as they emerge from the light cylinder. These are interpreted as open field lines, and
particles moving along them can exit the light cylinder, leaving the lower magnetosphere. It is
these lines, schematically represented as (b) and those above it in Figure 3, that are responsible for
the jets observed in Figure 1.

Charged particles are contained in the equatorial region butare allowed to leave through the
polar cap of the light cylinder, creating regions of separated positive and negative charge in the
magnetosphere. Their locations, either equatorial or polar, depend on the state of symmetry be-
tween the rotation and magnetic axes. Antisymmetry leads toa positivepolar magnetosphere, as
seen in Figure 3, and Ruderman & Sutherland declare this arrangement apulsar. Its opposite,
resulting in a negative polar magnetosphere, is termed anantipulsar.
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Charge separation in the magnetosphere causes a potential difference to form between the polar
cap and the equator on the surface of the neutron star. This potential difference induces the motion
of charged particles beneath the stellar surface. Interactions between these currents and the mag-
netic field lines piercing the surface introduce a braking torque. Ruderman & Sutherland (1975)
find that the rotational energy lost through this torquing isultimately manifested in the acceleration
of particles along the “open” field lines. The energies tapped are extremely small as compared to
the rotational kinetic energy of the neutron star, but are sufficient to accelerate charged particles to
ultrarelativistic speeds, with Lorentz factors upwards ofγ = 107.

3.2 Separation of the Polar Magnetosphere from the Surface

Goldreich & Julian force the constraint on their model that the magnetosphere must maintain
E · B = 0. Deviations from zero are met with the necessary number of particles, supplied from the
surface, to return to this constraint. There is no preference for positively- or negatively-charged
particles. This is similar to the assumptions made above forMichel’s work; “free” positively- and
negatively-charged particles are assumed to exist. On the surface of an actual neutron star, however,
positive charges are predominately found in the form of iron-peak nuclei (Ruderman 1971). These
heavy ions are much more difficult to remove from the surface than electrons due to the relatively
high binding energy of the iron lattice (as discussed in Section 4). Ruderman & Sutherland (1975)
exhaustively show that the typical neutron star is incapable of releasing iron-peak nuclei from its
surface, while electrons, requiring at least an order of magnitude less energy, are readily expelled
along “open” field lines.

Positive charges already in the polar magnetosphere (for whatever reason) continue to flow out
of the light cylinder along “open” field lines. Without a ready supply of replacements from the
surface, the magnetosphere actually shrinks away and a region forms whereE · B , 0. This is
known as agap, though the more frequent term when working with pulsars ispolar gap. The
electric field at the bottom of the polar gap (the polar surface of the neutron star), is given by:

Ep = 2ΩBh, (12)

whereh is the gap width. To simplify the math, the magnetosphere is assumed to be free of
currents, so that the electric field vanishes at the top of thegap. This allows us to determine the
potential difference across the gap:

∆V = ΩBh2. (13)

We may now fully appreciate the ability of a neutron star to accelerate particles. The “gap voltage”
for the Crab Pulsar is roughly 1013 V; electrons accelerated through the gap gain 10 TeV of kinetic
energy! This corresponds to aγ value of approximately 2× 107.

3.3 Pair Creation in the Polar Gap

Photons can react with matter either through the photoelectric effect, Compton scattering, or pair
production, depending on the amount of energy they contain.Photons with sufficiently high en-
ergies (≥ 2mec2), in the presence of a massive particle, can spontaneously decay into an electron-
positron pair. The massive particle is required for momentum conservation, as thee+/e− pair travel
directly away from one another. A sufficiently strong magnetic field, however, can also absorb this

9



Figure 4: The development of a pair avalanche in the polar gapof a pulsar. The conversion of
surface-radiated photons triggers a chain reaction of pairs producing synchrotron radiation which
go on to form additional pairs. Image from Ruderman & Sutherland (1975).

momentum kick, and so may be substituted for the massive particle. Such a field is readily found
in the polar gap of a pulsar, where the conversion rates forγ-rays run as high as 105 s−1 (Ruderman
& Sutherland 1975).

The newly-formed gap pairs are rapidly accelerated to the ultrarelativistic Lorentz factors dis-
cussed above, allowing them to release profuse amounts of photons through curvature radiation.
This is a distinct process from synchrotron radiation, and is due to the fact that the pairs move along
curved magnetic field lines, thereby being subject to centripetal acceleration. Their motions along
these field lines may develop a spiral, which would generate synchrotron radiation; this possibility
is investigated in Section 5. The curvature photons are utilized for further pair production, and a
e+/e− avalanche (Figure 4) ensues.

The pairs are formed parallel to the magnetic field lines, andinstantaneously separated. The
electrons are drawn toward the positively-charged polar surface in a great cascade. The positrons
move into the withdrawn magnetosphere. Now replenished, itreconnects with the surface and the
polar gap momentarily vanishes. Of course, positrons are still exiting the magnetosphere through
the light cylinder, and so the polar gap begins to reform.
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The vacuum gaph must be wide enough that the production ofe+/e− pairs is significantly
likely. The mean free path of a photon in a magnetic field is (Erber 1966):

l ≈
npairs

nphotons
α(χ)−1. (14)

α(χ) is a coefficient of photon attenuation, which has a value determined by:

α(χ) =
1
2
α

Że

B⊥
Bq

T (χ), (15)

whereα is the fine structure constant:

α =
e2

4πǫo~c
, (16)

andŻe is the reduced de Broglie wavelength for an electron (Ruderman& Sutherland 1975):

Że ≈
~

mec
. (17)

B⊥
Bq

is the ratio of two magnetic fields. The first is the actual magnetic field influencing the photon
(Ruderman & Sutherland 1975):

B⊥ = B sinθ ≈
l
ρ

B, (18)

whereρ is defined below in equation (22) andθ is the pitch angle between the photon’s velocity and
the magnetic field line. The second magnetic field of concern is a constant quantum mechanical
magnetic field (Erber 1966):

Bq =
m2

ec2

e~
. (19)

Finally, T (χ) is a function that depends on the value ofχ, the cross-section for photon conversion
in a strong magnetic field (Erber 1966):

χ ≡
1
2
~ω

mec2

B⊥
Bq
, (20)

where~ω is the energy of the converted photons (Ruderman & Sutherland1975):

~ω ≈
3
2
γ3~c
ρ
, (21)

ρ being the radius of curvature of the magnetic field lines nearthe neutron star surface (Ruderman
& Sutherland 1975):

ρ ≈

√

Rc
Ω
= 1.6× 105m, (22)

using standard values (page 5). We expectχ to be small (Ruderman & Sutherland 1975), so we
use (Erber 1966):

T (χ) = 0.46 exp
(

−
4
3χ

)

, (23)
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in equation (15). Altogether, using equations (16) through(23) in equation (15) we find:

α(χ) =
1
2

e2

4πǫo~c
mec
~

l
ρ

B
e~

m2
ec2

[

0.46 exp
(

−
4
3χ

)]

(24)

=
23
400

e3

πǫo~mec2

l
ρ

B exp
(

−
4
3χ

)

. (25)

Now, from equations (20) and (21):

−
4
3χ
= −

16
9

(mec)3

e~2

ρ2

γ3B
1
l
, (26)

let δ = −
16
9

(mec)3

e~2

ρ2

γ3B
, (27)

which, when used in equation (25), gives us a final form of the photon attenuation coefficientα(χ):

α(χ) =
23
400

e3

πǫo~mec2

l
ρ

B exp
(

δ

l

)

, (28)

α(χ)−1 =
400
23

πǫo~mec2

e3

ρ

Bl
exp

(

−
δ

l

)

. (29)

Combining equation (29) with equation (14), we have an expression for the mean free path length
of a photon in a magnetic field:

l2 =
npairs

nphotons

400
23

πǫo~mec2

e3

ρ

B
exp

(

−
δ

l

)

. (30)

In the limit of quasi-steady discharge, there is a one-to-one correspondence between photons and
e+/e− pairs; that is,npairs = nphotons (Ruderman & Sutherland 1975). The mean free path for a
photon is then the total gap width,h. Using this approach, along with the standard values for the
Crab Pulsar, we find that the polar gap has a quasi-steady thickness of 11.57 meters.

3.4 Summary of Model

We have now assembled a workable model for the set of pulsar physics relevant to our problem.
A pulsar is a neutron star which rapidly rotates with an incredibly strong magnetic field. The
magnetosphere is only capable of corotating with the neutron star out to a certain distance, which
defines the light cylinder. The field outside of the light cylinder lags behind the field inside, causing
a break in the magnetic field in the polar region. The polar magnetic field lines are now considered
“open,” allowing them to transport charged particles away from the surface of the neutron star and
into the surrounding space.

The presence of “open” and closed field lines within the lightcylinder causes the polar and
equatorial regions of the magnetosphere to fill with differently-charged particles (i.e., in apulsar,
the polar magnetosphere, within the light cylinder, is primarily filled with positrons). This charge
separation allows the pulsar to function as a tevatron-scale particle accelerator.

Typical pulsars are incapable of lifting positive ions fromthe surface of their neutron star. As
the polar magnetosphere is continually ejecting positronsaway from the neutron star and cannot
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be replenished by the surface, it shrinks away from the surface. The combination of the ensuing
vacuum gap and the superstrong magnetic field, along withγ-rays from the surface, results in
the prodigious creation ofe+/e− pairs. The pairs separate, with the positrons refilling the polar
magnetosphere while the electrons flood the surface. We assume that this is all accomplished
quasi-steadily, such that there is a near-continuous flux ofelectrons toward the surface.

3.5 Application of the Model to the Crab Pulsar

The goal of this paper is to examine the possible use of the neutron star surface to explain the
origin of anomalous regions of ions (primarily helium, already discussed, and nickel) in the Crab
Nebula. The pulsar model that has been presented as the basisof our work on this problem does not
support ions leaving the surface of the neutron star, in general. However, Ruderman & Sutherland
acknowledge that, in the specific case of the Crab Pulsar, it may be young and energetic enough
to “boil ions off of the surface” (1975). We have interpreted this to mean thatthe Crab pulsar is
capable of thermionic emission of positive ions from its surface. Though it is possible that this will
effect the full development of the polar gap, we hold the assumption that the amount of positive
ions removed is dwarfed by the number of positrons flowing outfrom the light cylinder. In this
way, the gap conditionE · B , 0 holds and the model is, for the most part, intact. We will return
to these possible concerns later, after we have fully enunciated the mechanisms by which positive
ions may be removed from the surface.

4 Iron-Peak Nuclei Bound to the Surface

The possibility for iron-peak nuclei to leave the surface ofa neutron star is dependent on two
things: the amount of energy binding the ions to the surface,and the availability of processes
to supply this energy. Below, we present the variational procedure used to calculate the binding
energy of iron nuclei in the presence of a super-strong magnetic field, and also consider three
possible sources that could supply this work function: residual thermal energy from the supernova,
Ohmic heating caused by subsurface currents, and heating through irradiation of the surface by
polar gap electrons.

We have already seen an example of the extreme physics associated with super-strong magnetic
fields in the high probability of photon conversion in the polar gap. Matter is also significantly
affected by the intense fields: the Lorentz force is stronger than even the atomic scale Coulomb
interaction between electron and nucleus, and the electrons are forced to occupy cylindrical Landau
orbitals (Cohen-Tannoudji 1977). Interestingly, in the field present on the surface of the Crab
Pulsar, the zeroth Landau orbital:

ρ0 =

√

3~
eB
= 3.14× 10−12 m, (31)

is actually less than the Bohr radiusao = 5.29× 10−11 m. Nuclei and electrons in a field of this
intensity will exist as either individual, multi-electronatoms or as condensed matter, favoring the
phase with the lowest ground state energy.
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4.1 Energy for Individual Atoms

Flowers et al. (1977) present variational calculations forthe binding energies of iron in the rel-
evant phases. First, they calculate the binding energy for free atoms, utilizing the Hartree-Fock
method for calculating the wave functions of many-electronatoms as the antisymmetrized product
of single-particle wave functions. This results in the total wave function, in cylindrical coordinates:

ψ(r1, . . . , rz) = A
Z

∏

i=1

Rmi(ρ, φ) fvi(z), (32)

wherei steps through the number of electrons, each of which will have an associated quantum
numbersm andv. The radial functionRm(ρ, φ) is described by:

Rm(ρ, φ) =
[

2π(m!)ρ̂2
]− 1

2

e−imφ

(

ρ2

4ρ̂2

)
m
2

exp

(

−
ρ2

4ρ̂2

)

, (33)

whereρ is, again, the Landau orbital:

ρm = (2m + 1)
1
2 ρ̂ (34)

ρ̂ =

(

~

eB

)
1
2

. (35)

The quantum numberm may be any positive integer (or zero). The other functionfv(z) depends
on the number of nodes in the wave function, of which we only considerv = 0 andv = 1. The
z-dependence is approximated using exponentials:

f0(z) = (α)
1
2 e−α|z| (36)

f1(z) = (2α)
3
2 ze−α|z|. (37)

Thus, every orbitalm has two variational parameters,α andv.
Now that we are in possession of a fully described wave function, we may determine the energy

function, which has four terms: kineticK, electron-nucleus potentialVen, direct electron-electron
potentialVdir

ee , and exchange electron-electron potentialVex
ee . Each term, except for the straight-

forward kinetic energy, contains a number of highly complicated integrals equal to the number of
electrons belonging to the atom, each of which must be evaluated numerically and then minimized
by varying the quantum parameters. We did not carry out thesecalculations. Flowers et al. (1977)
discovered that some electrons in the one-node state must beused to minimize the energy profile,
and their minimum values for the binding energy are collected in the first row of Table 2, page 16.

4.2 Energy for Condensed Matter

We must now determine the binding energy of the iron if it exists as condensed matter. The
calculation is begun by considering the situation in which “point-nuclei” are arranged in a body-
centered cubic lattice, immersed in a uniform sea of electrons. The lattice is then divided into
electrically neutral spherical shells, such that the energy per cell is only radially dependent. This
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allows for a straightforward minimization, resulting in the following expression for energy per
lattice cell (Flowers et al. 1977):

E = −42.63B12
2/5

( Z
26

)9/5

keV, (38)

whereB12 is the magnetic field strength in units of 1012 gauss. Since the energy only depends on
cell radius, we also know the optimal spacing of nuclei in thelattice:

a = 0.648
(

π

3

)
1
3

ao

( Z
26

)
1
5

B
− 2

5
12 cm, (39)

whereao is the Bohr radius. We find that a lattice on the surface of the Crab Pulsar will have a
spacing ofa = 2.64× 10−11 m and a binding energy per nucleus ofE = −56.25 keV. This is more
positive than the value found for individual atoms in a similar strength magnetic field (Table 2),
suggesting that iron exists in an unbound state on the Crab Pulsar surface. However, additional
cohesive binding is provided in two ways: nonuniform electron distribution and the formation of
“ion cores.”

Regarding the former, the calculations to this point have assumed that the ion lattice is easily
divisible into spheres of one iron nucleus and 26 uniformly distributed electrons. In fact, the
electrons are magnetically confined to move in cylindrical spaces, and further energy reductions
may be gained through the nonuniform distribution of electrons in these Landau orbitals. We
imagine that the lattice cells now resemble tapered cylinders, and the entire arrangement appears
as linear chains of ions. The electrons are still consideredto constitute a “sea,” but their movement
is now somewhat more restricted. With these constraints, Flowers et al. (1977) performed new
variational calculations, the results of which are recorded in the second row of Table 2. We note
that a condensation of nuclei, grouped in linear chains, is now the energetically favorable phase.

4.3 The Cohesive Energy

The differences between the ground state energies of ion-electron structures in these two phases
(free atoms versus linear chains) is known as thecohesive energy∆E (Flowers et al. 1977). We have
found that the surface of the neutron star in the Crab Pulsar islikely covered with a tightly bound
lattice of iron nuclei. Its existence as the favored phase ofmatter is one of the main arguments that
Ruderman & Sutherland make against the removal of positive ions from the surface. However, we
know that, if the difference in energies between bound and unbound matter, the cohesive energy,
is provided to a nucleus in the lattice, it will become unstuck. In this way, the cohesive energy is
also thework function for lattice-bound positive ions (Jones 1978). An unstuck ion is easily lifted
by the surface electric fields (Ruderman & Sutherland 1975), as the sufficient energy to remove
it from the lattice binding it to the surface has been provided. The additional binding energy,
for example 63.21 keV in the case of 2× 1012 gauss fields, is the total energy holding the free,
individual “atom” together. Its provision in not necessaryfor the spontaneous emission of positive
ions from the neutron star surface.

There is one last correction that must be made, mentioned above as the formation of “ion
cores.” We saw how the binding energy in the lattice was reduced by roughly 10 keV when the
electrons were confined to tapered cylinders. Slight additional gains in binding energy may be had
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Binding Energy Profile for Iron in Super-strong Magnetic Fields
Magnetic Field (1012 gauss)

1 2 3 4 5
Individual Free Ions

−E f ree 48.48 63.21 73.69 82.08 89.43
Linear Ionic Chains

−Echain 50.24 66.32 78.05 87.53 95.74
Cohesive Energies

∆E 1.76 3.11 4.36 5.45 6.31
∆E′ 2.6 4.1 5.4 6.8 8.0

Table 2: Binding energies for the two possible phases of iron matter under the influence of super-
strong magnetic fields found on a neutron star surface. The difference between these is the cohesive
energy∆E, which is also the work function for removing nuclei from theenergetically favored lat-
tice phase, allowing them to leave the surface. Small corrections to the lattice calculation produce
the true work function,∆E′. Data reprinted from Flowers et al. (1977).

if some electrons are removed from the sea and closely bound to a single nucleus. In this way,
the electrons now fall into two classes: free conduction electrons and bound core electrons. The
last row of Table 2 contains the final cohesive energies (Flowers et al. 1977), synonymous with the
work functions for removing iron nuclei from the surface. The cohesive energy has no temperature
dependence - condensation is purely the result of the intense surface magnetic fields, forcing the
individual atoms close enough that they prefer to exist as a lattice. Thus, we can express the work
function as a simple function of B:

U = ∆E′ = 2.6B0.7
12 keV, (40)

as suggested by Jones (1978) and illustrated in Figure 5. Themost probable mechanism for pro-
viding this amount of energy, and thus breaking ions loose from the lattice, is the ambient surface
temperature of the neutron star. Ions freed from the latticeare no longer bound to the surface and
are freely emitted into the surrounding space along the magnetic field lines exiting the polar cap
area through the light cylinder. This is the thermionic emission of iron ions investigated by Jones
(1978). He provides approximate expressions for the numberrate of ion loss from the surface:

Γ =
U

ha2
e−(βU) ions/s/m2, (41)

β =
1

kBT
. (42)

Recall that equation (40) gives U in keV, so the appropriateh (here Planck’s constant) andkB

(Boltzmann constant) must be used;a is the lattice constant, equation (39), which is used in meters
so thatΓ has dimensionality ions/s/m2. Figure 6 plots the iron loss rates (in kg/s) from the polar
cap region of the Crab pulsar as a function of both temperatureand magnetic field strength. The
polar cap area is given by equation (3). Figure 6 illustratesthe significant gains that are made in
emissions as the temperature of the polar cap increases from1 × 106 K to 4 × 106 K. In order to
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Figure 5: This plots the cohesive energy for iron (stars) as afunction of magnetic field strength
in units of 1012 gauss. The line fits the data according to the equation shown,which comes at the
suggestion of Jones (1978).

assess the rate at which the Crab pulsar emits positive ions, we now endeavor to determine the
residual surface temperature of the Crab Pulsar and investigate the possible mechanisms that could
further heat portions of its surface. The presence of significant heating over its lifetime would
dramatically increase the amount of iron-peak nuclei able to be sent into the surrounding nebula.

5 The Removal of Positive Ions

5.1 Base Surface Temperature of the Crab Pulsar

Neutron stars produced by the most massive main-sequence stars previously existed as an iron
core, immediately prior to the onset of a supernova event. The iron is a product of silicon-burning,
which requires temperatures in excess of 2.7×109 K to take place. As previously mentioned, main-
sequence stars in the range of 8-11M⊙ may only be able to form an oxygen-neon-magnesium core
(Nomoto 1985). These elements are the products of carbon burning, which requires temperatures
in excess of 6× 108 K. In the course of the supernova, a great deal of thermal energy is used
in photodisintegration or is carried away from the core through neutrino emissions (Protheroe et
al. 1998), such that the surface of the neutron star in the first ∼10 years of its existence is generally
given as (4− 5) × 106 K (Tsuruta et al. 1972, Van Riper 1991). From this point onward, cool-
ing is primarily accomplished through photon emissions from the surface, which is warmed via
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Figure 6: Loss rates for iron thermionically emitted from the polar cap region of the Crab pulsar,
in kg/s. The bold line represents the Crab’s magnetic field, 2× 108 tesla. The sharp decline in
significant emissions at temperatures lower than 106 K gives particular credence to Ruderman &
Sutherland’s argument that the general population of neutron stars is unable to release heavy nuclei
positive ions. Note that the mass loss is logarithmically-scaled.

conduction by the core.
Under this scenario, we assume that, for the first 103 years, the surface temperature may be

approximated linearly with respect to time since the supernova event. This is supported by Tsuruta
et al. (1972), Figure 7a, though their canonical neutron star has a mass of 1.3M⊙. Van Riper (1991)
compares several models based on various equations of state, Figure 7b, utilizing a 1.4M⊙ neutron
star, similar in mass to that in the Crab. We note that several of the models exhibit precipitous
declines in temperature after only the first year of existence, which is worrisome for our assumption
of linearity.

We may, however, estimate the present day surface temperature of the Crab Pulsar by using
current measurements of its luminosity. Kaspi et al. (2006)report the bolometric luminosity as
2.7 × 1027 J/s. This means that the flux over the entire surface area of the neutron star (SA=
4πR2 = 4π(15.6 × 103)2 = 3 × 109 m2) is 8.83× 1017 J/s/m2, equivalent to an effective surface
temperature of roughly 2× 106 K if we use the blackbody approximation. On the Van Riper
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(a) (b)

Figure 7: Various cooling models for the surface temperature of neutron stars. Figure (a) represents
a 1.3 M⊙ star, calculated for a wide number of possible interior equations of state. We are most
interested in the fact that all models are generally linear up to 103 years. Reprinted from Tsuruta
et al. (1972). Figure (b) utilizes a 1.4 M⊙ star, like the Crab Pulsar, and presents a number of rapid
cooling scenarios. Based on present observed temperature, however, the Crab pulsar is most like
model (SF, I). Reprinted from Van Riper (1991).

diagram, Figure 7b, this places us on any one of several mostly linear models. As (N, B=0) and
(SF, B=0) assume the absence of a magnetic field, we will not be using them; and, as our magnetic
field is not quite 1013 gauss, we will use (SF, I), which is linear all the way until 105 years.

Thus, we estimate the temperature function as:

T (t) = 4× 106 −
2× 106

103
t (43)

= 4× 106 − 2× 103t K, (44)

wheret is the age of the neutron star in years. We will now investigate two possible mechanisms by
which the polar cap region may be heated in excess of the average surface temperature: irradiation
by polar gap electrons, and Ohmic heating by subsurface currents.

5.2 Surface Irradiation by Polar Gap Electrons

As has been previously discussed, a vacuum gap exists above the polar cap region due to positron
starving of the polar magnetosphere. Polar gap discharge occurs at a quasi-steady rate through the
production of an avalanche of electron-positron pairs; thepositrons refill the magnetosphere while
the electrons are accelerated towards the surface. In the absence of significant surface conduction
(Tsuruta et al. 1972, Jones 1978), these electrons should deliver a vast amount of energy to the
surface ion lattice, raising its effective temperature.
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As discussed above, electrons are drawn away from the surface of the neutron star via the
electric fields generated by the rotating super-strong magnetic fields present near the surface. The
departure of the electrons results in a net positive charge on the surface. Though the magnetosphere
is also positively charged, the electric field at its base, a distanceh from the neutron star surface,
is zero. Electrons in the gap will be accelerated towards thesurface, and it is reasonable to think
of the magnetic polar cap region as a parallel plate capacitor. Inside the vacuum gaph a potential
difference∆V grows to a maximum:

∆V = ΩBh2, (45)

whereΩ is the angular frequency of rotation for the neutron star. Wecan use this potential to
calculate the chargeQ present on the surface:

Q =
ǫo(∆V)A

h
. (46)

Photons radiated from the surface are converted into numerous electron-positron pairs within
the potential gap; this was the condition that allowed us to determineh via equation (30). The
newly-formed electrons are attracted to the positively-charged surface and travel along magnetic
field lines with a radius of curvatureρ. They release curvature radiation, which has energiesEs ≥

1.022 MeV, sufficient to create additional electron-positron pairs. The curvature radiation/pair-
production cycle continues until enough positrons have been produced that the magnetosphere is
refilled and the potential gap collapses; that is to say, the amount of charge on the surface and the
amount in the magnetosphere are the same.

Ruderman & Sutherland refer to this phenomenon assparking. In the case of a very rapid ro-
tator, like the Crab pulsar, sparking is extremely frequent and a nearly continuous flux of electrons
irradiates the surface. In this limit, we may approximate the energy flux of the electrons,Fe, as
(Ruderman & Sutherland 1975):

Fe =
1
2 ∆Vρe c. (47)

We will assume that the amount of conduction carrying heat away from the surface is negligible
(Jones 1978). This is part of our assumption that the surfaceis in a state of thermal equilibrium,
allowing us to use the blackbody approximation in order to determine the effective temperature
of the surface. That is, all of the energy flowing into the surface through electron irradiation
(or subsurface currents, discussed later) is matched by energy leaving the surface, in the form
of electrons, positive ions or thermal radiation.ρe in equation (47) is the charge density that
previously existed inside the vacuum gap and is now held on the surface as chargeQ:

ρe =
Q
Ah
, (48)

whereA is the surface area of the magnetic polar region. The fluxFe is then:

Fe =
1
2ǫoc

(∆V)2

h2
(49)

= 1
2ǫoc(ΩBh)2. (50)

The Crab pulsar has an angular frequency of:

Ω =
2π

3.3× 10−2
= 190 rad

sec, (51)
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so, from equation (50),Fe = 2.57× 1020 watts/m2 for a gap widthh = 11.57 m.
We are now concerned with the amount of energy lost by the electrons through synchrotron ra-

diation processes. We are careful to distinguish synchrotron radiation, caused by the high velocity
rotation of a charged particle in a magnetic field, with curvature radiation, the emission of photons
caused by the acceleration of charged particles movingalong curved field lines. The latter is singly
identified as central to the formation of the polar electron avalanche by Ruderman & Sutherland.
We now compare the synchrotron emissions of polar gap electrons to their kinetic energies.

We begin with the Larmor solution for a single electron moving in a magnetic field. In the
electron’s “rest” frame, the power radiated is:

P′S =
µoe2a′ 2

⊥

6πc
, (52)

wherea′⊥ is the magnitude of the centripetal acceleration for the motion of the electron about a
magnetic field line in the electron’s frame. Given the ultrarelativistic motions of the electrons in
this environment, along with the tightly confining superstrong magnetic field, we assume that the
parallel component of the motion dominates the perpendicular (or circular) component:v‖ >> v⊥.
Under this assumption,v‖ ≈ v, so conversion to the observer’s frame involves:

a⊥ =
a′⊥
γ2
. (53)

The power emitted by the electron in its frame is equivalent to the power eventually received by an
observer (Rindler 1977):

P′S = PS . (54)

Thus,

PS =
µoe2a2

⊥γ
4

6πc
, (55)

which agrees with the solution given by Griffiths (1999).
Synchrotron motion is due to the centripetal acceleration of charged particles caused by the

Lorentz force. The rotational motion may be described as follows:

a⊥ = ωS · v⊥, (56)

whereωS is the synchrotron frequency:

ωS =
eB
γme

, (57)

so that:

a⊥ =
eB
γme

v⊥. (58)

Herev⊥ is the component of the electron’s velocity perpendicular to the direction of the magnetic
field. Acceleration in the polar gap, discussed elsewhere, brings electrons and positrons to near c
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velocitiesparallel to the magnetic field. If we use the extreme assumption that the electrons travel
at a total velocityv = c, then the conditionv2 = v2

⊥ + v2
‖

is satisfied by:

v2
‖ =

(

1−
1
γ2

)

c2, (59)

v2
⊥ =

c2

γ2
. (60)

This is equivalent to declaring that the pitch angle,θ, between the electron’s velocity and the
magnetic field is vanishingly small; electrons moving through the polar gap, like those found on
the surface, are magnetically confined. This must be the casein this environment if any amount of
electrons are going to reach the neutron star surface, a feature of the model discussed by numerous
authors (Ruderman & Sutherland 1975, Jones 1978, Kaspi et al.2006). Given this situation, the
perpendicular acceleration, equation (58), is expressed as:

a⊥ =
eBc
γ2me

. (61)

Using equation (61) in equation (55) yields:

PS =
µoe4B2c
6πm2

e

. (62)

The total synchrotron power for electrons formed above the polar cap of the Crab pulsar is 632
watts per electron in the limitv = c.

This represents the maximum amount of power that an electronundergoing synchrotron pro-
cesses may generate in this environment; in reality, the electrons are traveling at total velocities
less thanc, so their perpendicular velocity will be less thanc

γ
. We are interested in how the energy

radiated by the electrons through synchrotron processes asthey traverse the polar gap, a maximum
distance ofh = 11.57 m, relates to their relativistic kinetic energy:

KE = mc2 − moc2 (63)

= γmoc2 − moc2 (64)

= 1.80× 10−6 J (65)

for Lorentz factorγ = 2.2 × 107. The maximum synchrotron energy they could radiate in this
magnetic regime is:

ES = PS ·
h
v

(66)

=
µoe4B2h

6πm2
e

(

1−
1
γ2

)−1/2

, (67)

which is practically constant forγ >> 1.
Note that for electrons that are not so strongly confined:

a⊥ =
eB
γme

v⊥ (68)
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=
eB
γme

v sinθ, (69)

Ps =
µoe4B2γ2v2

6πm2
ec

sin2 θ, (70)

Es =
µoe4B2γ2hv

6πm2
ec

sin2 θ, (71)

which would have much, much larger pitch angles,θ; this recovers the standard synchrotron theory
result thatPs ∝ B2γ2 for highly relativistic electrons.

Figure 8 plots the kinetic energy of the electrons [equation(64)] and their maximum syn-
chrotron radiated energy [equation (67)] as functions ofγ for values 10− (7× 109). These values
of γ maintain the limit that totalv ≈ c. The figure demonstrates that, even with our tightly confined

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
9

10
10

10
−12

10
−11

10
−10

10
−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

Gamma

E
ne

rg
y 

(J
)

Kinetic Energy
Synchrotron Radiation

Magnetic Field Strength = 2×108 T
Vacuum Gap = 11.57 m

Figure 8: Comparison of kinetic and synchrotron energies forradiating electrons moving in the
limit v ≈ c. Electrons are produced in the polar gap at a maximum of 11.57meters above the
surface of the Crab pulsar and are rapidly accelerated toγ values in excess of 107. These lines
represent the kinetic energy provided to and synchrotron losses for electrons maximally accelerated
across the entire gap width; of course, this does not reflect the entire population of electrons created
through pair production in the gap. Note that both axes are logarithmic.
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motions, synchrotron radiation represents a significant drain on electron kinetic energies for a very
wide range of Lorentz factor values. The break even point does not occur until aroundγ = 5×108.
We are currently unsure of the exact ramifications of this result: it seems unlikely that the elec-
trons, having expended their entire kinetic energy reserves, will simply stop in the vacuum gap.
They remain subject to the same accelerating forces that originally brought them to ultrarelativis-
tic velocities. We have not currently considered treating the synchrotron process as a relativistic
radiation reaction force, as may be necessary.

What is clear, however, is that nearly all of the energy lost by the electrons will be deposited on
the polar cap surface because of relativistic beaming effects. The relativistic aberration of light by
a point mass moving on a line is given by the expression (Walker 2007):

cosφ′ =
cosφ − v

c

1− v
c cosφ

, (72)

whereφ is the angle away from the particle’s motion in which it emitsradiation andφ′ is the
angle away from the particle’s motion that the radiation is observed. In this way, 90% of the
radiation emitted by an electron travelling atγ = 2.2 × 103, 11.57 meters above the polar cap,
is focused into a circle of area 2.19× 10−6m2 on the surface. The electrons created in the Crab
pulsar polar gap will focus their radiation into an even smaller area; thus, very little energy lost
by these electrons through synchrotron processes will failto reach the polar surface. In this way,
we consider the electron flux determined via equation 50,Fe = 2.57× 1020 W/m2, to be a valid
indication of energy deposited on the surface. If we assume,as stated previously, that the surface
is in quasi-thermal equilibrium, then all of this energy is eventually re-radiated and we will make
use of the blackbody approximation, equation (78), to determine the effective temperature of the
surface caused by electron irradiation.Based on our calculated value for Fe, the energy deposited
by the falling electrons raises the surface temperature by a substantial 8.2× 106 K.

5.3 Ohmic Heating of the Surface

Recall from our pulsar model that the separation of charges inthe magnetosphere induces the
motion of charged particles in the subsurface layers of the neutron star. These are primarily electron
flows, moving from the polar cap region towards the equator. Interestingly, the expression which
Ruderman & Sutherland (1975) give for this “ion loss” is identical in magnitude to Michel’s (1975)
current leaving the surface via open field lines,I = −2κǫoR3Bω2 (equation 5).

The surface of a neutron star is very similar to a sheet of metal, so we have reason to think that
electrical currents flowing through it would produce heat via the Joule power law, expressed as an
energy flux:

Fc =
P
A
=

I2
R

A
, (73)

whereR is resistance. The current, equation (5), was derived by multiplying the charge density
flowing from the polar cap by its area andc, so that:

I = ρsAc (74)

Using this in equation (73), we see that the energy flux due to the current is:

Fc = ρ2
s ARc2 (75)
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= 4ǫ2
oω

2B2ARc2 (76)

= 4κǫ2
ocω3B2R3

R (77)

when we use equation (3) for the polar cap area. Using the standard Crab pulsar values, we
have an expression for the heat generated in the polar cap as afunction of the surface resistance:
Fc = 1.68× 1023

R J/s/m2. We are not in possession of an exact value forR, but we do know that
resistance is inversely proportional to electrical conductivity, σ. As the subsurface currents serve
to anchor the magnetic field to the surface, we know thatσ must be very large (van den Heuvel
2006). Therefore, we will be usingR = 1 µΩ in the crust. The flux associated with the currents
(equation 77) is then roughly 1.68× 1017 J/s/m2, some three orders of magnitude less than the
irradiation energy flux.

Combining the fluxes generated by surface electron irradiation, Fe, and subsurface electron
currents,Fc, with the baseline flux determined by luminosity observations,Fo, allows us to deter-
mine the effective temperatureTe f f of the polar cap region, essential for the Jones thermionic emis-
sion function (equation 41). The combined flux isF = Fo+Fe+Fc = (.883+257+.168)×1018 =

2.58× 1020 J/s/m2 emitted from the polar cap region of the pulsar. Using the blackbody approxi-
mation,

F = σT 4
e f f , (78)

reveals that electron irradiation and subsurface currents(primarily the former) elevate the present
surface temperature in the polar cap toTe f f ≈ 8.21× 106 K, a 313% increase over the average
temperature of the rest of the neutron star surface. Returning to Figure 6, which plots the rates of
iron emission from the polar cap, in part as a function of temperature, suggests that the thousand-
year-old Crab Pulsar is still capable of emitting iron at prodigious rates.

6 Concluding Discussion

Figure 6 is important for its suggestion that young, hot neutron stars behave as sources of signif-
icant amounts of positive ions before they cool to the critical temperature of 106K. At this tem-
perature and below, though thermionic emission still takesplace, it does so in drastically smaller
quantities: if a Crab-like neutron star remained at 2×106 K for 1000 years it would release roughly
1010 kg of iron from its surface, while the same star emitting at 106 K for 1000 years would re-
lease only 1 kg. More importantly, we should into account theprobability that the neutron star
surface, as previously discussed, is not an isothermal environment. Figure 6 could then represent
the rates for different locations on the surface, or even the same location at different times in the
star’s history. We are now concerned with the thermal history of the polar cap region.

In addition to the two heating processes that we have investigated, the surface is continually
radiating energy away in the form ofγ-rays. We assumed a linear relationship between surface
temperature and stellar age that resulted in equation (44),which we must now modify in light of
the irradiating polar gap electrons and subsurface currents acting as heat sources. If we assume
that these processes do not vary significantly while the neutron star is young (that is to say, the
Crab Pulsar is currently spinning at roughly the same rate as it was at its inception) then a constant
2.58× 1020 J/s/m2 is injected into the surface. This assumption, however, is clearly not the case,
as rotational energy is tapped for overall nebular synchrotron radiation. A younger, more rapidly
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Figure 9: The linear cooling of the polar cap surface of a neutron star without active heating
processes, with just subsurface Ohmic heating and with bothOhmic heating and irradiation by
electrons formed in the polar gap. This figure clearly demonstrates that the heating caused by
subsurface currents, which alone would only be significant in an older pulsar, is dominated by that
from electron irradiation. Note the temperature is scaled to 106 K.

rotating Crab would be capable of even greater particle acceleration in the polar gap and stronger
subsurface currents. We are thus calculating a lower limit on the iron mass lost.

Based on our computed polar surface temperatures, as well as the assumed constant energy
inflow, the modified temperature relationship for the polar cap is then:

T (t) = 8.32× 106 − 106t K, (79)

wheret is once again the age of the pulsar in years. Figure 9 illustrates the effect of the additional
heat: not only does the pulsar begin warmer, the overall rateof cooling is drastically diminished.
In fact, the surface temperature in the polar cap is only reduced by roughly 1% in the presence of
energy bombardment by electrons. If we use our modified temperature function in the Jones ionic
emission rate formula, equation (41), we can express the ionic emission rate for the Crab Pulsar as
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a function of time:

Γ = 1.46× 1039 exp
(

−4.22× 103

kBT

)

(80)

= 1.46× 1039 exp
(

−4.9× 107

T

)

(81)

= 1.46× 1039 exp
(

−4.9× 107

8.32× 106 − 106t

)

ions/s/m2, (82)

wheret is in years. Using the appropriate factors, this is easily converted to kg/s:

Γ A = 5.58× 1020 exp (−
4.9× 107

8.32× 106 − 106t
) kg/s, (83)

expressing the amount of iron emitted from the polar cap region, as plotted in Figure 10. To
determine the total amount of iron blown into space since theneutron star’s formation,G, we need
only convertΓA into kg/year and compute the straightforward integral:

G =

∫ 1000

0
ΓAdt (84)

=

∫ 1000

0
1.77× 1028 exp

(

−4.9× 107

8.32× 106 − 106t

)

dt (85)

= 4.72× 1028 kg = 2.38× 10−2 M⊙. (86)

In establishing a not-insignificant value forG, we are in a position to affirm one of our primary
questions: whether or not heavy positive ions may be lifted from the surface of a neutron star. We
have done so, however, in the framework of a pulsar model thathas at its foundations the constraint
that positive ions are not lifted from the stellar surface. Our investigation focuses on the possible
exception offered by the model’s architects, that neutron stars which areyoung enough may have
sufficient thermal energy to “boil” ions from the surface. We haveinterpreted their notion of boiling
as thermionic emission. This process is highly sensitive totemperature within the range in which
neutron stars exist, leading us to uncover two processes by which the surface temperature may be
sufficiently bolstered.

Of the two, ohmic heating by subsurface currents and irradiation by polar gap electrons, the
latter dominates, as reflected in Figure 9. At present, the energy provided by infalling electrons
raises the polar cap surface temperature by over 8× 106 K, more than 6 times as much as Ohmic
heating. Electron irradiation is also the one process of thetwo that is a consequence of the specific
Ruderman & Sutherland model we adopted. Its authors stronglyargue against the departure of
positive ions from the neutron star surface, except possibly in the case of the Crab pulsar. We now
consider the implications of deviating from the model.

In the worst case, the flow of positive ions from the surface into the polar magnetosphere would
stunt the development of a full vacuum gap, which would in turn limit the amount of curvature
radiation emitted by polar electrons. This would mean a net result of fewer electrons impacting
the surface, allowing it to cool more rapidly and lowering the number of positive ions released into
the gap. With the release of fewer positive ions, the gap could once again develop, increasing the
electron energy flux onto the surface. Though it seems somewhat circular, Ruderman & Sutherland
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Figure 10: The decline in the rate of iron emissions as the surface of the Crab neutron star cools.
After 1000 years, the current age of the Crab pulsar, the surface emits just above 1.4× 1018 kilo-
grams of iron per second. We note that the polar cap cools so slightly due to polar gap electron
irradiation that this curve appears linear after 5000 yearseven though (ΓA) ∝ e−1/T . Note the scale
of the loss rate is 1018 kg/s.

themselves say, “thee−−e+ discharge would be a necessary prerequisite for maintaining the surface
temperature, therefore . . . the gap must grow to a size sufficient for the electron-positron discharge
to be maintained” (1975). Electron avalanches appear to be an inevitable aspect of this model, and
it would seem that significant ionic emissions follow in their wake.

The thermal additions of Ohmic heating alone would be insufficient to maintain the temperature
in the range of significant emissions throughout a neutron star’s first 103 years, though the emission
would continue to take place. It would appear that the environmental conditions of a young, Crab-
like neutron star make the surface emission of iron nuclei highly likely. Our finding, 4.72×1028 kg,
is likely an overestimate, but there are some compensating factors in the young pulsar that would
keep it from being driven drastically lower: the stream of positive ions leaving the surface would
limit the maximum size of the polar vacuum gap, but the increased rate of rotation would mean
that the fewer number of electrons that are created would be accelerated to greater velocities.
Regardless, even if positive ion streams completely choked-out the electron irradiation process, the
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very young Crab pulsar, as indicated by Figure 6, would have been hot enough to thermionically
emit a significant amount of iron for a number of years.

We note that there was recently a report of a localized very hot spot on the surface of the Crab
pulsar (Weisskopf et al. 2004). Chandra X-ray observations initially suggested that the surface of
the neutron star was 2.2×109 K. Even the young Crab would be unable to sustain this temperature
across its entire surface, and Weisskopf and his collaborators interpreted the extreme temperature
to represent a very small hot spot, possibly due to a second particle backheating mechanism. The
temporary existence of these extremely hot spots would alsobolster the primary emissions from the
polar cap region, though more will have to be known about them(their surface area and lifespan)
before we could estimate their contributions.

Finally, we reiterate that the calculations discussed hereapply to iron ions, whereas we set
out to investigate a possible mechanism fornickel enhancement in the nebular gas. This inconsis-
tency is due to a lack of binding energy calculations in the literature for nickel and nuclei other
than iron in the presence of super-strong magnetic fields. That said, nickel, as it would be found
on the neutron star surface, only differs from iron by the addition of two protons and electrons.
Their contributions to the binding ought to provide only slight increases in the cohesive energy.
This means that the numbers for iron here presented should beapproximations, specifically slight
overestimates, of the amount of nickel leaving the neutron star surface. Its emission may also be
complicated by the need to move upwards from the lower layersof the crust, where nickel is most
likely to be found (De Blasio & Lazzari 1996). More specific nickel calculations, along with the
ultimate directional distribution of positive ions freed from the surface, must remain for future
investigations.
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