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Chapter 1

Introduction

In this thesis we prove that the space BMO on shapes introduced by Dafni and Gibara is the dual space of the Hardy
Space on Shapes which we introduce here for the first time. This document is relatively self contained, building up
the necessary background in measure theory, functional, and harmonic analysis.
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Chapter 2

Riemann Integral

There are many equivalent ways to define both the Riemann and the Lebesgue integral. We will introduce the
Riemann integral using upper and lower piecewise constant integrals, and then define Lebesgue measure which
will take us to the Lebesgue integral. I will also compare the Jordan measure, which can also be used to define the
Riemann integral, with the Lebesgue measure to see some of the differences between the two. We will prove that if
a function is Riemann integrable, then it is Lebesgue integral and the two are equal. This section will end by looking
at a few examples of functions that are Lebesgue integrable but not Riemann integral. Most of this follows [Tao15a],
[Tao15b], [Tao11].

Definition 1 (Partition). We give two definitions of a partition. Let I = [a,b], (a,b], [a,b), or (a,b) be an interval.
Then a partition of I is a collection of increasing points in I,

P = {x1, x2, . . . , xn | xi ∈ I, and xi < xi+1 for all I} .

More generally, given a set A, a partition of A is a collection of subsets B1, . . . ,Bn such that Bi ∩Bj = ∅ for all i ̸= j,
and A =

⋃n
i=1 Bi.

Example. Consider the interval I = [0, 3]. A partition of I can be given as P =
{
0, 1, 32 , 2, 3

}
, or equivalently, it could

be given as P =
{
[0, 1], (1, 32 ), [

3
2 , 2], (2, 3]

}
, see figure 2.1.

0 1 2 3

Figure 2.1: The partition P =
{
[0, 1], (1, 32 ), [

3
2 , 2], (2, 3]

}
A non-example of a partition of [0, 3] is P ′ = {[0, 1], [2, 3]}. This is because it leaves out the part of the interval,

(1, 2) so it does not cover. Another non-example is P ′′ =
{
[0, 1], (34 , 32 )[

3
2 , 2), [2, 3]

}
. This one is not a partition

because two elements of the partition overlap [0, 1]∩ (34 , 32 ) ̸= ∅. These can be seen in figure 2.2.

Definition 2 (Piecewise Constant Function). Let I be a bounded interval, f : I → R be a function, and P be a partition
of I. We say that f is piecewise constant with respect to P if for every J ∈ P, f is constant on J.

7
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0 1 2 3

0 1 2 3

Figure 2.2: The non-partitions P ′ = {[0, 1], [2, 3]} and P ′′ =
{
[0, 1], (34 , 32 )[

3
2 , 2), [2, 3]

}
.

0 0.5 1 1.5 2 2.5 3

0

1

2

3

4

Figure 2.3: Graph of the piecewise constant function f.

Example. An example of such a function on our partition from above is

f(x) =


2 if 0 ≤ x ≤ 1

1 if 1 < x < 3
2

4 if 3
2 ≤ x ≤ 2

0 if 2 < x ≤ 3.

Using this definition of piecewise constant functions allows us to define what their integral should be from our
intuition of area.

Definition 3 (Piecewise Constant Integral for a Partition). Let I be a bounded interval, let P be a partition of I. Let
f : I → R be a function which is piecewise constant with respect to P. Then we define the piecewise constant integral
p.c.

∫
[P] f of f with respect to the partition P by the formula

p.c.
∫
[P]

f :=
∑
J∈P

cJ |J| ,
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where for each J in P, we let cJ be the constant value of f on J, and |J| be the length of the interval.

Example. When we take the integral of the function f : [0, 3] → R defined as above, we calculate the area under
each constant piece. On the first part of the partition [0, 1], the value that f takes is 2, so 2 · |I1| = 2 · 1 = 2, will be the
first summand in the integral. Similarly, for the next interval, it takes the value 1 from [1, 1.5], so 1 · |I2| = 1 · 1

2 = 1
2 .

We continue in this way for each element of the partition to obtain

p.c.
∫
[P]

f = 1 · 2+ 1

2
· 1+ 1

2
· 4+ 0 · 1 =

9

2
.

We prove a quick preliminary lemma that will be helpful for the upcoming proposition.

Theorem 4 (Length is Finitely Additive, [Tao15a] Theorem 11.1.13). Let I be a bounded interval, n be a natural number,
and let P be a partition of I of cardinality n. Then

|I| =
∑
J∈P

|J|.

Proof. We proceed by induction on n. More precisely, let P(n) be the property that whenever I is a bounded interval,
and whenever P is a partition of I with cardinality n, then |I| =

∑
J∈P |J|.

The base case, P(0), just says that the only way I can be partitioned into an empty partition is if I itself is empty.
Similarly, the case P(1) follows from the fact that there is only one way to partition I into one piece, so I = J.

Now, suppose that P(n) is true for some n ≥ 1, and now we prove P(n+ 1). Let I be a bounded interval and let
P be a partition of I of cardinality n+ 1. If I is either the empty set or a point, then all the intervals in P must also
be either the empty set or a point, and so they both have length zero, and the claim follows. So we may assume that
I is an interval of the form (a,b), [a,b), (a,b], or [a,b].

Let us first suppose that b ∈ I. Since b ∈ I, we know that one of the intervals K in P contains b. Since K

is contained in I, it must therefore be of the form (c,b], [c,b], or {b} for some real number c with a ≤ c ≤ b. In
particular, this means that the set I−K is also an interval of the form [a, c], (a, c), (a, c], [a, c) when c > a, or a point
or empty set when a = c. Either way, we can see that

|I| = |K|+ |I−K|.

On the other hand, since P form a partition of I, we see that P − K forms a partition of I − K. By the induction
hypothesis, we thus have

|I−K| =
∑

J∈P−{K}

|J|.

Combining these two identities we obtain
|I| =

∑
J∈P

|J|

as desired.
Now suppose that b /∈ I, i.e., I is either (a,b) or [a,b). Then one of the intervals K is also of the form (c,b) or

[c,b). In particular, this means that the set I− K is also an interval of the form [a, c], (a, c), (a, c], [a, c) when c > a

or a point or empty set when a = c. The rest of the argument then proceeds as above.

Now the natural question to ask is whether or not the definition of this integral depends on the chosen partition.
The following proposition tells us that it does not.
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Proposition 5 ([Tao15a] Proposition 11.2.13). Let I be a bounded interval, and let f : I → R be a function. Suppose that P

and P ′ are partitions of I such that f is piecewise constant both with respect to P with respect to P ′. Then

p.c.
∫
[P]

f = p.c.
∫
[P ′]

f.

Proof. Consider the common refinement

P#P ′ =
{
K∩ J | K ∈ P and J ∈ P ′} .

Now we want to show that
p.c.

∫
[P]

f = p.c.
∫
[P#P ′]

f = p.c.
∫
[P ′]

f.

So we have
p.c.

∫
[P]

f =
∑
J∈P

cJ |J| , p.c.
∫
[P ′]

f =
∑
K∈P ′

dK |k| , p.c.
∫
[P#P ′]

f =
∑

L∈P#P ′
eL |L| .

Since length is finitely additive by Theorem 4, for any J ∈ P, there exist J1, . . . , Jn ∈ P#P ′ such that each Ji ⊆ J.
Since P#P ′ is a partition, these are disjoint and J1 ∪ · · · ∪ Jn = J, and so

|J| =

n∑
i=1

|Ji| .

Indeed, let x ∈ J, then x ∈ I, and P ′ is a partition of I, so there exists a K ∈ P ′ such that x ∈ K. Then x ∈ J ∩ K = Ji
for some i. Now suppose x ∈ J1 ∪ · · · ∪ Jn. Then x ∈ Ji for some i, and Ji = J ′ ∩ K ′ for some J ′ ∈ P and K ′ ∈ P ′,
but since J ′ ⊆ J, J ′ = J since otherwise P would not be a partition. Thus they are equal. So we get that

p.c.
∫
[P]

f =
∑
J∈P

cJ |J| =
∑

L∈P#P ′
eL |L| = p.c.

∫
[P#P ′]

f.

An analogous result holds for P ′, and thus we get the desired statement.

Example. For example, consider the function f : [0, 3] → R defined as

f(x) =


2 if 0 ≤ x ≤ 1

1 if 1 < x < 3
2

4 if 3
2 ≤ x ≤ 2

0 if 2 < x ≤ 3.

If we change our partition to be P ′ =
{
[0, 34 ), [

3
4 , 1], (1, 32 ), [

3
2 , 2], (2, 94 ], (

9
4 , 3]

}
, then our function is still piecewise

constant with respect to this partition:

f(x) =



2 if 0 ≤ x < 3
4

2 if 3
4 ≤ x ≤ 1

1 if 1 < x < 3
2

4 if 3
2 ≤ x ≤ 2

0 if 2 < x ≤ 9
4

0 if 9
4 < x ≤ 3.
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0 1 2 3

Figure 2.4: The partition P ′ =
{
[0, 34 ), [

3
4 , 1], (1, 32 ), [

3
2 , 2], (2, 94 ], (

9
4 , 3]

}

Then calculating the integral of f with respect to both P and P ′ we get

p.c.
∫
[P]

f = 1 · 2+ 1

2
· 1+ 1

2
· 4+ 1 · 0 =

9

2
.

p.c.
∫
[P ′]

f = 2 · 3
4
+ 2 · 1

4
+ 1 · 1

2
+ 4 · 1

2
+ 0 · 1

4
+ 0 · 3

4
=

9

2
.

Due to this proposition we can define the piecewise constant integral over the interval I, instead of just for a
particular partition.

Definition 6 (Piecewise Constant Integral for an Interval). Let I be a bounded interval, and let f : I → R be a
piecewise constant function on I. We define the piecewise constant integral p.c.

∫
I f by the formula

p.c.
∫
I
f = p.c.

∫
[P]

f,

where P is any partition of I with respect to which f is piecewise constant.

Example. In our running example of f : [0, 3] → R defined by

f(x) =


2 if 0 ≤ x ≤ 1

1 if 1 < x < 3
2

4 if 3
2 ≤ x ≤ 2

0 if 2 < x ≤ 3.

we have p.c.
∫
I f =

9
2 .

To proceed to define the Riemann integral of a general function. We need a few other definitions first.

Definition 7 (Majorize and Minorize). Let f : I → R and g : I → R. We say that g majorizes f on I if we have
g(x) ≥ f(x) for all ∈ I, and that g minorizes f on I if g(x) ≤ f(x) for all x ∈ I.

Example. For example, if I = [0, 1], and f(x) = x2, then g(x) = x majorizes f since for all x ∈ I, x2 ≤ x. Similarly,
h(x) = x3 minorizes x2 since for all x ∈ I, x3 ≤ x2. In our running example of f : [0, 3] → R, defined by

f(x) =


2 if 0 ≤ x ≤ 1

1 if 1 < x < 3
2

4 if 3
2 ≤ x ≤ 2

0 if 2 < x ≤ 3.

the function g ′(x) = 5 majorizes f while the function h(x) = −3 minorizes it.
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Definition 8 (Upper and Lower Riemann Integral). Let f : I → R be a bounded function defined on a bounded
interval I. We define the upper Riemann integral

∫
If by the formula∫

I
f = inf

{
p.c.

∫
I
g | g is a p.c. function on I which majorizes f

}
and the lower Riemann integral

∫
I
f by the formula∫

I

f = sup
{
p.c.

∫
I
g | g is a p.c. function on I which minorizes f

}
.

Example. Consider the function f(x) = x on the interval I = [0, 1]. Looking at the definition of the upper Riemann
integral, we need to bound this function from above by a piecewise constant function. As we take the infimum, the
piecewise constant function approach our function as in figure 2.5.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Figure 2.5: Approximation of f(x) = x by piecewise constant functions from above.

We can do the same thing approximating from below as in figure 2.6,

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Figure 2.6: Approximation of f(x) = x by piecewise constant functions from below.

Finally, the general Riemann integral is defined if the upper and lower Riemann integrals are equal.

Definition 9 (Riemann Integral). Let f : I → R be a bounded function on a bounded interval I. If
∫
I
f =

∫
If, then we

say that f is Riemann integrable on I and define ∫
I
f =

∫
I

f =

∫
I
f.
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Figure 2.7: Upper Riemann sums of Dirichlet’s function

Remark 10. While this definition is quite sufficient and worked for hundreds of years, it turns out to be insufficient
in some ways as shown in the next example.

Example. Consider the function f : [0, 1] → R given by

f(x) =

{
1 if x is rational

0 if x is irrational
.

This is called Dirichlet’s function and is shown in figure 2.7. In this case, any piecewise constant function g that
majorizes f must be such that g(x) ≥ 1 except on a finite number of points. Suppose that g(x) < 1 on some interval
I ⊂ [0, 1]. Then unless I is a single point, there will be a rational number r ∈ I, so then f(r) = 1, but g(r) < 1, so g

does not majorize f. So I must be a single point, however, when we calculate the integral, this point has length 0, so
it will not contribute to the integral at all. Thus, it can be seen that that infimum of all piecewise constant functions
that majorize f is the function g(x) = 1, the integral of this function over [0, 1] is

p.c.
∫
I
g(x)dx = 1 · 1 = 1.

A similar argument shows that the supremum of all piecewise constant functions that minorize f is the function
h(x) = 0, and we have

p.c.
∫
I
h(x)dx = 0 · 1 = 0.

Since the upper and lower Riemann integrals do not agree, this function is not Riemann integrable.

Another way to define the Riemann integral is to use Riemann sums which we briefly review here because it
will be easier to prove that certain functions are not Riemann integrable using this formulation.
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Figure 2.8: The upper Riemann sum U(x2, {[0, 1], (1, 1.5], (1.5, 2]} and the lower Riemann sum
L(x2, {[0, 1], (1, 1.5], (1.5, 2]}

Definition 11 (Riemann Sums). Let f : I → R be a bounded function on a bounded interval I, and let P be a partition
of I. We define the upper Riemann sum U(f, P) and the lower Riemann sum L(f, P) by

U(f, P) =
∑

J∈P,J ̸=∅

|J| · sup {f(x) | x ∈ J}

and
L(f, P) =

∑
J∈P,J ̸=∅

|J| · inf {f(x) | x ∈ J} .

Example. Consider the function f(x) = x2 on the interval [0, 2]. We can partition the interval as
P = {[0, 1], (1, 1.5], (1.5, 2]}, although any other partition works as well. We see that the supremum of x2 on the
interval [0, 1] is 1, while the supremums of x2 on the intervals (1, 1.5] and (1.5, 2] are 2.25, and 4, respectively. So we
have

U(x2, {[0, 1], (1, 1.5], (1.5, 2]} = 1 · 1+ 2.25 · 1
2
+ 4 · 1

2
= 4.125.

We know from our basic calculus classes that the integral should be
∫2
0 x

2dx = 1
3x

3|20 = 1
3 · 23 − 1

30
3 = 8

3 ≈ 2.666,
so our estimate with this Riemann sum is fairly far off, this is because our partition still has pretty big intervals. As
we make them narrower the Riemann sum will converge to the area under the curve. Similarly, we can calculate
the lower Riemann sum of this function with respect to P. In this case we see that the infimum of x2 on the three
intervals is 0, 1, and 2.25. respectively. Thus we have

U(x2, {[0, 1], (1, 1.5], (1.5, 2]} = 0 · 1+ 1 · 1
2
+ 2.25 · 1

2
= 1.625.

Both of these are illustrated in figure 2.8.
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Then we have the following two propositions that connect the Riemann sums to the Riemann integral.

Lemma 12 ([Tao15a] Lemma 11.3.11). Let f : I → R be a bounded function on a bounded interval I and let g be a function
which majorizes f and which is piecewise constant with respect to some partition P of I. Then

p.c.
∫
I
g ≥ U(f, P).

Similarly, if h is a function which minorizes f and is piecewise constant with respect to P, then

p.c.
∫
I
h ≤ L(f, P).

Proof. Suppose that p.c.
∫
I g < U(f, P) =

∑
J∈P |J| sup {f(x) | x ∈ J}. Since p.c.

∫
I g =

∑
J∈P cJ |J|, and since P is the

same in both cases, there must be some J ∈ P such that

cJ |J| < |J| · sup {f(x) | x ∈ J} .

But then this means that there is an x ∈ J such that cJ < f(x) < sup {f(x) | x ∈ J}, a contradiction to the fact that g
majorizes f. Thus

pc.
∫
I
g ≥ U(f, P).

An analogous method can be used to show that

p.c.
∫
I
h ≤ L(f, P)

if h minorizes f.

Proposition 13 ([Tao15a] Proposition 11.3.12). Let f : I → R be a bounded function on a bounded interval I. Then∫
I
f = inf {U(f, P) | P is a partition of I}

and ∫
I

f = sup {L(f, P) | P is a partition of I} .

Proof. From lemma 12, we can see immediately that
∫
If ≥ inf {U(f, P) | P is a partition on I}. For the other direction,

suppose that ∫
I
f > inf {U(f, P) | P is a partition on I} .

Then there exists a partition P such that∑
J∈P

|J| · sup {f(x) | x ∈ J} = U(f, P) <

∫
I
f ≤ p.c.

∫
I
g,

where g is any majorizing piecewise constant function. Since supx∈J ≥ f(x) for all x ∈ J it follows that the function
h that takes the value h(x) = supx∈J f(x) on J is a majorizing function, and we obtain a contradiction

n∑
J∈P

|J| · sup {f(x) | x ∈ J} < p.c.
∫
I
h =

∑
J∈P

|J| · sup {f(x) | x ∈ J} .

An analogous method can be used to obtain the other half of the proposition.
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Figure 2.9: Upper Riemann sums of Dirichlet’s function

We quickly show that the Riemann integral is insufficient for some functions. Consider Dirichlet’s function
f : [0, 1] → R defined by

f(x) =

{
1 if x is rational

0 if x is irrational
.

This function is bounded, so we show that it is not Riemann integrable. Let P be any partition of [0, 1]. If J is not a
point or an empty set, then

sup {f(x) | x ∈ J} = 1,

and in particular this gives
|J| · sup {f(x) | x ∈ J} = |J| .

Thus we have
U(f, P) =

∑
J∈P,J ̸=∅

|J| = 1.

Therefore since the empty set does not contribute to length, we have that
∫
[0,1]f = 1. We can see that in figure 2.9

that no matter how we partition [0, 1], there will always be a rational number in each interval, and an irrational
number in each interval.

Similarly, we have that
inf {f(x) | x ∈ J} = 0

and thus
L(f, P) =

∑
J∈P,J ̸=∅

0 = 0.

So
∫
[0,1]

f = 0. Thus since the upper and lower Riemann integral are not equal, the function is not Riemann inte-

grable.
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Intuitively, the integral of this function should be 0, since there are far less rational numbers than irrational
numbers, so the nonzero part of the integral should not be able to contribute much. This issue will be fixed when
we move to the Lebesgue integral.

Remark 14. Another reason the Riemann integral is insufficient is that if {fn}∞n=1 is a sequence of functions that
tends to f pointwise on some interval I, as n tends to infinity, then we do not necessarily have

lim
n→∞

∫
I
fndx =

∫
I
fdx.

In developing the Lebesgue measure, a goal will be to prove that this holds for Lebesgue integrals.

Finally we say a few words about Jordan measure, this was a reasonable first measure, but we will soon see
that it is insufficient for a robust theory. First we might want to consider what a measure is and what it should do.
There are any number of reasons why we might want to be able to measure the size of sets, the size of a set is one
of its fundamental properties. There are many difficulties in defining this measure, since most sets we might want
to measure are infinite. Intuitively, a point should have size 0, but if we want to measure a set by summing up its
components, we have an infinite number of points, each with size 0, so we would have to make sense of 0 ·∞. There
are other issues. The sets [0, 1] and [0, 2] are in bijection with each other, but a sensible definition of measure would
give the interval [0, 1], a length of 1, while the set [0, 2] should have a length of 2. There are many ways of going
about solving these problems, but there are three rules we would like a measure to satisfy. Calling our measure m,
we should have

(a) m(∅) = 0, the empty set should not have a positive measure.

(b) If E ⊂ F, then m(E) ≤ m(F), since F contains E it should be the same size or bigger.

(c) If E1,E2, . . . are disjoint sets, then m(
⋃∞

i=1 Ei) =
∑∞

i=1m(Ei), consider the sets Ei = [i, i+ 1], then the measure
of the union of all of these sets should be infinite. For a finite example, consider the sets Ei = [ 1

2i , 1
2i−1 ], so

E1 = [12 , 1], E2 = [14 , 12 ], . . .. We know from calculus that the series
∑∞

i=1
1
2n = 1, so we would want the measure

of the union of these sets to be 1.

Definition 15 (Volume). We define the length of an interval I = [a,b], [a,b), (a,b], (a,b) to be |I| = a− b. A box in
Rd is a Cartesian product B = I1 × · · · × Id of d intervals I1 . . . , Id. The volume |B| of such a box is defined as

|B| = |I1|× |I2|× · · · × |Id| .

An elementary set is an subset of Rd which is the union of a finite number of boxes.

Example. The volume of boxes in dimension 0, 1, 2, and 3, can be seen in figure 2.10.
An example of an elementary set can be seen in figure 2.11. Note that the boxes that make up the elementary set

do not need to be of the same dimension.

Lemma 16 ([Tao11] Lemma 1.1.2). Let E ⊂ Rd be an elementary set.

(a) E can be expressed as the finite union of disjoint boxes.
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d = 0 d = 1

B

d = 2

Figure 2.10: Volume of boxes in dimensions 0, 1, and 2.

Figure 2.11: Example of an elementary set in R3
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(b) If E is partitioned as the finite union B1 ∪ · · · ∪ Bk of disjoint boxes, then the quantity m(E) = |B1| + · · · + |Bk| is
independent of the partition.

We refer to m(E) as the elementary measure of E. The main idea of the proof of the second part of the above
proposition is that the length of an interval can be written as |I| = limN→∞ 1

N#(I ∩ 1
NZ). This works fairly well for

elementary sets, but we do not want to define the measure of an arbitrary set E ⊆ Rd as

m(E) = lim
N→∞ 1

Nd
#(E∩ 1

N
Zd).

This will not obey some basic properties that a measure should have. One of these is that if E has a measure A,
then translating E by a vector x⃗, then m(E+ x⃗) = A as well. However, if we let E = Q ∩ [0, 1], then this definition
would give a measure of 1, but the translate E+

√
2 will have a measure of zero, since every element of this set will

be irrational. So we need something more robust, especially since most of the sets we are interested in will not be
elementary sets. One way to do this is with the Jordan measure.

Definition 17 (Jordan Measure). Let E ⊆ Rd be a bounded set.

(a) The Jordan inner measure m∗,(J)(E) of E is defined as

m∗,(J)(E) = sup {m(A) | A ⊂ E,A elementary} .

(b) The Jordan outer measure m∗,(J)(E) is defined as

m∗,(J)(E) = inf {m(B) | B ⊃ E,B elementary} .

(c) If m∗,(J) = m∗,(J), then we say that E is Jordan measurable and call m(E) = m∗,(J) = m∗,(J) the Jordan measure
of E.

Example. The simplest example of a Jordan measurable set is an elementary set E. In this case E is an elementary
set containing E, and no smaller elementary set can contain E, so

inf {m(B) | B ⊃ E,B elementary} = m(E)

. Similarly, E is the largest elementary set that is contained in E, so it is also its own inner measure. Thus E is Jordan
measurable, in particular any rectangle in R2 is Jordan measurable.

This measure satisfies several nice properties.

Proposition 18 ([Tao11] Exercise 1.1.6). Let E, F ⊂ Rd be Jordan measurable sets. Then the following hold:

(a) E∪ F,E∩ F,E\F,E∆F = (E\F)∪ (F\E) are Jordan measurable.

(b) m(E) > 0.

(c) If E, F are disjoint, then m(E∪ F) = m(E) +m(F).

(d) If E ⊂ F, then m(E) ≤ m(F).

(e) m(E∪ F) ≤ m(E) +m(F).
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(f) For any x ∈ Rd,E+ x is Jordan measurable, and m(E+ x) = m(E).

The reason we mention the Jordan measure here is because we can reformulate the Riemann integral in terms of
the Jordan measure.

Proposition 19 ([Tao11] Exercise 1.1.25). Let [a,b] be an interval, and let f : [a,b] → R be a bounded function. Then f is
Riemann integrable if and only if the sets E+ = {(x, t) | x ∈ [a,b], 0 ≤ t ≤ f(x)} and E− are both Jordan measurable in R2,
in which case on has ∫b

a
f(x)dx = m(E+) −m(E−).

This definition gives us the interpretation of the integral as the area under the curve.
While the Jordan measure is more useful than the elementary measure, there are still many places where the

Jordan measure might not be sufficient. One example is on the fat Cantor set. This set is constructed by first taking
the interval [0, 1] and removing the middle 1

4 leaving us with [0, 38 ] ∪ [58 , 1]. Then we proceed by removing the
middle 1

4n out of each of the remaining 2n−1 intervals. This has Jordan outer measure 1 since for any covering of
this set with finite boxes, each box must contain a point of the set. However, it has Jordan inner measure 0 since it
contains no intervals. Thus it is not Jordan measurable. Our next task is to investigate the Lebesgue measure. It is
able to measure these kinds of sets that the Jordan measure cannot, and it also gives us a completion of the Riemann
integral.
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Lebesgue Measure

To get a more robust measure we first start by changing the definition of the Jordan outer measure. When we defined
the Jordan outer measure of a set A we took the infimum of the measure of all elementary sets that contained A.
The elementary sets were finite unions of boxes. We will get a much better measure by changing finite to countable,
and looking at countable unions of boxes that contain our set.

Definition 20 (Lebesgue Outer Measure). We define the Lebesgue outer measure m∗(E) of E as

m∗(E) = inf

{ ∞∑
n=1

|Bn| |

∞⋃
n=1

Bn ⊃ E;B1, . . . , boxes

}
.

Theorem 21 ([Tao11] Exercise 1.2.3). The Lebesgue outer measure m∗ satisfies the following:

(a) (Empty set) m∗(∅) = 0.

(b) (Monotonicity) If E ⊂ F ⊂ Rd, then m∗(E) ≤ m∗(F).

(c) (Countable subadditivity) If E1,E2, . . . ⊂ Rd is a countable sequence of sets, then

m∗
( ∞⋃

n=1

En

)
≤

∞∑
n=1

m∗(En)

, and there is equality in the case where the Ei are pairwise disjoint.

Proof. Properties (a) and (b) come straight from the definition of Lebesgue measure. For property (c) let E1,E2, . . . ⊂
Rd be a countable sequence of sets. We want to show that

inf

{ ∞∑
n=1

|Bn| | Bn are boxes
n⋃

i=1

Ei ⊂
∞⋃

n=1

Bn

}
≤

n∑
i=1

inf

{ ∞∑
n=1

∣∣∣C(i)
n

∣∣∣ | C(i)
n are boxes ,Ei ⊂

∞⋃
n=1

C
(i)
n

}
+ ϵ

for every ϵ > 0. By the definition of infimum, for ϵ > 0 we can find a cover C(i)
1 , . . . of Ei such that

∑∞
n=1

∣∣∣C(i)
n

∣∣∣−
m∗(Ei) ≤ ϵ/ei. Thus, by countable axiom of choice we can construct a double infinite sequence(

C(i,n)

)
i∈N,n∈N

such that Ei ⊆
∞⋃

n=1

C(i,n)

21
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and ∞∑
n=1

∣∣∣C(i,n)

∣∣∣ ≤ m∗(Ei) + ϵ/2i.

But notice that⋃
i∈N

Ei ⊆
⋃
i∈N

⋃
n∈N

C(i,n) =
⋃

(i,n)∈N2

C(i,n) =⇒ ∑
(i,n)∈N2

∣∣∣C(i,n)

∣∣∣ ∈ { ∞∑
n=1

|Bn| | Bn are boxes
n⋃

i=1

Ei ⊂
∞⋃

n=1

Bn

}
.

This satisfies

m∗
(

n⋃
i=1

Ei

)
≤

∑
(in)∈N2

∣∣∣C(i,n)

∣∣∣ = ∑
i∈N

∑
n∈N

∣∣∣C(i,n)

∣∣∣ ≤ ∑
i∈N

(
m∗(Ei) + ϵ/2i

)
=

∑
i∈N

m∗(Ei) + ϵ

as desired.

Example. Let E = {x1, . . .} ⊂ R be a countable set. The Jordan outer measure of such a set can be arbitrarily large.
For instance, the Jordan outer measure of Q is infinite. However, Q has Lebesgue outer measure 0, since we can
cover it by the boxes {x1} , {x2} , . . ., which each have volume 0. This shows that the Lebesgue outer measure of any
countable set is 0.

To continue the analogy with the Jordan measure we would like to define a Lebesgue inner measure. However
no information is gained from such a definition. So we will define the Lebesgue measure slightly differently.

Definition 22 (Lebesgue Measurable Sets). A set E ⊂ Rd is said to be Lebesgue measurable if, for every ϵ > 0,
there exists an open set U ⊂ Rd containing E such that m∗(U\E) ≤ ϵ. If E is Lebesgue measurable, we refer to
m(E) = m∗(E) as the Lebesgue measure of E.

Again we state the following without proof:

Theorem 23 ([Tao11] Lemma 1.2.13). The Lebesgue measure, m, satisfies the following:

(a) (Empty set) m(∅) = 0.

(b) (Monotonicity) If E ⊂ F ⊂ Rd, then m(E) ≤ m(F).

(c) (Countable subadditivity) If E1,E2, . . . ⊂ Rd is a countable sequence of sets, then

m

( ∞⋃
n=1

En

)
≤

∞∑
n=1

m(En)

, and there is equality in the case where the Ei are pairwise disjoint.

Example. From the definitions we can see that every open set if Lebesgue measurable. So for R any interval of the
form (a,b), or any arbitrary union of open intervals will be Lebesgue measurable. Also, the empty set is Lebesgue
measurable, since we can just take arbitrarily small open sets.

Another example of a Lebesgue measurable set is a closed interval [a,b]. Given ϵ > 0, there exists an n ∈ N

such that 1
n < ϵ. Then we can take the set En = (a− 1

2n ,b+ 1
2n ), and we will have

([a,b])\(a−
1

2n
,b+

1

2n
) = (a−

1

2n
,a)∪ (b,b+

1

2n
)

which has Lebesgue outer measure 1
2n . Thus since ϵ was arbitrary, [a,b] is Lebesgue measurable.
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So we define a set to be Lebesgue measurable if we can approximate it by open sets, in such a way that the error
has very small Lebesgue outer measure.

We prove a quick lemma so that we can show that many sets are Lebesgue measurable.

Lemma 24 ([Tao11] Lemma 1.2.13). If E ⊆ Rd and F ⊆ Rd are Lebesgue measurable, then E\F is Lebesgue measurable.

Proof. Given ϵ > 0, there exists an open set U ⊂ Rd such that m∗(U\E) < ϵ. Then U\F contains E\F and is open,
and this will approximate E\F with an arbitrarily small error, thus it is Lebesgue measurable.

Lemma 25 ([Tao11] Lemma 1.2.13). If E, F ⊆ Rd are Lebesgue measurable sets, then E1 ∩ E2 is Lebesgue measurable.

Proof. For a given ϵ > 0, there exist open sets U,V ⊆ Rd such that m∗(U\E) < ϵ and m∗(V \ F) < ϵ. Then U1 ∩U2

is open and will contain E∩ F and this will approximate E∩ F up to an arbitrary error. Thus E∩ F is measurable.

Proposition 26 ([Tao11] Lemma 1.2.13). If E1,E2, . . . ,E3 ⊂ Rd are a sequence of Lebesgue measurable sets, then the union⋃∞
n=1 En is Lebesgue measurable.

Proof. Let ϵ > 0 be arbitrary. By assumption, each En is contained in an open set Un whose difference Un\En

has Lebesgue outer measure at most ϵ/2n. By countable subadditivity, this implies that
⋃∞

n=1 En is contained in⋃∞
n=1Un and the difference (

⋃∞
n=1Un) (

⋃∞
n=1 En) has Lebesgue outer measure at most ϵ. The set

⋃∞
n=1Un being

a union of open sets, is itself open, and the claim follows.

We end this section on the Lebesgue measure by showing that there are still sets that are not Lebesgue measur-
able.

Proposition 27 ([Tao11] Proposition 1.2.8). There exists a subset E ⊂ [0, 1] which is not Lebesgue measurable.

Proof. Consider the quotient R/Q. Each element of it is dense in R and thus has a non empty intersection with
[0, 1]. Applying the axion of choice we can find an element xC ∈ C ∩ [0, 1] for each C ∈ R/Q. We then let E =

{xC | C ∈ R/Q} be the collection of coset representatives. By construction E ⊂ [0, 1]. Let y be any element of [0, 1].
Then it must lie in some coset C of R/Q, and thus differs from xC by some rational number in [−1, 1]. In other
words we have

[0, 1] ⊂
⋃

q∈Q∩[−1,1]

(E+ q).

On the other hand, we have ⋃
q∈Q∩[−1,1]

(E+ q) ⊂ [−1, 2].

Also the different translates E+ q are disjoint, because E contains only one element from each coset of Q.
We claim that E is not Lebesgue measurable. To see this suppose for the sake of contradiction that E was

Lebesgue measurable. Then the translates E + q would also be Lebesgue measurable. By countable additivity,
we thus have

m

 ⋃
q∈Q∩[−1,1]

(E+ q)

 =
∑

q∈Q∩[−1,1]

m(E+ q),

and thus by translation invariance,
1 ≤

∑
q∈Q∩[−11]

m(E) ≤ 3.

On the other hand, the sum
∑

q∈Q∩[−1,1]m(E) is either 0, if m(E) = 0, or infinite, if m(E) > 0, leading to a
contradiction either way.
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Chapter 4

Lebesgue Integration

We define Lebesgue integration in a few steps. Starting with simple functions which play an analogous role to the
piecewise constant functions we used in our discussion of Riemann integration.

Definition 28 (Characteristic Functions). Let A ⊆ Rd be a measurable set. The characteristic function on A is defined
as

χA(x) =

{
1 if x ∈ A

0 if x /∈ A.

Example. These are some of the simplest functions. Dirichlet’s function can be defined as χQ∩[0,1].

Definition 29 (Simple Function). A simple function f : Rd → C is a finite linear combination

f = c11E1
+ · · ·+ ck1Ek

of indicator functions 1Ei
of Lebesgue measurable sets Ei ⊂ Rd, and the ci ∈ C. An unsigned simple function

f : Rd → [0,+∞] is defined similarly, but with the ci ∈ [0,+∞] instead.

Example. Dirichlet’s function that we discussed above is a simple function. Let E1 = Q ∩ [0, 1] and let E2 =

R\Q ∩ [0, 1]. Then Dirichlet’s function is
f = 1 · 1E1

+ 0 · 1E2
.

Any piecewise constant function is a simple function as well. Let I = [0, 2] and consider the partition P =

{[0, 1], (1, 2], (2, 3]}. Then the function f : I → R defined by

f(x) =


2 if x ∈ [0, 1]

7 if x ∈ (1, 2]

1 if x ∈ (2, 3]

is a simple function. We can write it as

f = 2 · 1[0,1] + 7 · 1(1,2] + 1 · 1(2,3].

From this definition it is fairly intuitive for how we should define the Lebesgue integral of a simple unsigned
function.

25
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Definition 30 (Integral of Simple Functions). If f = c11E1
+ · · ·+ ck1Ek

is an unsigned simple function, the integral
Simp

∫
Rd f(x)dx is defined as

Simp
∫

Rd
f(x)dx = c1m(E1) + · · ·+ ckm(Ek).

Example. We can now take the unsigned simple integral of Dirichlet’s function. Write it as f(x) = 1 · 1Q∩1 + 0 ·
1R\Q∩[0,1]. Then we have

Simp
∫
[0,1]

f(x)dx = 1 ·m(Q ∩ [0, 1]) + 0 ·m(R\Q ∩ [0, 1]) = 1 ·m(Q ∩ [0, 1]) = 0.

Definition 31 (Absolutely Integrable). A complex simple function f : Rd → C is said to be absolutely integrable if
Simp

∫
Rd |f(x)|dx < ∞. If f is absolutely integrable, the integral SimpRd f(x)dx is defined for real signed f by the

formula
Simp

∫
Rd

f(x)dx = Simp
∫

Rd
f+dx− Simp

∫
Rd

f−dx

where f+ = max(f(x), 0) and f−(x) = max(−f(x), 0). And we define it for complex valued f by the formula

Simp
∫

Rd
f(x)dx = Simp

∫
Rd

Re f(x)dx+ i SimpRd Im f(x)dx

Definition 32 (Almost Everywhere). We say that a property is said to hold almost everywhere if the set for which the
property fails has Lebesgue measure zero.

Remark 33. The importance of almost every equality cannot be overstated. One of the crucial ideas of measure
theory is that it does not matter if two functions, sets, etc. differ by a set of measure zero. We can consider them to
be the same and everything works out nicely. This will come up over and over, some theorems will only hold for
almost every x ∈ Rn, we will identify to functions to be in the same equivalence class in some spaces if they are the
same almost everywhere, and in many more places.

Example. We say that two functions, f and g are the same almost everywhere if the set
{
x ∈ Rd | f(x) ̸= g(x)

}
has

Lebesgue measure zero. So consider Dirichlet’s function f : [0, 1] → R defined by

f(x) =

{
1 if x is rational

0 if x is irrational

Then the function g(x) = 0 is equal to f(x) almost everywhere since the set where they are not equal is Q ∩ [0, 1]
which has Lebesgue measure 0.

To define the Lebesgue integral of a general function we first need the notion of a measurable function, of which
there are many, but we just choose one.

Definition 34 (Measurable Function). An unsigned function f : Rd → [0,+∞] is measurable if for every open set
U ⊂ [0,+∞], the set f−1(U) is Lebesgue measurable. An almost everywhere defined complex-valued function
f : Rd → C is measurable if f−1(U) is measurable for every open set U ⊆ C.

Example. If f is a continuous function, then f−1(U) is always open if U is open, so since every open set is Lebesgue
measurable, f is measurable.
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Consider Dirichlet’s function f : [0, 1] → R defined by

f(x) =

{
1 if x is rational

0 if x is irrational
.

Let U ⊆ [0,+∞] be an open set, if 0 /∈ U and 1 /∈ U, then f−1(U) = ∅, which is measurable. If 0 ∈ U and 1 ∈ U, then
f−1(U) = [0, 1], which is measurable since we can approximate it by the open sets En = (− 1

n , 1+ 1
n ) with arbitrarily

small error. If 1 ∈ U and 0 /∈ U, then f−1(U) = Q ∩ [0, 1], we have seen that Q is Lebesgue measurable and since
[0, 1] is measurable, so is their intersection by lemma 25. Finally, if 0 ∈ U and 1 /∈ U, then f−1(U) = [0, 1] ∩ (R\Q),
R is measurable since it is the complement of ∅, and since complements and intersections of measurable sets are
measurable by lemmas 24 and 25, f−1(U) is measurable for all open U ⊆ [0,+∞] and thus f is measurable.

Definition 35 (Lower and Upper Lebesgue Integral). Let f : Rd → [0,+∞] be an unsigned function. We define the
lower unsigned Lebesgue integral

∫
Rdf(x)dx to be the quantity∫

Rd
f(x)dx = sup

{
Simp

∫
Rd

g(x)dx | 0 ≤ g ≤ f;g simple
}

where g ranges over all unsigned simple functions g : Rd → [0,+∞] that are pointwise bounded by f. There is an
analogous definition of upper unsigned Lebesgue integral but we will not use it.

Now we have

Definition 36 (Unsigned Lebesgue Integral). If f : Rd → [0,+∞] is measurable, we define the unsigned Lebesgue
integral

∫
Rd f(x)dx of f to be equal to the lower unsigned Lebesgue integral.

Finally we get to the notion of absolute integrability.

Definition 37 (Absolutely Integrable). An almost everywhere defined measurable function f : Rd → C is said to be
absolutely integrable if the unsigned integral ∫

Rd
|f(x)|dx

is finite. If f is real-valued and absolutely integrable, we define te Lebesgue integral by the formula∫
Rd

f(x)dx =

∫
Rd

f+(x)dx−

∫
Rd

f−(x)dx,

and if f is complex valued we define it by∫
Rd

f(x)dx =

∫
Rd

Re f(x)dx+ i

∫
Rd

Im f(x)dx.

Now we return to the function f : [0, 1] → R defined as

f(x) =

{
1 if x is rational

0 if x is irrational
.

We saw that this function is not Riemann integrable. However, this is just the characteristic function on Q ∩ [0, 1],
which is a measurable set, so it is Lebesgue integrable, with Lebesgue integral 0, since this set has Lebesgue measure
0.
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Figure 4.1: Approximation of f(x) = x by simple functions from below.

Now we prove that if a function is Riemann integrable, then it is Lebesgue integrable and the integrals are equal.
To distinguish between the two integrals we denote the Riemann integral by R

∫
I f.

To prove our last proposition we make a quick definition that we could have made before, but it will only be
used here.

Definition 38 (Upper and Lower Lebesgue Integral). Let E be a measurable subset of Rn, and let f : E → R be a
function. We define the upper Lebesgue integral to be∫

E
f = inf

{∫
E
g | g is an absolutely integrable function from E to R that majorizes f

}
and we define the lower Lebesgue integral to be∫

E
f = sup

{∫
E
g | g is an absolutely integrable function from E to R that minorizes f

}
Example. Consider the function f(x) = x3 on the interval [0, 1]. We see that the function g(x) = x majorizes f since
f(x) = x3 ≤ x on [0, 1]. Furthermore, we have∫

[0,1]
|x|dx =

∫
[0,1]

xdx = sup

{∫
[0,1]

s | s is simple and non-negative and minorizes x

}
.

We can see that simple functions approximate the function g(x) = x. Notice that in this case that since x is Riemann
integrable, we can approximate it by piecewise constant functions. So

∫
[0,1] xdx = 1

2 and this function majorizes
f(x) = x3, so we get ∫

[0,1]
x3dx ≤

∫
[0,1]

xdx.

Taking absolutely integrable functions closer and closer to f(x) will get us an upper bound on it. Similarly, we can
approximate it from below by the lower Lebesgue integral and get a lower bound on the function. In this case, as we
will since in the next proposition, since the function is Riemann integrable, it is Lebesgue integral and its Riemann
and Lebesgue integrals are equal.

Then we have
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Lemma 39 ([Tao15b] Lemma 8.3.6). Let E be a measurable subset of Rd and let f : E → R be a function. Let A be a real
number, and suppose

∫
Ef =

∫
Ef = A. Then f is absolutely integrable and

∫
E
f =

∫
E
f =

∫
E
f = A.

Finally, we have:

Proposition 40 ([Tao15b] Proposition 8.4.1). Let I ⊆ R be an interval, and let f : I → R be a Riemann integrable function.
Then f is also absolutely integrable, and

∫
I f = R

∫
I f.

Proof. Write A = R
∫
I f. Since f is Riemann integrable, we know that the upper and lower Riemann integrals are

equal to A. Thus, for every ϵ > 0, there exists a partition P of I into smaller intervals J such that

A− ϵ ≤
∑
J∈P

|J| inf
x∈J

f(x) ≤ A ≤
∑
J∈P

|J| sup {f(x)x ∈ J} ≤ A+ ϵ.

Let f−ϵ : I → R be the function
f−ϵ =

∑
J∈P

inf {f(x) | x ∈ J} 1J(x)

and let f+ϵ be defined as
f+ϵ =

∑
J∈P

sup {f(x) | x ∈ J} 1J(x).

These are simple function and hence are measurable and absolutely integrable. We have∫
I
f−ϵ =

∑
J∈P

inf {f(x) | x ∈ J} 1J(x)

and ∫
I
f+ϵ =

∑
J∈P

sup {f(x) | x ∈ J} 1J(x).

And hence

A− ϵ ≤
∫
I
f−ϵ ≤ A ≤

∫
I
f+ϵ ≤ A+ ϵ.

Since f+ϵ majorizes f and f−ϵ minorizes f, we thus have

A− ϵ ≤
∫
I
f ≤

∫
I
f ≤ A+ ϵ

for every ϵ, and thus ∫
I
f =

∫
I
f = A

and thus f is absolutely integrable
∫
I f = A.



30 CHAPTER 4. LEBESGUE INTEGRATION

−2 −1 0 1 2

0

0.2

0.4

0.6

0.8

1 e−x2

Figure 4.2: The graph of e−x2

We end with a brief geometric discussion on the difference between the Riemann integral and the Lebesgue
integral. The Riemann integral can be thought of as taking the area under the curve by approximating it with boxes,
whose width goes to 0. This works well for many functions, but can easily fail. The difference with the Lebesgue
integral is it switches the perspective to use horizontal boxes. For each value that the function takes it is basically
multiplying that value by the size of the set that takes the value, which is its measure. The idea of measure of
a set was what allowed Lebesgue to define the integral in this different, and better way. The following example
illustrates this idea.

Example. If we wanted to evaluate the Riemann integral of this function, then we would begin by partitioning
the domain, say we partition the interval [−2, 2] as P = {[−2,−1], (−1, 0], (0, 1], (1, 2]}. Then we can take the Upper
Riemann sum with respect to this partition to be

U(e−x2
, P) =

∑
J∈P

(sup {f(x) | x ∈ J}) · |J| .

Then to evaluate the Riemann integral we will shrink down the length of the intervals in the partition to 0. On the
other hand, if we want to evaluate the Lebesgue integral, we will start by partitioning the range of the function. We
can pick values on the range such that {0.2, 0.4, 0.6, 0.8, 1}, and then create the simple function with respect to these
values. Then for 0.2 we would take the function 0.2 · 1A0.2 where A0.2 is the subset of the interval [-2, 2] where

A0.2 = [−2, x]∪ [x ′, 2]

where x is the smallest point such that f(x) = 0.2 and x ′ is the largest point such that f(x ′) = 0.2. Then we would
make A0.4 which is defined as

A0.4 = [x,y]∪ [y ′, x ′]
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Figure 4.3: The Riemann and Lebesgue integral of e−x2
, respectively.

where x and x ′ are as above and y is the smallest point such that f(y) = 0.4 and y ′ is the largest point such that
f(y ′) = 0.4. We can continue in this way to get the rest of the sets A0.6,A0.8,A1. Then our simple function is

0.2 · 1A0.2 + 0.4 · 1A0.4 + 0.6 · 1A0.6 + 0.8 · 1A0.8 + 1 · 1A1
.

We can see this in second image of figure 4.3. On the other hand, if we wanted to integrate this function with the
Riemann integral, we would begin by partitioning the domain. We might partition [−2, 2] as

P ′ = {[−2,−1], (−1, 0], (0, 1], (1, 2]} .

Then we can take the piecewise function that majorizes e−x2
, by taking the value on each piece of the partition to

be the supremum of values on the partition, as can be seen in the left hand side of figure 4.3.

The main difference between the two methods of integration is that with the Lebesgue integral we are able to
break up the domain into more pieces, and pieces that are not connected. Whereas with the Riemann integral, we
must partition the domain first, but as we have seen this does not work in the case of more complex functions such
as Dirichlet’s function. In that case the partition of the domain is complex, while the range is particularly simple, it
only assumes two values on the range. For functions such as these the Lebesgue integral works far better.

4.1 Convergence Theorems

In this section we prove the monotone convergence theorem, Fatou’s lemma, and the dominated convergence the-
orem because all three are frequently used throughout this thesis. These theorems give conditions for when a limit
and an integral commute. This is another advantage of Lebesgue integration over Riemann integration. This section
follows [Bas13]. Throughout we let µ denote the Lebesgue measure.
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Theorem 41 (Monotone Convergence Theorem, [Bas13] Theorem 7.1). Suppose fn is a sequence of non-negative mea-
surable functions with f1(x) ≤ f2(x) ≤ · · · for all x and with

lim
n→∞ fn(x) = f(x).

Proof. Note that
∫
fn is an increasing sequence. Let L be the limit of this sequence. Since fn ≤ f for all n, we have

L ≤
∫
f, we show the opposite inequality.

Let s =
∑m

i=1 aiχEi
be any non-negative simple function less than or equal to f and let c ∈ (0, 1). Let An =

{x | fn(x) ≥ cs(x)}. Since fn(x) increases to f(x) for each x and c < 1, then A1 ⊆ A2 ⊆ · · · and
⋃∞

n=1An = Rn. For
each n, ∫

fn ≥
∫
An

fn ≥ c

∫
An

s

= c

∫
An

m∑
i=1

aiχEi

= c

m∑
i=1

aiµ(Ei ∩An).

If we let n → ∞ then the right hand side converges to

c

m∑
i=1

aiµ(Ei) = c

∫
s.

Therefore, L ≥ c
∫
s. Since c is arbitrary in the interval (0, 1), then L ≥

∫
s. Take the supremum over all simple s ≤ f,

we obtain L ≥
∫
f.

Example.

(a) Let f : Rn → [0,∞] be a non-negative function. We will prove that limn→∞ ∫
Rn n log

(
1+ f

n

)
dµ =

∫
Rn fdµ.

First, let

fn = n log
(
1+

f

n

)
= log

(
1+

f

n

)n

.

Note that each n is non-negative and measurable. Further, f1 ≤ f2 ≤ · · · since log is an increasing function
and the sequence

lim
n→∞

(
1+

f(x)

n

)n

= ef(x)

is an increasing sequence. Thus by the monotone convergence theorem

lim
n→∞

∫
Rn

fndµ =

∫
Rn

fdµ.

(b) Let our space be X = [0,∞) with the Lebesgue measure and take fn(x) = −1/n. Then
∫
X fn = −∞, but

f1 ≤ f2 ≤ · · · ≤ f = 0 and
∫
X 0 = 0. The monotone convergence theorem does not work here because the fn

are negative.
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Figure 4.4: An increasing sequence of functions.

(c) Suppose fn = nχ(0,1/n) .Then fn ≥ 0, fn → 0 for each x, but
∫
X fn = 1 does not converge to

∫
0 = 0. The

monotone convergence theorem does not work here because the fn decrease to f, they don’t increase to f.

Remark 42. The monotone convergence theorem gives us a condition for when lim and
∫

commute. The next
theorem, Fatou’s lemma tells us the best we can do when we don’t put any conditions on the fn.

Theorem 43 (Fatou’s Lemma, [Bas13] Theorem 7.8). Suppose the fn are non-negative and measurable. Then∫
Rn

lim inf
n→∞ fn ≤ lim inf

n→∞
∫

Rn
fn.

Proof. Let gn = infi≥n fi. Then the gn are non-negative and gn increases to lim infn→∞ fn. Clearly gn ≤ fi for
each i ≥ n, so

∫
gn ≤

∫
fi. Therefore ∫

gn ≤
∫
i≥n

∫
fi.

If we take the limit in the above inequality as n → ∞ on the left hand side we obtain
∫

lim inf fn by the monotone
convergence theorem and on the right hand side we obtain lim inf

∫
fn.

Example. Let E ⊂ R be Lebesgue measurable and define

fn =

{
χE if n is even

1− χE if n is odd.
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Consider what happens if X = [0, 2] and E = (1, 2]. Then we get the sequence of functions

fn =

{
χ(1,] if n is even

χ[0,1] if n is odd.

Note that as n increases, the graphs of these functions swap back and forth and that for any n∫
[0,2]

fn = 1

but lim infn fn = 0. Thus

0 =

∫
[0,2]

lim inf
n→∞ fn < lim inf

n→∞
∫
[0,2]

fn = 1

which is an example of strict inequality in Fatou’s lemma.

Finally we reach the dominated convergence theorem which is similar to the monotone convergence theorem in
that it gives us a condition for which lim and

∫
commute.

Theorem 44 (Dominated Convergence Theorem, [Bas13] Theorem 7.9). Suppose that fn are measurable real-valued
functions and fn(x) → f(x0 for each x. Suppose that there exists a non-negative integrable function g such that |fn(x)| ≤ g(x)

for all x. Then

lim
n→∞

∫
Rn

fndµ → ∫
fdµ.

Proof. Since fn + g ≥ 0, by Fatou’s lemma,∫
f+

∫
g =

∫
(f+ g) ≤ lim inf

n→∞
∫
(fn + g) = lim inf

n→∞
∫
fn +

∫
g.

Since g is integrable, ∫
f ≤ lim inf

n→∞
∫
fn.

Similarly, g− fn ≥ 0, so ∫
g−

∫
f =

∫
(g− f) ≤ lim inf

n→∞
∫
(g− fn) =

∫
f+ lim inf

n→∞
∫
(−fn),

and hence
−

∫
f ≤ lim inf

n→∞
∫
(−fn) = − lim sup

n→∞ fn.

Therefore ∫
f ≥ lim sup

n→∞
∫
fn

which proves the theorem.

Example. We will use the Dominated Convergence theorem to compute

lim
n→∞

∫
R

n sin(x/n)
x(x2 + 1)

dµ.
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Let x ∈ R and define

fn(x) =
n sin(x/n)
x(x2 + 1)

for each n ∈ N. Note that each fn is measurable and the sequence {fn} converges pointwise to 1
1+x2 for all x ̸= 0.

Indeed,

lim
n→∞ fn(x) = lim

n→∞
(

sin(x/n)
x/n

)
1

1+ x2
=

1

1+ x2
.

This allows us to choose g(x) = 1
1+x2 as our dominating function. Thus we can apply the dominated convergence

theorem to conclude that

lim
n→∞

∫
R

n sin(x/n)
x(x2 + 1)

dµ = lim
n→∞

∫∞
−∞

n sin(x/n)
x(x2 + 1)

dx

=

∫∞
−∞

1

1+ x2
dx

= arctan(x)|∞−∞
= π.
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Chapter 5

Abstract Measure Theory

In this section we very briefly introduce abstract measure theory with the goal of proving the Radon-Nikodym
Theorem. This theorem is crucial in the proof of the duality of Lp and Lq. Everything in this section is based
on [Bas13] but can also be found in [Tao11], [Roy88] or any other standard analysis book. Most of the definitions
and theorems here are exactly the same as those in the Lebesgue measure section, just in a more general setting.
Throughout this section let X be a set. Taking X = Rn we will be in the Lebesgue setting.

Definition 45. A σ-algebra is a collection A of subsets of X such that

(a) ∅ ∈ A and X ∈ A.

(b) If A ∈ A, then Ac ∈ A.

(c) Whenever A1,A2, . . . are in A, then
⋃∞

i=1Ai ∈ A and
⋂∞

i=1Ai ∈ A.

An example of this we have already seen is the collection of Lebesgue measurable sets.

Definition 46. The pair (X,A) is called a measurable space and a set A is measurable if A ∈ A.

Remark 47. A typical example of a measurable space is a probability space. One can think of a σ-algebra as the
possible events in the space, or as the set of possible outcomes of an experiment.

Definition 48. Let (X,A) be a measurable space. A measure on (X,A) is a function µ : A → [0,∞] such that

(a) µ(∅) = 0.

(b) If Ai ∈ A, i = 1, 2, . . . are pairwise disjoint, then

µ(
∞⋃
i=1

Ai) =

∞∑
i=1

µ(Ai).

We call the triple (X,A,µ) a measure space.

These are the same properties that we wanted the Lebesgue measure to satisfy. We are simply taking those ideas
and abstracting them.

37
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Example. Let X = N, let A = 2X, the power set of X and let µ(A) = |A| for A ⊆ X. This is called the counting measure
of X and simply counts how many elements are in the given set.

Definition 49. Let (X,A,µ) be a measure space. We say that µ is a finite measure if µ(X) < ∞. We also say that µ is
σ-finite if there exist sets Ei ∈ A such that µ(Ei) < ∞ for each i and X =

⋃∞
i=1Ai.

Example. Consider the measure space R with the Lebesgue measure. Let Ei = (−i, i). Then for each i, µ(Ei) <

infty, but
⋃∞

i=1 Ei = R, so the Lebesgue measure is a σ-finite measure.

Next we define the concept of measurable function which is the same as in the case of the Lebesgue measure.
This will allow us to define the integral of a measurable function with respect to a particular measure.

Definition 50. A function f : X → R is measurable if {x | f(x) > a} ∈ A for all a ∈ R. A complex-valued function is
measurable if both its real and imaginary parts are measurable.

Example. Suppose f is real valued and constant. Then the set {x | f(x) > a} is either empty or all of X, so f is
measurable.

Definition 51. Let (A,A,µ) be a measure space. If

s =

n∑
i=1

aiχEi

is a non-negative measurable simple function, the integral of s is∫
X
sdµ =

n∑
i=1

aiµ(Ei).

Here, if ai = 0 and µ(Ei) = ∞, we use the convention that aiµ(Ei) = 0. If f ≥ 0 is a measurable function, define∫
X
fdµ = sup

{∫
sdµ | 0 ≤ s ≤ f, s simple

}
.

Finally, to define the integral of a general measurable function let f be measurable and set f+ = max(f, 0) and
f− = max(−f, 0). Provided that

∫
X f+dµ and

∫
X f−dµ are both finite, define∫

X
fdµ =

∫
X
f+dµ−

∫
X
f−dµ.

If f = u+ iv is a complex valued function define∫
X
fdµ =

∫
X
udµ+ i

∫
X
vdµ.

One of the most important propositions in this section is the following criteria for a function to be zero almost
everywhere. This will be used constantly.

Proposition 52. Suppose f is measurable and non-negative and
∫
fdµ = 0. Then f = 0 almost everywhere.

Proof. If f is not equal to 0 almost everywhere, there exists an n such that µ(An) > 0 where An = {x | f(x) > 1/n}.
But since f is non-negative,

0 =

∫
f ≥

∫
An

f ≥ 1

n
µ(An),

a contradiction.

This will prove to be particularly useful when we are looking at the integrals of |f|.
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5.1 Signed Measures

Now we proceed towards the Radon-Nikodym Theorem. We will first look at signed measures which are a measure
that takes negative values as well as positive.

Definition 53 (Signed Measure). Let A be a σ-algebra. A signed measure is a function µ : (−∞,∞] such that µ(∅) = 0

and µ (
⋃∞

i=1Ai) =
∑∞

i=1 µ(Ai) whenever the Ai are pairwise disjoint.

Definition 54 (Positive, Negative, Null Sets). Let µ be a signed measure. A set A ⊂ A is called a positive set for µ if
µ(B) ≥ 0 whenever B ⊂ A and B ∈ A. We say that A ∈ A is a negative set if µ(B) ≤ 0 whenever B ⊂ A and B ∈ A.
Finally, a null set is one where µ(B) = 0 whenever B ⊂ A and B ∈ A.

Example. Suppose µ is the Lebesgue measure and

ν(A) =

∫
A
fdµ

for some integrable f. If we let P = {x | f(x) ≥ 0}, then P is a positive set and if N = {x | f(x) ≤ 0}, then N is a negative
set. The Hahn decomposition theorem below will decompose our space into P and N. First we need a proposition.

Proposition 55 ([Bas13] Proposition 12.4). Let µ be a signed measure which takes values in (−∞,∞]. Let E be a measurable
set with µ(E) < 0. Then there exists a measurable subset F of E that is a negative set with µ(F) < 0.

Proof. If E is a negative set, we are done. If not, there exists a measurable subset with positive measure. Let n1 be
the smallest positive integer such that there exists E1 ⊂ E with mu(E1) ≥ 1/n1. We then define pairwise disjoint
measurable sets E2,E3, . . . by induction as follows. Let k ≥ 2 and suppose E1, . . . ,Ek−1 are pairwise disjoint
measurable sets with µ(Ei) > 0 for i = 1, . . . ,k− 1. If Fk = E− (E1 ∪ · · · ∪ Ek−1 is a negative set, then

µ(Fk) = µ(E) −

k−1∑
i=1

µ(Ei) ≤ µ(E) < 0

and Fk is the desired set F. If Fk is not a negative set, let nk be the smallest positive integer such that there exists
Ek ⊂ Fk with Ek measurable and µ(Ek) ≥ 1/nk. We stop the construction if there exists a k such that Fk is a
negative set with µ(Fk) < 0. If not, we continue and let F =

⋂
k Fk − E − (

⋃
k Ek). Since 0 > µ(E) > −∞ and

µ(Ek) ≥ 0, then

µ(E) = µ(F) +

∞∑
k=1

µ(Ek).

Then µ(F) ≤ µ(E) < 0, so the sum converges.
Lastly we show that F is a negative set. Suppose G ⊂ F is measurable with µ(G) > 0. Then µ(G) ≥ 1/N for some

N. But this contradicts the construction, since for some k, nk > N, and we would have chosen the set G instead of
the set Ek at stage k. Therefore F must be a negative set.

Now we arrive at the Hahn Decomposition Theorem which will be a crucial part of the Radon-Nikodym theo-
rem. We write A △ B for (A−B)∪ (B−A).

Theorem 56 (Hahn Decomposition Theorem, [Bas13] Theorem 12.5).

(a) Let µ be a signed measure taking values in (−∞,∞]. There exist disjoint measurable sets E and F in A whose union is X
and such that E is a negative set and F is a positive set.
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(b) If E ′ and F ′ are another such pair, then E △ E ′ = F △ F ′ is a null set with respect to µ.

(c) If µ is not a positive measure, then µ(E) < 0. If −µ is not a positive measure, then µ(F) > 0.

Proof.

(a) Let L = inf {µ(A) | A is a negative set}. Choose negative sets An such that µ(An) → L. Let E =
⋃∞

n=1An. Let
Bn = An − (B1 ∪ · · · ∪ Bn−1) for each n. Since An is a negative set, so is each Bn. Also, the Bn are disjoint and⋃

n Bn =
⋃

nAn = E. If C ⊂ E, then

µ(C) = lim
n→∞µ

(
C∩

(
n⋃

i=1

Bi

))
= lim

n→∞
n∑

i=1

µ(C∩ Bi) ≤ 0.

Thus E is a negative set. Since E is a negative set,

µ(E) = µ(An) + µ(E−An) ≤ µ(An).

Letting n → ∞, we obtain µ(E) = L.

Let F = Ec. If F were not a positive set, there would exist B ⊂ F with µ(B) < 0. By Proposition 55 there exists a
negative set C contained in B with µ(C) < 0. But then E∪C would be a negative set with µ(E∪C) < µ(E) = L,
a contradiction.

(b) To prove uniqueness, if E ′, F ′ are another such pair of sets and A ⊂ E − E ′ ⊂ E, then µ(A) ≤ 0. But A ⊂
A−E ′ = F ′ − F ⊂ F ′, so µ(A) ≥ 0. Therefore µ(A) = 0. The same argument works if A ⊂ E ′ −E, and any subset
of E △ E ′ can be written as the union of A1 and A2 where A1 ⊂ E− E ′ and A2 ⊂ E ′ − E.

(c) Suppose µ is not a positive measure but µ(E) = 0. If A ∈ A, then

µ (A) = µ (A∩ E) + µ (A∩ F) ≥ µ(E) + µ (A∩ F) ≥ 0,

which says that µ must be a positive measure, a contradiction. A similar argument applies for −µ and F.

This theorem leads to the following definition.

Definition 57. We say that two measures are mutually singular if there exists two disjoint sets E and F in A such that
E∪ F = X and µ(E) = µ(F) = 0. This is denoted µ ⊥ ν.

Suppose f is non-negative and integrable with respect to µ. If we define ν by

ν(A) =

∫
A
fdµ,

then ν is a measure. We will now consider the converse. If we are given two measures ν and µ, when can we find
an f such that ν(A) =

∫
A fdµ holds for all subsets A ∈ A.

Definition 58. A measure ν is said to be absolutely continuous with respect to a measure µ if ν(A) = 0 whenever
µ(A) = 0. We write ν ≪ µ.

We need one last lemma before we can prove the Radon-Nikodym theorem.
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Lemma 59 ([Bas13] Lemma 13.3). Let µ and ν be finite positive measures on a measurable space (X,A). Either µ ⊥ ν or
else there exists ϵ > 0 and G ∈ A such that µ(G) > 0 and G is a positive set for ν− ϵν.

Proof. Consider the Hahn decomposition for nu− 1
nµ. Thus there exists a negative set En and a positive set Fn for

this measure, En and Fn are disjoint and their union is X. Let F =
⋃

n Fn and En =
⋂

n En. Note Ec =
⋃

n Ec
n =⋃

n Fn = F.
For each n,E ⊂ En, so

ν(E) ≤ ν(En) ≤
1

n
µ(En) ≤

1

n
µ(X).

Since ν is a positive measure this implies that ν(E) = 0. One possibility is that µ(Ec) = 0, in which case µ ⊥ ν.
The other possibility is that µ(Ec) > 0. In this case, µ(Fn) > 0 for some n. Let ϵ = 1

n and G = Fn. Then from the
definition of Fn, G is a positive set for ν− ϵµ.

Finally we can state and prove the Radon-Nikodym theorem.

Theorem 60 (Radon-Nikodym, [Bas13] Theorem 13.4). Suppose µ is a σ-finite positive measure on a measurable space
(X,A) and ν is a finite positive measure on (X,A) such that ν is absolutely continuous with respect to µ. Then there exists a
µ-integrable non-negative function f which is measurable with respect to A such that

ν(A) =

∫
A
fdµ

for all A ∈ A. Moreover, if g is another such function, then f = g almost everywhere with respect to µ.

Proof. The main idea of the proof is to look at the set of f such that
∫
A fdµ ≤ ν(A) and choose the f such that the

integral is largest. However, we will start by proving the uniqueness statement. Suppose f and g are two functions
such that ∫

A
fdµ = ν(A) =

∫
A
gdµ

for all A ∈ A. For every set A we have ∫
A
(f− g) = ν(A) − ν(A) = 0

but this implies that f− g = 0 almost everywhere with respect to µ.
Next let us assume that µ is a finite measure. Define

F =

{
g measurable | g ≥ 0,

∫
A
gdµ ≤ ν(A) for all A ∈ A

}
.

Note that F is not empty because 0 ∈ F . Let L = sup
{∫

gdµ | g ∈ F
}

, and let gn be a sequence in F such that∫
gndµ → L. Let hn = max(g1, . . . ,gn).

We claim that if g1,g2 ∈ F , then h2 = max(g1,g2) ∈ F as well. To see this, let B = {x | g1(x) ≥ g2(x)}, and
write ∫

A
h2dµ =

∫
A∩B

h2dµ+

∫
A∩Bc

h2dµ

=

∫
A∩B

g1dµ+

∫
A∩Bc

g2dµ

≤ ν(A∩ B) + ν(A∩ Bc)

= ν(A).
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Therefore h1 ∈ F . By induction, one can also show that hn ∈ F .
The hn increase to some function f. By the monotone convergence theorem,∫

A
fdµ ≤ ν(A)

for all A ∈ A and ∫
fdµ ≥

∫
hndµ ≥

∫
gndµ

for each n, so
∫
fdµ = L.

Next we prove that f is the desired function. Define a measure λ by

λ(A) = ν(A) −

∫
A
fdµ.

Note that λ is a positive measure since f ∈ F . Suppose λ is not mutually singular to µ. By Lemma 59, there exits
ϵ > 0 and G ∈ A, µ(G) > 0 and G is a positive set for λ− ϵµ. For any A ∈ A,

ν(A) −

∫
A
fdµ = λ(A) ≥ λ(A∩G) ≥ ϵµ(A∩G) =

∫
A
ϵGχG

dµ,

or
ν(A) ≥

∫
A
(f+ ϵχG)dµ.

Hence f+ ϵχG ∈ F . But ∫
X
(f+ ϵχG)dµ = L+ ϵµ(G) > L,

a contradiction to the definition of L. Therefore λ ⊥ µ. Then there must exist H ∈ A such that µ(H) = 0 and
λ(Hc) = 0. Since ν ≪ µ, then ν(H) = 0, and hence

λ(H) = ν(H) −

∫
H
fdµ = 0.

This implies that λ(A) = 0 or ν(A) =
∫
A fdµ for all A ∈ A.

Now we suppose that µ is σ-finite. There exist F1 ⊆ F2 ⊆ · · · such that
⋃∞

i=1 Fi = X and µ(Fi) < ∞. Let µi be
the restriction of µ to Fi. Define νi by the restriction of ν to Fi. If µ(A) = 0, then µ(A∩ Fi) = 0, hence ν(A∩ Fi) = 0,
and thus νi(A) = 0. Therefore νi ≪ µi. If fi is the function that we found above, we must have that fi = fj on Fi if
i ≤ j. Define f by f(x) = fi(x) if x ∈ Fi. Then for each A ∈ A

ν(A∩ Fi) = νi(A) =

∫
A
fidµi =

∫
A∩Fi

fdµ.

Letting i → ∞ shows that f is the desired function.



Chapter 6

Topology

Here we introduce the notion of a topological space along with many examples. This section is based off of [AF08],
a much more detailed discussion can be found there with lots of further examples and concepts.

Definition 61. Let X be a non-empty set and let T be a collection of subsets of X such that

(a) X ∈ T and ∅ ∈ T .

(b) If {Eα}α∈I is a arbitrary collection of sets in T , then
⋃

α∈I Ei ∈ T .

(c) If E1, . . . ,En are each in T , then
⋂n

i=1 Ei ∈ T .

Definition 62. The elements of T are called the open sets.

If a space is a metric space, then it is automatically a metric space by letting T be the collection of open sets.
Now we give many examples of topologies.

Example. (a) The simplest topology on a space X is the topology T = {∅,X}. This is called the trivial topology.
In a sense that we will soon define, it is the coarsest topology we can put on a space. It does not give much
information about the space.

(b) In the opposite direction, for a set X, we can take T to be the collection of every subset of X. We call this the
discrete topology. This is a very, in a sense that we will soon define, fine topology. It carries every detail of
the space. Often times neither the trivial topology nor the discrete topology is very useful, since the discrete
topology does not carry enough information about the space, while the discrete topology carries too much
space. Something in the middle can be more useful, but the trivial and discrete topologies are good basic
examples to exhibit some topological phenomena.

(c) The Sierpinski topology on a set X = {a,b} is the set T = {∅,X, {b}}.

(d) Let X = R, then letting T be the collection of open sets is a topology. In this case an open set will be a union
of sets of the form (a,b) with a,b ∈ R. So (1, 2) ∪ (π, 5) is an open set. As is

⋃∞
n=1(n,n+ 1). This is called the

Euclidean topology on R.
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(e) Similarly, we can take X = Rd and let T be the open sets in X. This time they will be unions of open balls:

B(x, r) =
{
y ∈ Rd | d(x,y) < r

}
.

This is also called the Euclidean topology on Rd.

(f) We can put topologies on finite sets as well. Let X = {1, 2, 3, 4} and let

T = {∅, {2} , {1, 2} , {2, 3} , {1, 2, 3} , {1, 2, 3, 4}} .

The reader can check that T satisfies the axioms of a topology.

(g) Let X be an infinite set, we can take X = R for example. Then let

T = {A ⊆ X | A = ∅ or X\A is finite} .

This is called the cofinite topology.

(h) This example comes from algebraic geometry. Take X = R2, and consider polynomials with coefficients in R

over two variables, we call this set R[X, Y] where X and Y are the two variables. This set contains elements like
X2 + Y3,X7, 3, 4+XY2 + Y6X, and so on. Then for any subset S ⊂ R[X, Y], let

V(S) =
{
(x,y) ∈ R2 | f(x,y) = 0 for all f ∈ S

}
⊆ R2.

Then let T be sets of the form R2\V(S) for any subset S ⊂ R[X, Y]. This is called the Zariski topology and is crucial
in algebraic geometry.

(i) The above example can be extended for those who are familiar with a little ring theory. Let R be any commuta-
tive ring, meaning multiplication is commutative, i.e., ab = ba for any a,b ∈ R. Then let SpecR be the set of all
prime ideals in R, and take an ideal I ◁ R, and consider the set

V(I) = {p ∈ SpecR | I ⊆ p}

the set of all prime ideals containing the ideal I. Then if we let T contain sets of the form SpecA\V(I) for some
ideal I ◁A, this forms a topology also called the Zariski topology. These two topologies might look very different,
but over a single variable polynomial ring over an algebraically closed field they are actually identical due to
the weak nullstellensatz. This second version of the Zariski topology is just a generalized version of the first
that is useful for scheme theory. This example is meant to show that topologies can show up everywhere.

This list should show that there is not a unique topology on a space. Every space has at least two, the discrete
topology and the trivial topology. On R we demonstrated four different examples, the discrete, the trivial, the
Euclidean and the cofinite. There are many others that can be put on R as well.

Definition 63. Let X be a set and let T1, T2 be two topologies on X. If T1 ⊂ T2, then T2 is said to be finer than T1,
and T1 is said to be coarser than T2. Furthermore, if T2 is finer than T1 but not equal to T1, then T2 is said to be
strictly finer than T1. Strictly coarser is defined analogously.

Example. For any set X, the trivial topology is coarser than the discrete topology and the discrete topology is finer
than the trivial topology. For any nonempty set ,the discrete topology is strictly finer than the trivial topology and
the trivial topology is strictly coarser than the discrete topology.
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We quickly define the notion of compactness which will be quite useful later on.

Definition 64. An open cover of a set E in a metric space X is a collection {Gα} of open subsets of X such that
E ⊂ ⋃

αGα.

Definition 65. A subset K of a metric space X is said to be compact if every open cover of K contains a finite subcover.
This means that if {Gα} is an open cover of K, then there are finitely many indices α1, . . . ,αn such that

K ⊂ Gα1
∪ · · · ∪Gαn .

Theorem 66 ([Rud76] Theorem 2.36). If {Kα} is a collection of compact subsets of a metric space X such that the intersection
of every finite subcollection of {Kα} is nonempty, then

⋂
α Kα is nonempty.

Proof. Fix K1 of {Kα}, and let Gα = Kc
α. Assume that no point of K1 belongs to every Kα. Then the Gα form an open

cover of K1, and since K1 is compact, there are finitely many Gα1
, . . . ,Gαn such that K1 ⊂ Gα1

∪ · · ·Gαn . But this
means that

K1 ∩ Kα1
∩ · · · ∩ Kαn = ∅,

a contradiction.
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Chapter 7

Vector Spaces

We give a brief introduction to vector spaces, mainly with just basic definitions, based off of [Lan87]

Definition 67. A field K is a set with two binary operations + and ·, along with two elements 0, the additive identity,
and 1, the multiplicative identity, meaning 0+ x = x+ 0 = x and 1 · x = x · 1 = x satisfying

(a) If x,y ∈ K, then x+ y ∈ K and x · y ∈ K.

(b) If x ∈ K, then there is an element −x ∈ K such that x+ (−x) = 0, we call −x the additive identity of x. If x ̸= 0,
then there is an element x−1 such that x · x−1 = 1, we call x−1, the multiplicative identity of x.

(c) The elements 0 and 1 are in K.

Example. Many of the objects we are most familiar with in math are fields.

(a) The real numbers, R are a field.

(b) The complex numbers C are a field.

(c) The rational number Q are a field.

(d) The integers, Z, are not a field. This is because not every element has a multiplicative inverse, for example there
is no integer x such that x · 2 = 1.

(e) There are other types of fields, for example, the set

Q(
√
2) =

{
a+ b

√
2 | a,b ∈ Q

}
is a field.

(f) The set

R(x) =

{
f(x)

g(x)
| f(x),g(x)are polynomials with coefficients in R and g(x) ̸= 0

}
is a field as well.

Definition 68. A vector space V over a field K is a set of objects which satisfies the following properties:
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(a) Given elements u, v,w ∈ V , we have
(u+ v) +w = u+ (v+w).

(b) There is an element of V , denoted 0, such that

0+ u = u+ 0 = u

for all u ∈ V .

(c) Given an element u of V , there exists an element −u in V such that

u+ (−u) = 0.

(d) For all elements u, v of V , we have
u+ v = v+ u.

(e) If c ∈ K, then c(u+ v) = cu+ cv.

(f) If a,b ∈ K, then (a+ b)v = av+ bv.

(g) If a,b ∈ K, then (ab)v = a(bv).

(h) For all elements u of V , we have 1 · u = u.

Example. We are also familiar with many examples of vector spaces.

(a) R is a vector space over R.

(b) Rd is a vector space over R for any d > 0.

(c) Similarly, Cd is a vector space over C.

(d) The field we looked at above, Q(
√
2) is a vector space over Q.

(e) Another example is the set of continuous functions f : [a,b] → R, denoted C([a,b], R). This is a vector space
over R, as we can add two continuous functions and get a continuous function, and multiplying a continuous
function by an element in R is still a continuous function. Also, the constant 0 function is a continuous function
as is the function that is constant 1.



Chapter 8

Metric Spaces

More information on this section can be found in [Rud76]

Definition 69. We say that (X,d), where X is a set and d is a function d : X× X → R, is a metric space, if for any two
points p,q ∈ X, d satisfies the following:

(a) d(p,q) > 0 if p ̸= q,and d(p,p) = 0.

(b) (symmetry) d(p,q) = d(q,p).

(c) (triangle inequality) d(p,q) ≤ d(p, r) + d(r,q) for any r ∈ X.

Any function with these properties is called a metric.

Remark 70. The third property, the triangle inequality, says that it should be shorter to travel in a straight line
between two points than to first go to another, intermediate point, and then to the destination. In figure 8.1, the
distance from p to q is shorter than the distance from p to r plus the distance from r to q.

p q

r

Figure 8.1: Illustration of the triangle inequality

Example.

(a) Let X = R. Then the absolute value function is a metric on R, and thus (R, |·|) is a metric space. Indeed,
|x− y| = 0 if and only if x = 0, otherwise it is greater than 0. Similarly, |x− y| = |y− x|, and finally, the absolute
value satisfies the triangle inequality: |x− y| ≤ |x− z|+ |z− y|.
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(b) Let X = R2 and let d(⃗x, y⃗) =
√

(x1 − y1)2 + (x2 − y2)2 where x⃗ = (x1, x2) and y⃗ = (y1,y2). This satisfies the
properties of a metric, and so (R2,d) is a metric space. This is called the Euclidean metric.

(c) Let X = R2 and let d(⃗x, y⃗) = |x1 − y1|+ |x2 − y2|. This is a different metric, but we will soon see that these two
metrics on R2 are equivalent. This metric is called the taxicab metric.

(d) Let X = Rn, and let p ∈ R and p ≥ 1. Then

dp(⃗x, y⃗) =

(
n∑

i=1

|xi − yi|
p

) 1
p

is a metric on Rn, setting n = 1 and p = 1 we get the absolute value on R, and letting n = 2 and p = 1 gives us
the taxi cab metric, and setting n = 2 and p = 2 gives the Euclidean metric. These are called the dp metrics on
Rn.

(e) Let X = Rn and let d : X× X → R be defined as

d(⃗x, y⃗) = sup {|xi − yi| | i = 1, 2 . . . ,n} .

This is another metric on Rn, called the d∞ metric.

(f) Let X = C([0, 1], R) be the set of continuous functions from [0, 1] to R. Then

d(f,g) = sup {d(f(x),g(x)) | x ∈ [0, 1]}

is a metric on X, often called the supremum metric.

(g) Another example on R is to take
d(x,y) = |arctan(x) − arctan(y)| .

Definition 71. Let (X,d) be a metric space.

(a) The open ball centered at x of radius r is B(x, r) = {y ∈ X | d(x,y) < r}.

(b) The closed ball centered at x of radius r is B(x, r) = {y ∈ X | d(x,y) ≤ r}.

(c) The sphere centered at x of radius r is S(x, r) = {y ∈ X | d(x,y) = r}.

Example. Consider the metric space (R, |·|), the real line with the usual absolute value. Then B(0, 1), B(0, 1),
and S(0, 1) are depicted in figure 8.2. The open ball is B(0, 1) = {x ∈ R | |x| < 1}, the closed ball is B(0, 1) =

{x ∈ R | |x| ≤ 1}, and the sphere is S(0, 1) = {x ∈ R | |x| = 1} = {−1, 1}.

Example. Figure 8.3 shows B((0, 0), 1) in R2 under the ℓ1, ℓ2, and ℓ∞ metrics.

Definition 72. Let (X,d) be a metric space and let Y ⊂ X. We say that

(a) A point y ∈ Y is an interior point of Y if B(y, r) ⊂ Y for some r > 0. We call the set of interior points the interior
of Y, and denote it by int(M).

(b) a point y ∈ Y is an exterior point if B(y, r) ∩ Y = ∅ for some r > 0. We call the set of exterior points the exterior
of Y, and denote it by ext(M).
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−2 −1 0 1 2

−2 −1 0 1 2

−2 −1 0 1 2

Figure 8.2: B(0, 1), B(0, 1), and S(0, 1).

−1.5 −1 −0.5 0.5 1 1.5
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−0.5

0.5

1
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Figure 8.3: B((0, 0), 1) in R2 under the d1/2,d1,d2, and d∞ metrics.
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(c) a point y ∈ Y is a boundary point of Y if for every r > 0, B(y, r) ∩M ̸= ∅ and B(y, r) ∩Mc ̸= ∅. We call the set
of boundary points the boundary of Y, and denote it by ∂Y.

Remark 73. For every Y ⊂ X, we can partition X into three pieces:

X = int(Y)∪ ext(Y)∪ ∂(Y).

Example.

(a) int(B(y, r)) = {x ∈ X | d(y, x) < r} = int(B(y, r)).

(b) ext(B(y, r)) = {x ∈ X | d(y, x) ≤ r} = ext(B(y, r)).

(c) ∂(B(y, r)) = {x ∈ X | d(y, x) = r} = ∂(B(y, r)).

Definition 74. For Y ⊂ X, its closure is Y = int(Y)∪ ∂(Y).

Example. The closure of B(y, r) is B(y, r), that is,

B(y, r) = B(y, r).

Proposition 75. Let (X,d) be a metric space and let Y ⊂ X. Then a point x ∈ X belongs to Y if and only if for every r > 0,
B(x, r)∩ Y ̸= ∅.

The operations int, ext, and ∂ are not independent of each other.

Proposition 76. Let (X,d) be a metric space and let Y ⊂ X, then

(a) ext(Y) = int(Yc).

(b) ∂(Y) = ∂(Yc).

(c) (
∫
(Y))c = Yc.

Definition 77. Let (X,d) be a metric space, and let Y ⊂ X. Then

(a) Y is open if Y ∩ ∂Y = ∅.

(b) Y is closed if ∂Y ⊂ Y.

Example.

(a) B(y, r) is open.

(b) B(y, r) is closed.

Remark 78.

(a) A subset Y of a metric space (X,d) is open if and only if int(Y) = Y, and it is closed if and only if Y = Y.

(b) The topology of a metric space, (X,d) is the set of open subsets of X.

(c) Y is closed if and only if Yc is open and Y is open if and only if Yc is closed.



53

Proposition 79. Let (X,d) be a metric space.

(a) The union of an arbitrary family of open subsets of X is open.

(b) The intersection of an arbitrary finite family of open subsets of X is open.

(c) The union of an arbitrary finite family of closed subsets of X is closed.

(d) The intersection of an arbitrary family of closed subsets of X is closed.

Proof.

(a) Let us consider an arbitrary family of open sets {Uλ | λ ∈ Λ}. We want to show that
⋃

λ∈ΛUλ is open. Let x be
a point of this union. That is, z ∈ Uλ0

for some λ0 ∈ Λ. As Uλ0
is open, x ∈ int(Uλ0

), meaning that there exists
r > 0 such that B(x, r) ⊂ Uλ0

. But then
B(x, r) ⊂

⋃
λ∈Λ

Uλ0
.

Showing that x is an interior point of the union.

(b) Let us consider an arbitrary finite family of open sets {Un | n ∈ {1, . . . ,N}}. We want to show that
⋂N

n=1Un is
open. That is, x ∈ Un for every n ∈ {1, . . . ,N}. Then as Un is open, there exists a radius rn > 0 such that
B(x, rn) ⊂ Un. Let us define r = min {rn | n ∈ {1, . . . ,N}}. This agrees with one of the rn’s so it is positive.
Further, for every n ∈ {1, . . . ,N}, we have that

B(x, r) ⊂ B(x, rn) ⊂ Un.

That is B(x, r) ⊂ ⋂N
n=1Un, so we are done.

(c) Let us consider an arbitrary finite family of closed set {Vn | n ∈ {1, . . . ,N}}. We want to show that
⋃n

n=1 Vn is
closed. Equivalently, (

N⋃
n=1

Vn

)c

is open. The above is just
⋂N

n=1 V
c
n, where each Vc

n is open. So we are done by part (2).

(d) Let us consider an arbitrary family of closed sets {Vλ | λ ∈ Λ}. We want to show that
⋂

λ∈Λ Vλ is closed. Equiv-
alently, (

⋂
λ∈ΛUλ)

c is open. This is
⋃

λ∈Λ Vc
λ where each Vc

λ is open. Thus we are done by part (1).

Definition 80. A topological space X is Hausdorff if for every pair of distinct points x,y ∈ X, there exist disjoint
open sets U and V such that x ∈ U and y ∈ V .

Example.

(a) Take the topological space R with the Euclidean topology. Recall that this topology arises from the usual abso-
lute value on R. Let x,y ∈ R, x ̸= y and let r = |x− y|. Then the open sets B(x, r/2) and B(y, r/2) are disjoint
open sets containing x and y. This can be seen in figure 8.4.
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x y

U
V

X

0 y x+y
2

x 1

d(x, r/2)d(y, r/2)

Figure 8.4: R with the Euclidean topology is Hausdorff.

(b) More generally, for any metric space (X,d), let x,y ∈ X and let r = d(x,y), then B(x, r/2) and B(y, r/2) are two
disjoint open sets containing x and y, and thus X is Hausdorff.

(c) An example of a non-Hausdorff space is R under the cofinite topology. Let x,y ∈ R. Any open set U containing
x, has a finite complement, and any open set V containing y has a finite complement. Thus since both U and V

are infinite sets with finite complements, they must intersect at some point, so this space cannot be Hausdorff.

(d) Other examples of non-Hausdorff spaces are Cn under the Zariski topology, or SpecA under the Zariski topol-
ogy for any commutative ring A.
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Normed Spaces

The references used for this section are [Con90] and [Kre78].

Definition 81. If X is a vector space over a field K, a seminorm is a function p : X → [0,∞) having the properties:

(a) p(x+ y) ≤ p(x) + p(y) for all x,y ∈ X.

(b) p(αx) = |α|p(x) for all α ∈ K and x ∈ X.

It follows that p(0) = p(0 · 0) = 0 · p(0) = 0. A norm is a seminorm p such that x = 0 if p(x) = 0. Usually we will
denote a norm by ∥·∥.

Definition 82. A normed space is a pair (X, ∥·∥) where X is a vector space and ∥·∥ is a norm.

Definition 83. If p and q are positive real numbers such that

1

p
+

1

q
= 1,

then we call p and q a pair of Hölder conjugate exponents.

Example. Letting p = q = 2, we get a pair of conjugate exponents. We take p = 1,q = ∞ to be a pair of conjugate
exponents.

First we prove two famous inequalities that will help us establish some examples of normed spaces.

Definition 84. A real function f defined on an interval (a,b) where −∞ ≤ a < b ≤ ∞, is called convex if the
inequality

f((1− λ)x+ λy) ≤ (1− λ)f(x) + λf(y)

holds whenever a < x,y < b and 0 ≤ λ ≤ 1. On the other hand, a function is concave if the reverse inequality holds:

f((1− λ)x+ λy) ≥ (1− λ)f(x) + λf(y)

Remark 85. A function is convex if x < t < y, the point (t, f(t)) should lie below the line connecting (x, f(x)) and
(y, f(y)). This can be seen in figure 9.1. On the other hand the function

√
x is not convex on [0, 1]. Indeed, let

x = 1
2 ,y = 3

4 and λ = 3
4 , then √

3

4
· 1
2
+

1

4

3

4
= 0.75 ≥ 3

4

√
1

2
+

1

4

√
3

4
≈ 0.655.
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x

Figure 9.1: The function ex is convex while
√
x is not

We now turn to some of the most important spaces in functional analysis.

Definition 86. Define Lp(X) =
{
f : X → R |

∫
X |f(x)|p dµ < ∞}

where µ is the Lebesgue measure.

Theorem 87 (Hölder’s Inequality, [Rud87] Theorem 3.5). Let p and q be conjugate exponents, 1 < p < ∞. Let f,g ∈
Lp(X). Then ∫

X
f(x)g(x)dµ ≤

{∫
X
f(x)pdµ

}1/p{∫
X
g(x)qdµ

}1/q
. (9.1)

Proof. Let A and B be the two factors on the right of (9.1). If A = 0, then f = 0 hence fg = 0, so (9.1) holds. If A > 0

and B = ∞, the statement is again trivial. So we only need to consider the case 0 < A < ∞, 0 < B < ∞. Put

F =
f

A
, G =

g

B
.

This gives ∫
X
Fpdµ =

∫
X
Gqdµ = 1. (9.2)

Indeed, we have ∫
X

(
f(x)

A

)p

dµ =
f(x)p∫

X f(x)pdµ
=

1∫
X f(x)dµ

∫
X
f(x)dµ = 1,

since the integral
∫
X f(x)dµ is just a constant we can move it outside the integral. If c ∈ [a,b] such that 0 < F(c) < ∞

and 0 < G(c) < ∞, there are real numbers s and t such that F(c) = es/p,G(c) = et/q. The existence of s and t come

from the fact that the function
(
e1/p

)x
and

(
e1/q

)x
are surjective on (0,∞). Since 1

p + 1
q = 1, and ex is convex,

we have

es/p+t/q ≤ es

p
+

et

q
.

This applies the convex inequality

f((1− λ)x+ λy) ≤ (1− λ)f(x) + λf(y)
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whenever −∞ < x,y < ∞ and 0 ≤ λ ≤ 1. Plugging in x = s,y = t,ϕ(x) = ex, and λ = 1
p we get the above

inequality. It follows that

F(c)G(c) ≤ F(c)p

p−1
+

G(c)p

q
(9.3)

for every c ∈ [a,b]. Integrating 9.3 yields ∫b
a
F(x)G(x)dx ≤ 1

p
+

1

q
= 1

by 9.2. Then inserting F = f
A ,G = g

B , into 9.3, we get∫b
a f(x)g(x)dx(∫b

a f(x)pdx
)1/p (∫b

a g(x)q
)1/q ≤ 1,

giving us the inequality.

Remark 88. In Rn, Hölder’s inequality looks like

n∑
i=1

|xi| |yi| ≤
(

n∑
i=1

|xi|
p

)1/p( n∑
i=1

|yi|
q

)1/q

where x = (x1, . . . , xn),y = (y1, . . . ,yn).

Theorem 89 (Minkowski’s Inequality, [Rud87] Theorem 3.5). Let 1 < p < ∞. Let C[a,b] be the space of continuous
functions f : [a,b] → R. Let f,g ∈ C[a,b]. Then(∫b

a
(f(x) + g(x))pdx

)1/p

≤
(∫b

a
f(x)pdx

)1/p

+

(∫b
a
g(x)pdx

)1/p

. (9.4)

Proof. First we let q be the conjugate of p. Then we write

(f+ g)p = f · (f+ g)p−1 + g · (f+ g)p−1. (9.5)

We want to apply Hölder’s inequality, but to do this we need to make sure that (f+ g)p−1 ∈ Lq, i.e. we need to
check that ∫

X
((f+ g)p−1)qdµ < ∞.

Indeed, ∫
X
((f+ q)p−1)qdµ =

∫
X
(f+ g)q(p−1)dµ =

∫
X
(f+ q)pdµ < ∞.

Hölder’s inequality gives∫
X
f(x) · (f+ g)p−1dµ ≤

(∫
X
f(x)pdµ

)1/p (∫
X
(f(x) + g(x))(p−1)qdµ

)1/q
. (9.6)
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We have an equivalent inequality with f switched with g. Adding those two together and noting that (p− 1)q = p

since p and q are conjugates, so p+ q = pq, we get∫
X
(f(x) + g(x))pdµ ≤

(∫
X
(f(x) + g(x))pdµ

)1/q
[(∫

X
f(x)pdµ

)1/p
+

(∫
X
g(x)pdµ

)1/p
]

. (9.7)

It is enough to prove the inequality in the case that the left hand side is greater than 0 and the right hand side is less
than ∞, since otherwise it is trivial. The convexity of the function tp for 0 < t < ∞ shows that(

f+ g

2

)p

≤ 1

2
(fp + gp) .

Hence the left hand side of (9.7) is less than ∞ and the inequality follows from (9.7) if we divide by the first factor
on the right hand side of (9.7), since 1− 1

q = 1
p since we have∫

X(f(x) + g(x))pdµ(∫
X(f(x) + g(x))pdµ

)1/q =

(∫
X
(f(x) + g(x))pdµ

)1/p
≤
(∫

X
f(x)pdµ

)1/p
+

(∫
X
g(x)pdµ

)1/p
.

These two theorems are so important that we provide an alternate, more geometric proof. We first need a lemma.

Lemma 90 (Young’s Inequality, [Roy88] page 140). Assume 1 < p,q < ∞ are such that 1
p + 1

q = 1. Then for any
x,y ≥ 0. we have

xy ≤ xp

p
+

yq

q
.

Proof. We first claim that if 0 ≤ s ≤ x and 0 ≤ t ≤ y, then t ≥ sp−1 or s ≥ tq−1. Indeed, if t < sp−1, then raising
both sides to the power q− 1 we get tq−1 < s, since (p− 1)(q− 1) = pq− p− q+ 1 = 1 which comes from the fact
that pq = p+ q since p and q are Hölder conjugates. Then the rectangle [0, x]× [0,y] are covered by the sets{

(s, t) | 0 ≤ s ≤ x, sp−1 ≤ t ≤ 1
}

,
{
(s, t) | 0 ≤ t ≤ y, tq−1 ≤ s ≤ 1

}
.

The area of the rectangle is xy, while those of the covering sets are∫x
0
sp−1dt =

xp

q
,
∫y
0
tq−1dt =

yq

q
.

Thus we get the desired result.

Now we can prove Hölder’s inequality.

Alternate Proof of Hölder’s Inequality. If
(∫

X |f(x)|p dµ
)1/p

= 0 or
(∫

X |g(x)|q dµ
)1/q

= 0, then f = 0 almost every-
where, or g = 0 almost everywhere, so fg = 0 almost everywhere, therefore we may assume, after a suitable
normalization, that

(∫
X |f(x)|p dµ

)1/p
=
(∫

X |g(x)|q dµ
)1/q

= 1.
For any x ∈ X, we apply Young’s inequality to see that

|f(x)g(x)| ≤ |f(x)|p

p
+

|g(x)q|

q
.
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Integrating both sides we get∫
X
|fg|dµ ≤

(∫
X |f(x)|p dµ

)1/p

p
+

(∫
X |g(x)|q dµ

)1/q

q
=

1

p
+

1

q
= 1,

and we get the desired result.

Example.

(a) Take X = Rn and let p ≥ 1 with p ∈ R

∥x⃗∥ =

(
n∑

i=1

|⃗x|p

)1/p

.

Notice that this is very similar to the metrics we defined earlier, this is because the metric actually arises from
the norm, if we set

d(⃗x, y⃗) = ∥x⃗− y⃗∥

we will get the definition of the ℓp metric we had earlier. Not all metrics arise from norms however.

(b) An example of a metric space that does not arise from a norm is the sequence space s. The space consists of the
set of all sequences of complex numbers, and the metric is defined as

d(x,y) =
∞∑
j=1

1

2j

∣∣ξj − ηj
∣∣

1+
∣∣ξj − ηj

∣∣
where x = (ξj) and y = (ηj). It can be seen from lemma 92 that this metric cannot arise from a norm.

(c) Consider X = C([a,b], R) the space of continuous functions from [a,b] to R. This is a normed space with norm

∥f∥∞ = max {|f(x)| | x ∈ [a,b]} .

Now we show that the norm ∥·∥∞ is indeed a norm. We establish the three conditions:

(a) Let f,g ∈ C([a,b], R), and consider

∥f+ g∥∞ = max {|f(x) + g(x)| | x ∈ [a,b]} ≤ max {|f(x)| | x ∈ [a,b]}+max {|g(x)| | x ∈ [a,b]} = ∥f∥∞+∥g∥∞ ,

where the middle inequality comes from the fact that f and g might take their maximum values at different
x values.

(b) Let α ∈ R and consider

∥αf∥∞ = max {|αf(x)| | x ∈ [a,b]} = max {|α| |f(x)| | x ∈ [a,b]} = |α|max {|f(x)| | x ∈ [a,b]} .

(c) Suppose ∥f∥∞ = 0, this means that max {|f(x)| | x ∈ [a,b]} = 0, and thus f = 0.

(d) Let X = C([a,b], R), another norm we can put on this space using the Riemann integral, we could also use the
Lebesgue integral, but it is unnecessary since we are only integrating continuous functions. Let

∥x∥1 =

∫1
0
|x(t)|dt.
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(e) Another norm on continuous functions C([a,b], R) is defined as

∥f∥2 =

(∫b
a
|f(x)|2 dx

)1/2

.

More generally, for any p ≥ 1,p ∈ R, there is a norm defined as

∥f∥p =

(∫b
a
|f(x)|p dx

)1/p

.

We quickly prove that ∥x⃗∥p is indeed a norm. We verify the three conditions:

(a) Let f,g ∈ C([a,b], R), then

∥f+ g∥p =

(∫b
a
|f(x) + g(x)|p dx

)1/p

≤
{∫b

a
|f(x)|p dx

}1/p

+

{∫b
a
|g(x)|p dx

}1/p

by Minkowski’s inequality.

(b) Let α ∈ R and consider

∥αf∥p =

(∫b
a
|αf(x)|p dx

)1/p

=

(
|α|p

∫b
a
|f(x)|p dx

)1/p

= |α| ∥f∥p .

(c) Suppose ∥f∥p = 0. Then

∥f∥p =

(∫b
a
|f(x)|p dx

)1/p

= 0

∫b
a
|f(x)|p dx = 0

f(x)p = 0

f(x) = 0.

The natural question to ask now, is what happens if 0 < p < 1? The next proposition from [Roy88] tells us that
we no longer have a normed space in this case, but we do have a metric space. For the sake of simplicity.

Let us denote

∥f∥p =

(∫
X
fpdµ

)1/p
.

This suggests that ∥·∥p is a norm, which will be true once we make a slight modification to our space. We will not
need any properties of it being a norm for the following proof, and we will explain that it is a norm in the section
on Lp spaces.

Proposition 91 (Minkowski’s Inequality for 0 < p < 1). let f,g ∈ Lp(X) be non-negative functions and suppose
0 < p < 1. Then

∥f+ g∥p ≥ ∥f∥p + ∥g∥p .
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Proof. Since xp is concave for 0 < p < 1, let t ∈ (0, 1) and we have

(f+ g)p =

(
t
f

t
+ (1− t)

g

(1− t)

)p

≥ t
fp

tp
+ (1− t)

gp

(1− t)p
.

Integrating both sides gives

∥f+ g∥pp ≥ r
∥f∥pp
tp

+ (1− t)
∥g∥pp

(1− t)p
.

Let

t =
∥f∥p

∥f∥p + ∥g∥p
, 1− t =

∥g∥p
∥f∥p + ∥g∥p

.

Then

∥f+ g∥pp ≥ t
∥f∥pp
∥f∥pp(

∥f∥p + ∥g∥p
)p + (1− t)

∥g∥pp
∥g∥pp(

∥f∥p + ∥g∥p
)p

∥f+ g∥pp ≥ t
(
∥f∥p + ∥g∥p

)p
+ (1− t)

(
∥f∥p + ∥g∥p

)p
∥f+ g∥p ≥ ∥f∥p + ∥g∥p .

Lemma 92. A metric d induced by a norm on a normed space X satisfies

(a) (translation invariance) d(x+ a,y+ a) = d(x,y)

(b) (scaling invariance) d(αx,αy) = |α|d(x,y)

for all x,y ∈ X and every scalar α.

Proof. We have
d(x+ a,y+ a) = ∥x+ a− (y+ a)∥ = ∥x− y∥ = d(x,y)

and
d(αx,αy) = ∥αx−αy∥ = |α| ∥x− y∥ = |α|d(x,y).

We can use this lemma to prove that some distances cannot arise from norms.

Example.

(a) Let X be a K-vector space and consider the distance defined by

d(x,y) =

{
1 if x ̸= y

0 if x = y.

Let α ̸= 1 and α ̸= 0 and x,y ∈ X with x ̸= y. Then by lemma 92, if this distance arose from a metric, we would
have

d(αx,αy) = |α|d(x,y)

but then d(αx,αy) ̸= 1, which isn’t true. Thus this metric cannot have come from a distance.
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(b) Consider the sequence space s. Let α > 0 and then we have

d(αx,αy) =
∞∑
j=1

1

2j

∣∣αξj −αηj
∣∣

1+
∣∣αξj −αηj

∣∣ = ∞∑
j=1

1

2j
|α|
∣∣ξj − ηj

∣∣
1+ |α|

∣∣ξj − ηj
∣∣ ̸= |α|d(x,y).

Proposition 93 ([Con90] Proposition 3.1.3). If (X, ∥·∥) is a normed space, then

(a) the function X× X → X defined by (x,y) 7→ x+ y is continuous.

(b) the function K× X → X defined by (α, x) 7→ αx is continuous.

Proof.

(a) If xn → x and yn → y, then ∥(xn + yn) − (x+ y)∥ = ∥(xn − x) + (yn − y)∥ ≤ ∥xn − x∥ + ∥yn − y∥ → 0 as
n → ∞.

(b) If xn → x, then
∥αxn −αx∥ = ∥α(xn − x)∥ = |α| ∥xn − x∥ → 0

as n → ∞.

Definition 94. If ∥·∥1 and ∥·∥2 are two norms on a K-vector space X, they are said to be equivalent norms if they
define the same topology on X.

Lemma 95 ([Con90] Lemma 3.1.4). If p and q are seminorms on a K-vector space X, then the following statements are
equivalent.

(a) p(x) ≤ q(x) for all x.

(b) {x ∈ X | q(x) < 1} ⊆ {x ∈ X | p(x) < 1}.

(c) p(x) < 1 whenever q(x) < 1.

(d) {x ∈ X | q(x) ≤ 1} ⊆ {x ∈ X | p(x) ≤ 1}.

(e) p(x) ≤ 1 whenever q(x) ≤ 1.

(f) {x ∈ X | q(x) < 1} ⊆ {x ∈ X | p(x) ≤ 1}.

(g) p(x) ≤ 1 whenever q(x) < 1.

Proposition 96 ([Con90] Proposition 3.1.5). If ∥·∥1 and ∥·∥2 are two norms on X, then these norms are equivalent if and
only if there are positive constants c and C such that

c ∥x∥1 ≤ ∥x∥2 ≤ C ∥x∥1

for all x ∈ X.
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Proof. Suppose there exist constants c,C such that c ∥x∥1 ≤ ∥x∥2 ≤ C ∥x∥1 for all x ∈ X. Fix x0 ∈ X and let ϵ > 0.
Then{

x ∈ X | ∥x− x0∥1 < ϵ/C
}
⊆

{
x ∈ X | ∥x− x0∥2 < ϵ

}
,
{
x ∈ X | ∥x− x0∥2 < cϵ

}
⊆

{
x ∈ X | ∥x− x0∥1 < ϵ

}
.

This shows that the two topologies are the same.
Now suppose that the two norms are equivalent. Hence

{
x ∈ X | ∥x∥1 < 1

}
is an open neighborhood of 0 in

the topology defined by ∥·∥2. Therefore there is an r > 0 such that
{
x ∈ X | ∥x∥2 < r

}
⊆

{
x ∈ X | ∥x∥1 < 1

}
. If

q(x) = r−1 ∥x∥2 and p(x) = ∥x∥1, the preceding lemma implies ∥x∥1 ≤ r−1 ∥x∥2 or c ∥x∥1 ≤ ∥x∥2, where c = r.
For the other inequality,

{
x ∈ X | ∥x∥2 < 1

}
is an open neighborhood of 0 in the topology defined by ∥·∥1.

Therefore, there is an s > 0 such that{
x ∈ X | ∥x∥1 < s

}
⊆

{
x ∈ X | ∥x∥2 < 1

}
.

If q(x).s−1 ∥x∥1 and p(x) = ∥x∥2, the preceding lemma implies ∥x∥2 ≤ s−1 ∥x∥1. Taking 1
C = s, we get the

inequality.

Example. Take X = R and we have the two norms ℓ1 and ℓ2, taking c = 1√
2

and C = 1, we have

1√
2
(|x1|+ |x2|) ≤

√
x21 + x22 ≤ |x1|+ |x2| .

We get the C = 1 from the triangle inequality, and the 1√
2

can be obtained from the Cauchy-Schwartz inequality:

|⃗x| =

2∑
i=1

|xi| · 1 ≤
(

2∑
i=1

|xi|
2

) 1
2
(

2∑
i=1

12

) 1
2

=
√

x21 + x22

√
2.

Replacing 2 by p in the above generalizes the proof to showing that for any ℓp is equivalent to ℓ1 for any p < ∞, the
only difference is that c = 1√

n
.

Our next goal is to show that all norms on a finite dimensional K-vector space are equivalent.

Lemma 97. Let {x1, . . . , xn} be a linearly independent set of vectors in a normed space X. Then there is a number c > 0 such
that for every choice of scalars α1, . . . ,αn, we have

∥α1x1 + · · ·+αnxn∥ ≥ c(|α1|+ · · ·+ |αn|).

Theorem 98 ([Con90] Theorem 3.3.1). On a finite dimensional vector space X, any norm ∥·∥ is equivalent to any other
norm ∥·∥0.

Proof. Let dimX = n and {e1, . . . , en} be any basis for X. Ten every x ∈ X has a unique representation

x = α1e1 + · · ·+αnen.

By lemma there is a positive constant c such that

∥x∥ ≥ c(|α1|+ · · ·+ |αn|).
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On the other hand the triangle inequality gives

∥x∥0 ≤
n∑

j=0

∣∣αj

∣∣ ∥ej∥0 ≤ k

n∑
j=1

∣∣αj

∣∣ ,

where k = max
{
∥ej∥0 | j = 1, . . . ,n

}
. Putting these together we get that c

k ∥x∥0 ≤ ∥x∥. We can get the other
direction by switching ∥·∥ and ∥·∥0 in the above proof.

Theorem 99 (Parallelogram Law). If (X, ∥·∥) is a normed space and f,g ∈ X, then

∥f+ g∥2 + ∥f− g∥2 = 2(∥f∥2 + ∥g∥)2.

Remark 100. This theorem says that the sums of the squares of the diagonals of a parallelogram is equal to the sum
of the squares of the four sides, as can be seen in figure.

Another important inequality of this type is the following:

Theorem 101 (Ptolemy’s Law). Let (X, ∥·∥) be a normed space. Then ∥x∥ induces an inner product is and only if

∥x− y∥ ∥z∥+ ∥y− z∥ ∥x∥ ≥ ∥x− z∥ ∥y∥ .

Remark 102. We finish this section with a quick remark about the difference between metric spaces and normed
spaces. First, to have a norm on a space X, we need that X is a vector space. This means that we can add and subtract
elements and multiply by scalars. We can move elements around. In order to have a metric on a space X, we don’t
need to be able t do this. We can put a metric on a much more general space, one with much less structure. As an
example, for any space X we can put the trivial metric on it:

d(x,y) =

{
1 if x ̸= y

0 if x = y.

Our space does not need any structure to put a metric on it, since all that a metric does is measure the distance
between two elements of our set. On the other hand, a norm measures the size of elements of our space, and thus
can induce a distance since if we know the size of two objects we can find the size of their difference, which is their
distance.



Chapter 10

Quotient Spaces

Our goal in this section is to build the necessary background needed to defined the Lp spaces. We start with basic
definitions of relations and equivalence relations, and then move on to quotient spaces and give many examples.
More on relations can be found in [Vel06].

Definition 103. Suppose A and B are sets. Then the Cartesian product of A and B, denoted A× B is the set of all
ordered pairs whose first coordinate is an element from A and whose second coordinate is an element from B. We
write this as

A× B = {(a,b) | a ∈ A,b ∈ B} .

Example.

(a) If A = {1, 2, 3} and B = {4, 5}, then A× B = {(1, 4), (1, 5), (2, 4), (2, 5), (3, 4), (3, 5)}.

(b) If A = B = R, then A× B = R2, the real plane.

(c)

Definition 104. Suppose A and B are sets. Then a set R ⊆ A× B is called a relation from A to B.

Example.

(a) If A = {1, 2, 3} ,B = {4, 5}, then R = {(1, 4), (3, 5)} is a relation from A to B.

(b) Let A = B = R, then G = {(x,y) ∈ R × R | x > y} is a relation from R to R.

We can actually define functions in terms of relations.

Definition 105. Suppose F is a relation from A to B. Then F is a function from A to B if for every a ∈ A there is
exactly one b ∈ B such that (a,b) ∈ F.

Example.

(a) Let A = {1, 2, 3} ,B = {4, 5, 6} and F = {(1, 5), (2, 4), (3, 5)}, then F is a function from A to B.

(b) Let A = B = R, and let F =
{
(x,y) ∈ R × R | x2 = y

}
, then this is a relation from R to R.

65
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Definition 106. Let R be a relation from A to A such that

(a) (reflexive) For all x ∈ A, (x, x) ∈ R.

(b) (symmetric) for all (x,y) ∈ R, (y, x) ∈ R.

(c) (transitive) if (x,y) ∈ R and (y, z) ∈ R, then (x, z) ∈ R,

then we call such a relation an equivalence relation.

Definition 107. Suppose R is an equivalence relation on a set A, and x ∈ A. Then the equivalence class of x with respect
to R is the set

[x]R = {y ∈ A | (y, x) ∈ R} .

Remark 108. From now on we will often denote an equivalence relation by ∼, and say x ∼ y for (x,y) ∈ R.

Definition 109. The set of all equivalence classes of elements of A is called the quotient of A with ∼, or A modulo ∼,
and is denoted A/ ∼. Thus,

A/ ∼= {[x]∼ | x ∈ A} .

Example.

(a) Let X be a K-vector space, and let Y be a nonempty subspace. Define x ∼ y is x−y ∈ Y. Then ∼ is an equivalence
relation. Indeed, x ∼ x since x− x = 0 ∈ Y. It is always the case that 0 is in Y, since Y is itself a nonempty vector
space, so there is a y ∈ Y, then (−1) · y = −y ∈ Y as well since Y is linear, but then y+ (−y) = 0 ∈ Y. Next, if
x ∼ y, then x−y ∈ Y, so (−1)(x−y) = y−x ∈ Y, thus y ∼ x. Finally, suppose that x ∼ y and y ∼ x, then x−y ∈ Y

and y− z ∈ Y, so (x− y) + (y− z) = x− z ∈ Y. Thus ∼ is an equivalence relation. Then X/Y = {[x] | x ∈ X}

where [x] = {y ∈ Y | x ∼ y}. We can put the structure of a K-vector space on X/Y in the following way. Define
[x] + [y] by choosing x1 ∈ [x] and y1 ∈ [y] and letting [x] + [y] = [x1 + y1]. We need to check that this is well
defined. This means that if we make a different choice for x1 and y1, we still end with the same equivalence
classes. Suppose x2 ̸= x1 and x2 ∈ [x], and y2 ∈ [y] with y1 ̸= y2. Take z ∈ [x1 + y1], we will show that
z ∈ [x2 + y1]. Starting with z− (x1 + y1) ∈ Y we have

z− (x1 + y1) = z− (x2 + y2) + (x2 + y2) − (x1 + y1) ∈ Y

= z− (x2 + y2) + (x2 + y2) − (x1 + y1) − (x2 − x1) − (y2 − y1) ∈ Y

z− (x2 + y2) ∈ Y.

Thus z ∈ [x2 + y2]. Since this argument is symmetric, we get [x1 + y1] = [x2 + y2]. Similarly, we define α · [x]
to be [αx1] for some x1 ∈ [x]. This can be shown to be well-defined in a similar manner. Thus X/Y is a K-vector
space. Furthermore, if X has a norm ∥·∥, and Y is closed, then we can put a norm on X/Y by letting

∥[x]∥ = inf {∥z∥ | z ∈ [x]} .

(b) The above construction works for groups as well. Given an abelian group G, and a subgroup H, the quotient is
G/H = {x+H | x ∈ G} where x+H = [x].

(c) Quotients appear in topology as well. Take a unit square, [0, 1]× [0, 1]. We can identify parts of the square to get
a quotient space. We say (0, x) ∼ (1, x), in this way we are identifying the two sides of a square, and gluing them
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together to get a new space, in this case it will be a hollow cylinder. We can again identify the top circle with
the lower circle and glue those together to get a torus:
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Chapter 11

Complete Spaces

In this section we formalize completion. This is the process that takes us from Q to R, but this is applicable in far
more general metric spaces.

Definition 110. A sequence {xn} in a metric space X is said to be a Cauchy sequence if for every ϵ > 0 there is an
integer N such that d(xn, xm) < ϵ if n,m ≥ N.

Example. The sequence
{

1
n

}∞
n=1

in R is a Cauchy sequence. Indeed, let ϵ > 0. Set N > 2
ϵ . Then for m,n ≥ N, we

have that 1
m < ϵ

2 and 1
n < ϵ

2 . Then ∣∣∣∣ 1n −
1

m

∣∣∣∣ ≤ ∣∣∣∣ 1n
∣∣∣∣+ ∣∣∣∣ 1m

∣∣∣∣ < ϵ

2
+

ϵ

2
= ϵ.

Thus the sequence is Cauchy, and we know that is converges to 0.

Example.

(a) Not all Cauchy sequences converge. For example, if we take our metric space to be X = (0, 1], then the sequence{
1
N

}∞
n=1

no longer converges, since 0 /∈ X.

(b) Put in the example of continuous functions on [0, 1] that converge to a discontinuous function. This will be a
Cauchy sequence that does not converge in C([0, 1], R).

Definition 111. Let E be a subset of a metric space X, and let

S = {d(x,y) | x,y ∈ E} .

We call supS, the diameter, and it will be denoted as diam(EN).

Remark 112. Note that if {xn} is a sequence in X and EN = {xn | n ≥ N}, then {xn} is a Cauchy sequence if and only
if

lim
N→∞ diam(EN) = 0.

We now prove two theorems that will help tell us when Cauchy sequences converge.
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Theorem 113 ([Rud76] Theorem 3.10).

(a) If E is the closure of a set E in a metric space X, then

diam(E) = diam(E).

(b) If Kn is a sequence of compact sets in X such that Kn ⊃ Kn+1 and if

lim
n→∞ diam(Kn) = 0,

then
⋂∞

n=1 Kn consists of exactly one point.

Proof.

(a) Since E ⊆ E, clearly diam(E) ≤ diam(E). Suppose ϵ > 0, and let x,y ∈ E. There exist points x ′,y ′ ∈ E such that
d(x, x ′) < ϵ,d(y,y ′) < ϵ. Hence

d(x,y) ≤ d(x, x ′) + d(x ′,y ′) + d(y ′,y) < 2ϵ+ d(x ′,y ′) ≤ 2ϵ+ diam(E).

It follows that diam(E) ≤ 2ϵ+ diam(E).

(b) Put K =
⋂∞

n=1 Kn. Since the Kn are compact, K is nonempty. If K contains more than one point, then diam(K) >

0, but for each n, Kn ⊃ K, so diam(Kn) ≥ diam(K). This is a contradiction to the fact that diam(Kn) → 0.

Theorem 114 ([Rud76] Theorem 3.11).

(a) In any metric space X, every convergent sequence is a Cauchy sequence.

(b) If X is a compact metric space and if {xn} is a Cauchy sequence in X, then {xn} converges to some point in X.

(c) In Rn, every Cauchy sequence converges.

Proof.

(a) Suppose xn → x, and let ϵ > 0. Then there is an integer N > 0 such that d(x, xn) < ϵ/2 for all n ≥ N. Hence

d(xn, xm) ≤ d(xn, x) + d(x, xm) < ϵ

whenever n,m ≥ N. Thus {xn} is a Cauchy sequence.

(b) Let {xn} be a Cauchy sequence in a compact space X. For N = 1, 2, . . ., let EN be the set consisting of xN, xN+1, . . ..
Then by theorem 113

lim
N→∞ diam(EN) = 0.

Being a closed subset of the compact space X, each EN is compact, and EN ⊃ EN+1, so EN ⊃ EN+1. Theorem
113, shows that there is a unique x ∈ X which lies in every EN. Let ϵ > 0. There is an integer N0 such that
diam(EN) < ϵ if N ≥ N0. Since x ∈ EN, it follows that d(x,y) < ϵ for every y ∈ EN, hence for every y ∈ EN.
In other words d(x, xn) < ϵ if n ≥ N0. This is saying that xn → x, and thus it converges.
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(c) Let {xn} be a Cauchy sequence in Rn. Define En as above. For some N > 0, diamEN < 1. The range of {xn}
is the union of EN and the finite set {x1, . . . , xN−1}. Hence {xn} is bounded. Since every bounded subset of Rn

has a compact closure in Rn, this follows from (2).

Definition 115. A metric space in which every Cauchy sequence converges is called complete.

Definition 116. Let (X,d) and (X̃, d̃) be metric spaces. Then

(a) A mapping T of X into X̃ is said to be an isometry if T preserves distances, that is, for all x,y ∈ X,

d̃(T(x), T(y)) = d(x,y)

(b) The space X is said to be isometric with the space X̃ if there exists a bijective isometry of X onto X̃.

Example.

(a) Take X = X̃ = R with the metric given by the usual absolute value. Then for any k ∈ R, the map T : R → R

given by T(x) = x+ k is an isometry. Indeed, let x,y ∈ R, then

d(T(x), T(y)) = |T(x) − T(y)| = |x+ k− (y+ k)| = |x− y| = d(x,y).

(b) Similarly, in Rn for any vector x⃗ ∈ Rn, the map defined by T(y⃗) = y⃗+ x⃗ is an isometry.

Theorem 117 ([Kre78] Theorem 1.6-2). For a metric space X = (X,d) there exists a complete metric space (X̂, d̂) which
has a subspace W that is isometric with X and is dense in X̂. This space X̂ is unique except for isometries, that is, if X̃ is any
complete metric space having a dense subspace W̃ isometric with X, then X̃ and X̂ are isometric.

Proof. We describe the construction of X̂ here and the rest of the details can be found in [Kre78], Theorem 1.6-2. Let
(xn) and (x ′

n) be Cauchy sequences in X. Define (xn) ∼ (x ′
n) if

lim
n→∞d(xn, x ′

n) = 0.

Let X̂ be the set of all equivalence classes x̂, ŷ, . . . of Cauchy sequences. We now set

d̂ = lim
n→∞d(xn,yn)

where (xn) ∈ x̂ and (yn) ∈ ŷ. We quickly show that this limit exists. We have

d(xn,yn) ≤ d(xn, xm) + d(xm,ym) + d(ym,yn)

and thus
d(xn,yn) − d(xm,ym) ≤ d(xn, xm) + d(ym,yn)

and we can do the same with m and n swapped. Together this gives

|d(xn,yn) − d(xm,ym)| ≤ d(xn, xm) + d(ym,yn),

and since (xn) and (yn) are Cauchy, we can make the right hand side as small as we want, and thus the limit exists
since we have already proven that R is complete.
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Next, we show that the limit is independent of the choice of representatives. Suppose (xn) ∼ (x ′
n) and (yn) ∼

(y ′
n). Then ∣∣d(x)n,yn) − d(x ′

n − y ′
n)
∣∣ ≤ d(xn, x ′

n) + d(yn,y ′
n) → 0

as n → ∞, which implies that

lim
n→∞d(xn,yn) = limn → ∞d(x ′

n,y ′
n).

Lastly, we verify that d̂ is indeed a metric. Clearly it is always non-negative, and d(x̂, x̂) = 0. If d̂(x̂, ŷ) = 0, then we
have that (xn) ∼ (yn), and so x̂ = ŷ. Finally, the triangle inequality follows from

(xn,yn) ≤ d(xn, zn) + d(zn,yn).

Example.

(a) If X = Q, then the completion of Q with respect to the absolute value is R. This means that we should really
think of R as a set of equivalence classes of Cauchy sequences.

(b) Let X = Q. We will complete Q again, but this time we will use a different metric. Fix a prime number p. For
any integer n, let vp(n) be the highest power of p that divides n. So if n = 12 and p = 2, then v2(12) = 2. Then
extend v to Q by setting

vp

(a
b

)
= v(a) − v(b).

For example

v2

(
1

12

)
= v(1) − v(12) = 0− 2 = −2.

Now, we define the p-adic absolute value to be ∣∣∣a
b

∣∣∣
p
= p−v(a/b).

So ∣∣∣∣ 112
∣∣∣∣
2

= 2−2 =
1

4
.

Now we are considering a number to be small if it is divisible by p many times, whereas it is small if it is not.
While this choice of absolute value seems arbitrary, Ostrowski’s theorem says that the only absolute values on
Q are the usual one |·|, and the p-adic ones, |·|p. Using the p-adic absolute values give rise to all sorts of strange
geometric properties such as all triangles are isosceles, and every point of a ball is a center of the ball. Now, if
we complete Q with respect to a p-adic absolute value, i.e., do the same procedure as in the proof of theorem
117, but replace every absolute value with the p-adic absolute value, we will get the field of p-adic number, Qp.

Now we give some examples of complete spaces

Example.
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(a) Let X be the set of all bounded sequences of real numbers. So if x ∈ X, then x = (ξi)
∞
i=1, and for each x ∈ X,

there is some cx ∈ R such that |ξi| ≤ cx. We denote this space by l∞. A norm on this space is

∥(ξi)∥ = sup {|ξi| | i ≥ 1}

and thus the induced distance is
d(x,y) = sup {|ξi − ηi| | i ≥ 1}

where x = (ξi),y = (ηi). Now we show that this space is complete. Let (xm) be a Cauchy sequence in l∞,
where xm = (ξmi ). Given ϵ > 0, there is an N > 0 such that for all m,n ≥ N,

d(xm, xn) = sup {|ξmi − ξni | | i ≥ 1} < ϵ.

So, for every i ≥ 1 and n,m ≥ N,
|ξmi − ξni | < ϵ.

Since R is complete, the sequence (ξji)j=1∞ is a Cauchy sequence and thus it converges to some ξi. We define
x = (ξi)i = 1∞. Now, we have ∣∣∣ξmj − ξj

∣∣∣ < ϵ

for m ≥ N. Since xm = (ξmi ) ∈ l∞, there is a real number km such that
∣∣∣ξmj ∣∣∣ ≤ km for all j. Hence,

|ξ| ≤ |ξi − ξmi |+ |ξmi | ≤ ϵ+ km.

This inequality holds for every j, and the right hand side does not involve j. Hence (ξi) is bounded, and this it
is in l∞. Also, we have

d(xm, x) = sup {|ξmi − ξi| | i ≥ 1} ≤ ϵ,

which shows that xm → x, and thus l∞ is complete.

(b) Now consider the space of continuous functions f : [a,b] → R, denote C(a,b], R). The norm we put on this
space is

∥f∥∞ = max {|f(x)| | x ∈ [a,b]} ,

and thus the induced distance is

d(f,g) = max {|f(x) − g(x)| | x ∈ [a,b]} .

We will prove that this space is complete. Let (fm) be a Cauchy sequence in C([a,b], R). Then given ϵ > 0 there
exists an N > 0 such that for all m,n > N we have

d(fm, fn) = max {|fm(x) − fn(x)| | x ∈ [a,b]} < ϵ.

Hence for any fixed x0 ∈ [a,b],
|fm(x0) − fn(x0)| < ϵ.

This shows that (fm(x0))
∞
m=1 is a Cauchy sequence of real numbers, which converges since R is complete. Say

the sequence converges to f(x0) as m → ∞. So for each x ∈ [a,b] we can associate a unique real number f(x).
This defines a function on [a,b]. To see that f ∈ C([a,b], R), we have

max {|fm(x) − f(x)| | x ∈ [a,b]} < ϵ.



74 CHAPTER 11. COMPLETE SPACES

Hence for each x ∈ [a,b], we have
|fm(x) − f(x)| < ϵ.

This shows that (fm(x)) converges to f(x) uniformly on [a,b]. Since the fm are continuous on [a,b] and the
convergence is uniform, f is continuous on [a,b] as well. Thus f ∈ C([a,b], R), and fm → f, and the space is
complete.

(c) To show that completeness is dependent on the metric, consider the space C([0, 1], R) under the metric

d(f,g) =
∫1
0
|f(x) − g(x)|dx.

We will show that this space is not complete. Consider the sequence of functions defined by

fm(t) =


0 if x ∈ [0, 12 ]

mx− m
2 if x ∈ (12 , 12 + 1

m ]

1 if x ∈ (12 + 1
m , 1]

This sequence of functions defines a Cauchy sequence, since the only place where they are not equal is on the
interval [12 , 12 + 1

n ] which goes to 0. We will show that this Cauchy sequence does not converge. For every
f ∈ C([a,b], R) we have

d(fm, f) =
∫1
0
|fm(x) − f(x)|dx =

∫1
0
|f(x)|dx+

∫1/2+1/m

1/2
|fm(x) − f(x)|dx+

∫1
1/2+1/n

|1− f(x)|dx

Since the integrands are non-negative, so are the integrals. So if d(fm, f) → 0, this would mean that each integral
approaches 0, and since f is continuous, we should have

f(x) = 0, for x ∈ [0,
1

2
), f(X) = 1 if x ∈ (

1

2
, 1]

but this is not possible for a continuous function. Thus the sequence (fm) does not converge and the space is not
complete. This example illustrates that a space X can be complete with respect to one metric, but not complete
with respect to another.

Now we prove a result that gives us another criterion for proving that a space is complete.

Definition 118. A series {fn} in a normed linear space (X, ∥·∥) is said to be summable to a sum s if s ∈ X and the
sequence of partial sums of the series converges to s, that is∥∥∥∥∥s−

n∑
i=1

fi

∥∥∥∥∥→ 0.

If this is the case, we write

s =

∞∑
i=1

fi.

The series is said to be absolutely summable if
∑∞

i=1 ∥fi∥ < ∞.
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Figure 11.1: The functions f2, f3, f5, and f10.

Proposition 119 ([Roy88]). A normed linear space (X, ∥·∥) is complete if and only if every absolutely summable series is
summable.

Proof. Suppose that X is complete and let {fn} be an absolutely summable series of elements of X. Since
∑

∥fi∥ =

M < ∞, there is, for each ϵ > 0, an N such that
∑∞

i=N ∥fi∥ < ϵ. Let sn =
∑n

i=1 fi be the partial sum of the series.
Then for n ≥ m ≥ N we have

∥sn − sm∥ =

∥∥∥∥∥
n∑

i=m

fi

∥∥∥∥∥ ≤
∞∑
i=1

∥fi∥ ≤
∞∑

i=N

< ϵ.

Hence the sequence {sn} of partial sums is a Cauchy sequence and must converge to an element s in X, since X is
complete.

For the other direction, let {fn} be a Cauchy sequence in X. For each integer k there is an integer nk such that
∥fn − fm∥ < 2−k for all n and m greater than nk, and we may choose the nk’s so that nk+1 > nk. Then {fnk

}∞k=1 is
a subsequence of {fn}, and if we set g1 = fn1

and gk = fnk
− fnk−1

for k > 1 we get a series {gk} whose kth partial
sum is fnk

. We have ∥gk∥ < 2−k+1 if k > 1, Thus∑
∥gk∥ ≤ ∥g1∥+

∑
2−k+1 = ∥g1∥+ 1.

Hence the series {gk} is absolutely summable, and so by our hypothesis there is an element f in X to which the
partial sums of the series converge. Thus the subsequence {fnk

} converges to f.
Now we show that f = limn→∞ fn. Since {fn} is a Cauchy sequence, given ϵ > 0, there is an N such that

∥fn − fm∥ < ϵ/2 for all n and m large than N. Since fnk
→ f, there is a K such that for all k ≥ K we have
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∥fnk
− f∥ < ϵ/2. Let us take k so large that k > K and nk > N. Then

∥fn − f∥ ≤ ∥f− fnk
∥+ ∥fnk

− f∥ ≤ ϵ

2
+

ϵ

2
= ϵ.

Thus for all n > N we have ∥fn − f∥ < ϵ and so fn → f.



Chapter 12

Banach Spaces

We have already seen many examples of Banach spaces, and now we formally define them.

Definition 120. A Banach space is a normed space (X, ∥·∥) that is complete with respect to the metric defined by
the norm:

d(x,y) = ∥x− y∥ .

Any example of a complete normed space we have seen in the past few sections is a Banach space, Rn, C, and
l∞. We provide a few more examples.

Example.

(a) Let n ≥ 1 and let C(n)[0, 1] be the collection of functions f : [0, 1] → R such that f has n continuous derivatives.
Define

∥f∥ = sup
{

sup
{∣∣∣f(k)(x)∣∣∣ | 0 ≤ x ≤ 1

}
| 0 ≤ k ≤ n

}
.

(b) We have shown previously that (C([a,b], R), ∥·∥∞) is a complete normed space, and hence it is a Banach space.

(c) The space (C([a,b], R), ∥·∥p) for 1 ≤ p < ∞ is not complete, and thus is not a Banach space. Recall that
we can create a sequence of continuous functions that converge to a non-continuous function which is not in
C([a,b], R).

(d) The set of rational numbers, Q is not complete, but it is a normed space by setting ∥q∥Q = |q|. We can see that it

is not complete by considering the sequence defined as q1 = 1, and qn+1 = 1
2

(
qn + 2

qn

)
which will converge

to
√
2. But, as is well known in a real analysis course, the completion of Q with respect to this norm is R.

Definition 121. Let (X, ∥·∥) be a normed space and let Y be a closed subspace. Let Q : X → X/Y be the natural map
that sends x 7→ [x]. Recall that we can define a norm on X/Y as

∥[x]∥ = inf {∥z∥ | z ∈ [x]} .
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Chapter 13

Hilbert Spaces

Hilbert Spaces are one of the main objects of study in functional analysis. They are an abstraction of the familiar
Euclidean spaces. Throughout this section we denote by K, either R or C, since most results will hold in either case.

Definition 122. If X is a K-vector space, a inner product on X is a function ⟨·, ·⟩ : X×X → K such that for all α,β ∈ K

and all x,y, z ∈ X, the following are satisfied:

(a) ⟨αx+βy, z⟩ = α ⟨x, z⟩+β ⟨y, z⟩,

(b) ⟨x,αy+βz⟩ = α ⟨x,y⟩+β ⟨x, z⟩,

(c) ⟨x, x⟩ ≥ 0 and if ⟨x, x⟩ = 0, then x = 0,

(d) ⟨x,y⟩ = ⟨y, x⟩,

where α is the complex conjugate of α, i.e., if α = a+ bi, then αa− bi.

Example.

(a) Let X be the collection of all sequences {αn} of scalars αn ∈ K such that αn = 0 for all but a finite number of
values of n. We can define addition and scalar multiplication as

{αn}+ {βn} = {αn +βn}

α {αn} = {ααn} .

Then X is a K-vector space. Each of the following is an inner product on X:

⟨{αn} , {βn}⟩ =
∞∑

n=1

αnβn,

⟨{αn} , {βn}⟩ =
∞∑

n=1

1

n
αnβn,

⟨{αn} , {βn}⟩ =
∞∑

n=1

n5αnβn.
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(b) Let f,g ∈ L2(X), then Hölder’s inequality says that fg ∈ L1(X). Setting

⟨f,g⟩ =
∫
X
fgdµ

makes L2(X) into an inner product space.

Definition 123. A Hilbert space is a vector space X over K together with an inner product ⟨·, ·⟩ such that relative to
the metric d(x,y) = ∥x− y∥ induced by the norm, X is a complete metric space.

Example. Many of the examples we have already seen are Hilbert spaces.

(a) Rn with the dot product is a Hilbert space.

(b) Cn is a Hilbert space with the inner product defined by

⟨x,y⟩ = ξiηi + · · ·+ ξnηn

where x = (ξ1, . . . , ξn) and y = (η1, . . . ,ηn).

(c) We will soon define the Lp spaces where the space L2 will be a very important Hilbert space. For all other p ≥ 1

Lp will be a normed space.

(d) The space of sequences in C, l2 with inner product defined by

⟨x,y⟩ =
∞∑
j=1

ξjηj

is a Hilbert space, but for every other p ̸= 2, lp is not a Hilbert space.

The following is a fundamental inequality in inner product spaces.

Theorem 124 (Cauchy-Bunyakowsky-Schwarz Inequality, [Con90] Theorem 1.1.4). If ⟨·, ·⟩ is an inner product on X,
then

|⟨x,y⟩|2 ≤ ⟨x, x⟩ ⟨y,y⟩

for all x,y ∈ X. Moreover, equality occurs if and only if there are scalars α,β both not 0, such that

⟨βx+αy,βx+αy⟩ = 0.

Proof. If α ∈ K and x,y ∈ X, then

0 ≤ ⟨x−αy, x−αy⟩
= ⟨x, x⟩−α ⟨y, x⟩−α ⟨x,y⟩+ |α|2 ⟨y,y⟩ .

Suppose ⟨y, x⟩ = beiθ for some b ≥ 0,b ∈ R, and let α = te−iθ for t ∈ R. The above inequality becomes

0 ≤ ⟨x, x⟩− te−iθbeiθ − teiθbe−iθ + t2 ⟨y, x⟩
= ⟨x, x⟩− 2bt+ t2 ⟨y,y⟩
= c− 2bt+ at2 = q(t)
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where c = ⟨x, x⟩ and a = ⟨y,y⟩. Thus q(t) is a quadratic polynomial in t, and q(t) ≥ 0 for all t. This implies that
q(t) has at most one real root. Using the discriminant, which we see is not positive, gives

0 ≥ b2 − ac = |⟨x,y⟩|2 − ⟨x, x⟩ ⟨y,y⟩

proving the inequality.
Now, suppose that there exist α,β ∈ K such that ⟨αx+βy,αx+βy⟩ = 0. By the properties of an inner product

we get

αx+βy = 0 =⇒ y = −
β

α
x.

Let λ = −β
α , so that y = λx. We see that the inequality is an equality if and only if the last line is an equality. We

have

0 ≥ |⟨x, λx⟩|2 − ⟨x, x⟩ ⟨λx, λx⟩

0 ≥ |λ|2 |⟨x, x⟩|2 −
∣∣∣λ2∣∣∣ (⟨x, x⟩)2 ,

and thus we have equality since ⟨x, x⟩ is always real. For the other direction, suppose we have equality. Then in the
proof, each inequality becomes an equality, including 0 = ⟨x−αy, x−αy⟩, which says that x = αy, and thus they
are scalars of each other.

Remark 125. The Cauchy-Bunyakowsky-Schwarz Inequality, might be familiar from analysis, where if x,y ∈ Rn,
then ∣∣∣∣∣

n∑
i=1

∣∣∣∣∣ xiyi ≤
(

n∑
i=1

x2i )
1/2

)(
n∑

i=1

y2i

)1/2

,

where ∥x∥ =
(∑n

i=1 x
2
i )

1/2
)

is the usual Euclidean norm that induces the Euclidean distance.

Next, we show that the collection of inner product spaces is a subspace of the collection of normed linear spaces.

Theorem 126 ([Con90] Theorem 1.1.5). If ⟨·, ·⟩ is a inner product on X, and ∥x∥ = ⟨x, x⟩1/2 for all x ∈ X, then ∥·∥ is a
norm on X.

Proof. We prove the three properties of norms.

(a) Clearly ∥x∥ ≥ 0 since ⟨x,y⟩ ≥ 0. Suppose ∥x∥ = 0, then ⟨x, x⟩1/2, so ⟨x, x⟩ = 0, and thus x = 0 by the definition
of an inner product.

(b) Let α ∈ K, then
∥αx∥ = ⟨αx,αx⟩1/2 = (|α|2 ⟨x, x⟩)1/2 = |α| ⟨x, x⟩1/2 = |α| ∥x∥ .

(c) Let x,y ∈ X, then

∥x+ y∥2 = ⟨x+ y, x+ y⟩

= ∥x∥2 + ⟨y, x⟩+ ⟨x,y⟩+ ∥y∥2

= ∥x∥2 + 2Re ⟨x,y⟩+ ∥y∥2
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where ⟨x,y⟩ + ⟨y, x⟩ = Re ⟨x,y⟩, since ⟨y, x⟩ = ⟨x,y⟩ and adding a complex number to its conjugate cancels
the complex part and leaves twice the real part. By the Cauchy-Bunyakowsky-Schwarz Inequality Re ⟨x,y⟩ ≤
|⟨x,y⟩| ≤ ∥x∥ ∥y∥. Hence

∥x+ y∥2 ≤ ∥x∥+ 2 ∥x∥ ∥y∥+ ∥y∥2 = (∥x∥+ ∥y∥)2,

taking square roots gives the inequality.

Remark 127. We call the identity
∥x+ y∥2 = ∥x∥2 + 2Re ⟨x,y⟩+ ∥y∥2

the polar identity.

Remark 128. Now we have the following diagram of implications

inner product space =⇒ normed space =⇒ metric space.

In a metric space we can measure the distance between two elements, and in a normed space we can measure the
length of an object. Now, in a inner product space there is a notion of an angle. The inner product space allows us
to determine when two elements are orthogonal to each other. We will explore this notion of orthogonality next.

Definition 129. If H is a Hilbert space, and f,g ∈ H, then f and g are orthogonal if ⟨f,g⟩ = 0. We write f ⊥ g. If
A,B ⊆ H, then A ⊥ B if f ⊥ g for all f ∈ A and g ∈ G.

The following is a generalization of the classical Pythagorean theorem.

Theorem 130 (Pythagorean Theorem, [Con90] Theorem 1.2.2). If f1, . . . , fn are pairwise orthogonal vectors in H, then

∥f1 + f2 + · · ·+ fn∥2 = ∥f1∥2 + ∥f2∥2 + · · ·+ ∥fn∥2 .

Proof. If f1 ⊥ f2, then
∥f1 + f2∥ = ⟨f1 + f2, f1 + f2⟩ = ∥f1∥2 + 2Re ⟨f1, f2⟩+ ∥f2∥2

by the polar identity. Since f1 ⊥ f2, ⟨f1, f2⟩ = 0, giving us the identity. The rest of the proof proceeds by induction.

Theorem 131 (Parallelogram Law, [Con90] Theorem 1.2.3). If H is a Hilbert space, and f,g ∈ H, then

∥f+ g∥2 + ∥f− g∥2 = 2(∥f∥2 + ∥g∥).

Proof. For any f,g ∈ H, the polar identity implies

∥f+ g∥2 = ∥f∥2 + 2Re ⟨f,g⟩+ ∥g∥2

∥f− g∥2 = ∥f∥2 − 2Re ⟨f,g⟩+ ∥g∥2 .

Adding these gives the result.

There is actually a stronger statement that can be made using the parallelogram law.
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Theorem 132. A norm arises from an inner product if it satisfies the parallelogram law.

Proof. First assume we are dealing with a vector space X over R. We begin by setting

⟨x,y⟩ = 1

4

(
∥x+ y∥2 − ∥x− y∥2

)
.

Now, one can check that ⟨x,y⟩ = ⟨y, x⟩, and that ∥x∥ =
√
⟨x, x⟩. The next step is to check that all of the properties

of an inner product are satisfied. The first of which is ⟨x+ y, x⟩ = ⟨x, z⟩+ ⟨y, z⟩. By the parallelogram law we have

2 ∥x+ z∥2 + 2 ∥y∥2 = ∥x+ y+ z∥2 + ∥x− y+ z∥2 .

This gives

∥x+ y+ z∥2 = 2 ∥x+ z∥2 + 2 ∥y∥2 − ∥x− y+ z∥2

= 2 ∥y+ z∥2 + 2 ∥x∥2 − ∥y− x+ z∥2

where the second formula follows from the first by swapping x and y. This gives

∥x+ y+ z∥2 = ∥x∥2 + ∥y∥2 + ∥x+ z∥2 + ∥y+ z∥2 − 1

2
∥x− y+ z∥2 − 1

2
∥y− x+ z∥ .

Replacing z by −z in the above equation gives

∥x+ y− z∥2 = ∥x∥2 + ∥y∥2 + ∥x− z∥2 + ∥y− z∥2 − 1

2
∥x− y− z∥2 − 1

2
∥y− x− z∥2 .

Since ∥−a∥ = |−1| ∥a∥ = ∥a∥, we get

⟨x+ y, z⟩ = 1

4

(
∥x+ y+ z∥2 −− ∥x+ y− z∥2

)
=

1

4
(∥x∥2 +

∥∥∥y2∥∥∥+ ∥x+ z∥2 + ∥y+ z∥2 − 1

2
∥x− y+ z∥2 − 1

2
∥y− x+ z∥2

− ∥x∥2 − ∥y∥2 − ∥x− z∥2 − ∥y− z∥2 + 1

2
∥x− y− z∥2 + 1

2
∥y− x− z∥2)

= ∥x+ z∥2 + ∥y+ z∥2 − ∥x− z∥2 − ∥y− z∥2

= ⟨x, z⟩+ ⟨y, z⟩ .

Next we show that ⟨λx,y⟩ = ⟨x,y⟩ for all λ ∈ R. First this holds for all λ ∈ N using the fact that ⟨x+ y, z⟩ =

⟨x,y⟩+ ⟨x, z⟩ and induction. Then we check for λ = −1. Indeed,

⟨−x,y⟩ = 1

4

(
∥y− x∥2 − ∥−x− y∥2

)
=

1

4

(
∥x− y∥2 − ∥x+ y∥2

)
= −

1

4

(
∥x+ y∥2 − ∥x− y∥2

)
= − ⟨x,y⟩ .

Thus the formula holds for all λ ∈ Z. If λ = a
b ∈ Q with a,b ∈ Z and b ̸= 0, we let x ′ = x

q and thus

q ⟨λx,y⟩ = q
〈
px ′,y

〉
= p

〈
qx ′,y

〉
= p ⟨x,y⟩ ,
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y

x

x

y
x+ y

x− y

Figure 13.1: Illustration of the parallelogram law

and dividing by q gives
⟨λx,y⟩ = λ ⟨x,y⟩

for all λ ∈ Q. We have proved that for any x,y ∈ X, the continuous function λ 7→ 1
λ ⟨λx,y⟩ defined on R\ {0} is

equal to ⟨x,y⟩ for all λ ∈ Q\ {0}, thus equality holds for all t ∈ R\ {0}, and thus ⟨x,y⟩ is indeed an inner product on
X.

Now, if X is a vector space over C, we can define

⟨x,y⟩ = 1

4

3∑
k=0

ik
∥∥∥x+ iky

∥∥∥2
and using the case of real scalars, it can be proven that this is an inner product on X as well.

There is another similar statement that arises from Euclidean geometry.

Theorem 133 (Ptolemy’s Inequality). Suppose that ∥·∥ is a norm on a vector space X. Then this norm satisfies Ptolemy’s
inequality

∥x− y∥ ∥z∥+ ∥y− z∥ ∥x∥ ≥ ∥x− z∥ ∥y∥

for all x,y, z ∈ X if and only if there exists an inner product ⟨·, ·⟩ on X such that ∥x∥2 = ⟨x, x⟩ for all x ∈ X.

Example. The space C([a,b], R) is a normed space where the norm defined as

∥f∥ = max {f(x) | x ∈ [a,b]}

does not arise from an inner product since this norm does not satisfy the paralellogram inequality. Indeed, take
f(x) = 1 and g(x) = x−a

b−a . We have ∥f∥ = 1 and ∥g∥ = 1 and

f(x) + g(x) = 1+
x− a

b− a

f(x) − g(x) = 1−
x− a

b− a
.

Hence ∥f+ g∥ = 2, ∥f− g∥ = 1 and so ∥f+ g∥2 + ∥f− g∥2 = 5, but 2(∥f∥2 + ∥g∥2) = 4.

Now we turn our attention to linear functionals on Hilbert spaces. Our goal is to prove the Riesz representation
theorem which will be crucial when looking at BMO spaces. This section follows a mix of [Con90] and [Fol99].
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Definition 134. Let H be a Hilbert space over a field F. A bounded linear functional L on H is a linear function L : H → F

for which there is a constant c > 0 such that |L(h)| ≤ c ∥h∥ for all hinH. For a bounded linear functional L : H → F

define the norm of L to be
∥L∥ = sup {|L(h)| | ∥h∥ ≤ 1} .

Example. Let H = Rn, then a linear functional is any linear transformation on Rn. For example, L(h) = 5h is a
bounded linear transformation.

The remarkable thing about linear functionals is that continuity and boundedness are actually equivalent con-
ditions.

Theorem 135 ([Con90] Theorem 1.3.1). If X and Y are normed linear spaces and L : X → Y is a linear functional, the
following are equivalent:

(a) T is continuous.

(b) T is continuous at 0.

(c) T is bounded.

Proof. The fact that (a) implies (b) is immediate. If L is continuous at 0 ∈ X, there is a neighborhood U of 0 such that
L(U) ⊂ {y ∈ Y | ∥y∥ ≤ 1} and U must contain a ball B = {x ∈ X | ∥x∥ ≤ δ}. Thus ∥L(x)∥ ≤ 1 when ∥x∥ ≤ δ. Since L

commutes with scalar multiplication, it follows that ∥L(x)∥ ≤ aδ−1 whenever ∥x∥ ≤ a, that is, ∥L(x)∥ ≤ δ−1 ∥x∥.
This show that (b) implies (c).

Finally, if ∥L(x)∥ ≤ C ∥x∥ for all x, then

∥L(x1) − L(x2)∥ = ∥L(x1 − x2)∥ ≤ ϵ

whenever ∥x1 − x2∥ ≤ C1ϵ, so that L is continuous.

Before we can prove the Riesz Representation Theorem we need a couple of facts about orthogonal complements
of subspaces. Let H be a Hilbert space and let A ⊂ H. Define

A⊥ = {f ∈ H | f ⊥ g for all g in A}

This space is a closed linear subspace of H.

Theorem 136 ([Fol99] Theorem 5.24). If M is a closed subspace of H, then H = M⊕M⊥ that is, each x ∈ H can be
expressed uniquely as x = y+ z where y ∈ M and z ∈ M⊥.

Proof. Given x ∈ H let δ = inf {∥x− y∥ | y ∈ M}, and let {yn} be a sequence in M such that ∥x− yn∥ → δ. By the
parallelogram law,

2
(
∥yn − x∥2 + ∥ym − x∥2

)
= ∥yn − ym∥2 + ∥yn + ym − 2x∥2 ,

so since 1
2 (yn + ym) ∈ M,

∥yn − ym∥2 = 2 ∥yn − x∥2 + 2 ∥ym − x∥2 − 4

∥∥∥∥12 (yn + ym) − x

∥∥∥∥2
≤ 2 ∥yn − x∥2 + 2 ∥ym − x∥2 − 4δ2.
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As m,n → ∞ this last quantity tends to zero, so {yn} is a Cauchy sequence. Let y = limn→∞ yn and z = x− y.
Then y ∈ M since M is closed, and ∥x− y∥ = δ.

We will now show that z ∈ M⊥. Indeed, if u ∈ M, after multiplying u by a nonzero scalar we may assume that
⟨z,u⟩ is real. Then the function

f(t) = ∥z+ tu∥2 = ∥z∥2 + 2t ⟨z,u⟩+ t2 ∥u∥2

is real for t ∈R and it has a minimum at t = 0 because z+ tu = x− (y− tu) and (y− tu) ∈ M. Thus 2 ⟨z,u⟩ =

f ′(0) = 0, so z ∈ M⊥.

We begin with a couple of observations. Let H be a Hilbert space over some field F, and fix h0 ∈ H. Define
L : H → F by L(h) = ⟨h,h0⟩. Then L is linear since inner products are linear and the Cauchy-Bunyakowsky-Schwarz
Inequality gives

|L(h)| = |⟨h,h0⟩| ≤ ∥h∥ ∥h0∥ .

This tells us that L is bounded and ∥L∥ ≤ ∥h0∥. In fact, L(h0/ ∥h0∥) = ⟨h0/ ∥h0∥ ,h⟩ = ∥h0∥, so ∥L∥ = ∥h0∥.
The Riesz Representation Theorem will give a converse to this.

Theorem 137 ([Fol99] Theorem 5.25). If L : H → F is a bounded linear functional, then there is a unique vector h0 ∈ H

such that L(h) = ⟨h,h0⟩ for every h ∈ H. Moreover, ∥L∥ = ∥h0∥.

Proof. First we prove uniqueness. If ⟨h,h0⟩ = ⟨h,h ′
0⟩ for all h ∈ H, by taking x = h0 − h ′

0 we conclude that
∥h0 − h ′

0∥
2 and hence h0 = h ′

0.
Now for the existence. If L is the zero functional, then just take h0 = 0. Otherwise, let M = {h ∈ H | L(h) = 0}.

Then M is a proper closed subspace of H so M⊥ ̸= {0} by Theorem 136. Pick z ∈ M⊥ with ∥z∥ = 1. If u =

L(h)z− L(z)h then u ∈ M, so

0 = ⟨u, z⟩ = L(h) ∥z∥2 − L(z) ⟨h, z⟩ = L(h) −
〈
h,L(z)z

〉
.

Hence L(h) = ⟨h,h0⟩ where h0 = L(z)z.



Chapter 14

Lp Spaces

We have examined the spaces Lp in several examples. Recall that we defined this space to be

Lp(X) =

{
f : X → R |

∫
X
|f(x)|p dµ < ∞}

.

We also defined the ”norm” on Lp:

∥f∥p =

(∫
X
|f(x)|p dµ

)1/p
.

Using Minkowski’s inequality, we know that ∥f+ g∥ ≤ ∥f∥ + ∥g∥, and we can easily see that ∥αf∥ = |α| ∥f∥.
However, if ∥f∥ = 0, we can only conclude that f = 0 almost everywhere, i.e., f could be nonzero on a set of
measure zero. An example of this is Dirichlet’s function, where f(x) = 1 if x ∈ Q ∩ [0, 1] and f(x) = 0 if x is
irrational. So we introduce an equivalence relation on Lp.

Definition 138. We define f ∼ g if f = g almost everywhere.

Proposition 139. The relation defined above is an equivalence relation.

Proof. First, we have that f ∼ f since f = f everywhere. Next, if f = g almost everywhere, then g = f almost
everywhere. Finally, suppose that f = g almost everywhere, and g = h almost everywhere. Let

A = {x ∈ X | f(x) ̸= g(x)} , B = {x ∈ X | g(x) ̸= h(x)} , C = {x ∈ X | f(x) ̸= h(x)} .

By assumption A and B are sets of measure zero. Then we have that C ⊆ A ∪ B, but µ(A ∪ B) ≤ µ(A) + µ(B) =

0+ 0 = 0. Thus ∼ is an equivalence relation.

Definition 140. For 1 ≤ p < ∞, we define

Lp(X) = {[f] | f ∈ Lp} = Lp(X)/ ∼ .

We endow Lp with the norm

∥f∥p =

(∫
X
|f(x)|p dµ

)1/p
.

Remark 141. Now, ∥·∥p is a norm, since if ∥f∥p = 0, then f = 0 almost everywhere, so [f] = [0].
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Definition 142. For p = ∞, we define L∞ to be the space of all bounded measurable functions. We define the
essential supremum to be

∥f∥∞ = ess sup {|f(x)| | x ∈ X}

where

ess sup f(x) = inf {M | µ {x | f(x) > M} = 0} .

Remark 143. The essential supremum takes the smallest number such that the values of f that are greater than
it form a set of measure 0. This means that it will be equivalent to a function that is bounded by the essential
supremum, since we again identify functions as we did above.

Now we prove that the Lp spaces are Banach spaces for all 1 ≤ p ≤ ∞.

Theorem 144 ([Bas13] Theorem 15.4). The Lp spaces are complete.

Proof. We first prove the theorem for p < ∞. Suppose fn is a Cauchy sequence in Lp. We first find a desirable
subsequence. Given ϵ = 2−(j+1), there exists nj such that if n,m ≥ nj, then ∥fn − fm∥p ≤ 2−(j+1). Without loss
of generality we may assume that nj ≥ nj−1 for each j.

Set n0 = 0 and define f0 = 0. Our candidate for the limit function is
∑

m(fnm − fnm−1
). We will now show that

this series is absolutely convergent. Set gj(x) =
∑j

m=1

∣∣fnm(x) − fnm−1
(x)
∣∣. Note that gj increases in j for each x.

Let g(x), which might be infinite, be the limit of the gj. By Minkowski’s inequality

∥gj∥p ≤
j∑

m=1

∥∥fnm − fnm−1

∥∥
p
≤ ∥fn1

− fn0
∥p +

j∑
m=2

2−m ≤ ∥fn1
∥p +

1

2
.

By Fatou’s lemma, ∫
X
|g(x)|p dµ ≤ lim

j→∞
∫ ∣∣gj(x)∣∣p dµ = lim

j→∞ ∥gj∥pp dµ ≤ 1

2
∥fn1

∥p .

Hence g is finite almost everywhere. this prove the absolute convergence for almost every x.
Now we define our function f. Set

f(x) =

∞∑
m=1

(
fnm(x) − fnm−1

(x)
)

.

We just showed that this series is absolutely convergent for almost every x. Set f(x) = 0 for any x where absolute
convergence does not hold. Note that since the set of x where the function is not absolutely convergent is a set of
measure 0, defining f(x) = 0 on these points does not change the equivalence class of the function in Lp. Now we
have

f(x) = lim
K→∞

K∑
m=1

(
fnm(x) − fnm−1

(x)
)
= lim

K→∞ fnK
(x)

since the series is telescoping. By Fatous’s lemma∥∥∥f− fnj

∥∥∥p
p
=

∫
|f− fnk

|p dµ ≤ lim inf
K→∞

∫ ∣∣∣fnK
− fnj

∣∣∣p = lim inf
k→∞

∥∥∥fnK
− fnj

∥∥∥p
p
≤ 2−(j+1)p.
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We have thus shown that
∥∥∥f− fnj

∥∥∥
p
→ 0 as j → ∞. Now, given ϵ > 0, there exists N such that ∥fn − fm∥p ≤ ϵ if

n,m > N. In particular,
∥∥∥fnj

∥∥∥
p
< ϵ if j is large enough. By Fatou’s lemma

∥f− fm∥pp ≤ lim inf
j→∞

∥∥∥fnj
− fm

∥∥∥p
p
≤ ϵp

if m ≥ N. This shows that fm converges to f in the Lp norm.
Finally we show the case when p = ∞. Suppose fn is a Cauchy sequence in L∞. Let Ak =

{
x | |fk(x)| ≥ ∥fk∥∞}

and let Bm,n =
{
x | |fn(x) − fm(x)| ≥ ∥fn − fm∥∞}

. Let E be the union of these sets for k,m,n = 1, 2, . . .. Then
µ(E) = 0, and on the complement of E the sequence fn converges uniformly to a bounded function f. Define
f(x) = 0 for x ∈ E. Then f ∈ L∞ and ∥f− fn∥∞ → 0 as n → ∞.

Now we can actually show that the Lp spaces are not just any complete space, but they are actually the comple-
tion of the spaces C([a,b], R). We will prove something slightly more general. We say that a function f is compactly
supported, if µ({x ∈ X | f(x) ̸= 0}) < ∞, i.e., the subset of the domain of f which is not in the kernel of f, has finite
measure. We denote the set of continuous, compactly supported functions on X by Cc(X).

Now we briefly discuss linear functionals on Lp spaces. Our ultimate goal is to prove that the dual space of Lp

is Lq where p−1 + q−1 = 1. This section follows the book [Bas13]

Definition 145. A linear functional on a normed linear space (X, ∥·∥) is a mapping, F, of X into R such that F(αf+
βg) = αF(f) + βF(g). A linear functional is bounded if there is a constant M such that |F(f)| ≤ M · ∥f∥ for all f ∈ X.
The smallest constant for which this is true is called the norm of F. Thus we have

∥F∥ = sup
{
|F(f)|

∥f∥ | f ∈ X

}
.

Example. Define F : Lp → R by F(f) = f(0). We claim that F is a linear functional. Indeed,

F(f+ g) = (f+ g)(0) = f(0) + g(0) = F(f) + F(g)

and if α ∈ R, then
F(αf) = αf(0) = αF(f).

Thus F is a linear functional.

Before we will proceed we quickly define the sign function by

sgn(x) =


−1 x < 0

0 x = 0

1 x > 0.

Note that |x| = x sgn(x). This function will prove very useful in the upcoming theorems.

Theorem 146 ([Bas13] Theorem 15.9). For 1 < p < ∞ and p−1 + q−1 = 1,

∥f∥p = sup
{∫

fgdµ | ∥g∥q ≤ 1

}
.

When p = 1 this also holds if q = ∞, similarly, if p = ∞ we take q = 1.
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Proof. The right hand side of the equation is less than or equal to the left hand side by Hölder’s inequality. So we
show the other direction. The proof is broken up into 3 cases.

First, suppose p = 1. Take g(x) = sgn(f(x)). Then |g| is bounded by 1 and fg = |f|. Thus the statement is proven
for p = 1.

Next, suppose p = ∞. If ∥f∥∞ = 0 then the statement is trivial, so suppose ∥f∥∞ > 0. There exists a sequence
of sets Fn such that each µ(Fn) < ∞ and Rn =

⋃∞
n=1 Fn. If M = ∥f∥∞, let a < M be any finite real number. By

the definition of the L∞ norm, the measure of An = {x ∈ Fn | |f(x)| > a} must be positive if n is sufficiently large,
otherwise the ∥f∥∞ ≤ a. Let

gn(x) =
sgn(f(x))χAn

(x)

µ(An)
.

Then the L1 norm of gn is 1 and ∫
fgdµ =

∫
An

|f|

µ(An)
dx ≥ a.

Since a is arbitrary, the supremum of the right hand side must be M.
Finally suppose 1 < p < ∞. We may suppose ∥f∥p > 0. Let Fn be the measurable sets of finite measure

increasing to Rn, qn a sequence of non-negative simple functions increasing to f+, rn a sequence of non-negative
simple functions increasing to f−, and

sn(x) = (qn(x) − rn(x))χFn(x).

Then sn(x) → f(x) for all x, |sn(x)| increases to |f(x)| for each x, each sn is a simple function, and ∥sn∥p < ∞ for
each n. Then ∥sn∥p → ∥f∥p by the monotone convergence theorem, whether or not ∥fp∥ is finite. For n sufficiently
large, ∥sn∥p > 0. Let

gn(x) = (sgn(f(x)))
|sn(x)|

p−1

∥sn∥p/q
p

.

Then gn is a simple function. Since (p− 1)/q = p we have

∥gn∥q =

(∫
|sn|

(p−1)q
)1/q

∥sn∥p/q
p

=
∥sn∥p/q

p

∥sn∥p/q
p

= 1.

On the other hand, since |f| ≥ |sn|,∫
fgn =

∫
|f| |sn|

p−1

∥sn∥p/q
p

≥
∫
|sn|

p

∥sn∥p/q
p

= ∥sn∥p−(p/q)
p .

Since p = p/q = 1 we obtain
∫
fgn ≥ ∥sn∥p, which tends to ∥f∥p. This prove the right hand side of the equation is

at least as large as the left hand side.

From this we also immediately obtain the following corollary.

Corollary 147 ([Bas13] Corollary 15.10). For 1 < p < ∞ and p−1 + q−1 = 1,

∥f∥p = sup
{∫

fg | ∥g∥q ≤ 1,g simple
}

.
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To finish the proof that (Lp)∗ = Lq we need to prove that a function defined by H(f) =
∫
fg for some g ∈ Lq and

all f ∈ Lp is a bounded linear functional, and then conversely we need to show that each bounded linear functional
on Lp can be represented in such a form.

Proposition 148 ([Bas13] Theorem 15.11). Suppose 1 < p < ∞, p−1 + q−1 = 1, ad g ∈ Lq. If we define H(f) =
∫
fg for

f ∈ Lp, then H is a bounded linear functional on Lp ad ∥H∥ = ∥g∥q.

Proof. Linearity follows from basic properties of Lebesgue integrals. The fact that ∥H∥ ≤ ∥g∥q follows directly from
Hölder’s inequality. Using Theorem 146 and writing

∥H∥ sup
∥f∥p≤1

|H(f)| = sup
∥f∥p

∣∣∣∣∫ fg∣∣∣∣ ≥ sup
∥f∥p

∫
fg = ∥g∥q

completes the proof.

The last piece is the following.

Theorem 149 ([Bas13] Theorem 15.12). Suppose 1,p < ∞,p−1 + q−1 = 1, and H is a real-valued bounded linear func-
tional on Lp. Then there exists g ∈ Lq such that H(f) =

∫
fg an ∥g∥q = ∥H∥.

Proof. Suppose we are given a bounded linear functional H on Lp(X). First assume that X ⊂ Rn such that µ(X) < ∞.
Define ν(A) = H(χA). We will show that ν is a measure, that ν ≪ µ and that g = dν/dµ is the function we seek.

If A and B are disjoint, then

ν(A∪ B) = H(χA∪B) = H(χA + χB) = H(χA) +H(χB) = ν(A) + ν(B).

To show that ν is countably additive, it suffices to show that if A1 ⊆ A2 ⊆ · · · and A =
⋃∞

n=1An, then ν(An) →
ν(A). But if the An are such a sequence of sets, then χAn

→ χA in Lp, and so ν(An) = H(χAn
) → H(χA) = ν(A).

We use here the fact that µ(X) < ∞. We can conclude that ν is a countable additive signed measure. Moreover,
if µ(A) = 0, then χA = 0 almost everywhere, hence ν(A) = H(χA) = 0. Using the Radon-Nikodym theorem for
signed measures, we see there exists a real-valued integrable function g such that ν(A) =

∫
A g for all sets A.

If s =
∑

i aiχAi
is a simple function, by linearity we have

H(s) =
∑
i

aiH(χAi
) =

∑
i

aiν(Ai) =
∑
i

ai

∫
gχai

=

∫
gs.

By Corollary 147

∥g∥q = sup
{∫

gs | ∥s∥p ≤ 1, s simple
}

= sup
{
H(s) | ∥s∥p ≤ 1, s simple

}
≤ ∥H∥ .

If sn are simple functions tending to f in Lp then H(sn) → H(f), while by Hölder’s inequality∣∣∣∣∫ sng−

∫
fg

∣∣∣∣ = ∣∣∣∣∫(sn − f)g

∣∣∣∣ ≤ ∥sn − f∥p ∥g∥q → 0,

so
∫
sng → ∫

fg. We thus have H(f) =
∫
fg for all f ∈ Lp, and ∥g∥q ≤ ∥H∥. By Hölder’s inequality ∥H∥ ≤ ∥g∥q.

Now suppose that X is σ-finite. Let F1 ⊆ F2 ⊆ · · · so that
⋃∞

i=1 Fi = X and such that µ(Fi) < ∞. Define
functionals Hn by Hn(f) = H(fχFn

). Clearly each Hn is a bounded linear functional on Lp. Applying the argument
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above, we see that there exists a gn such that Hn(f) =
∫
fgn and ∥gn∥q = ∥Hn∥ ≤ ∥H∥. It is easy to see that

gn is 0 if x /∈ Fn. Moreover, by the uniqueness part of the Radon-Nikodym theorem, if n > m, then gn = gm on
Fm. Define g by setting g(x) = gn(x) if x ∈ Fn. Then g is well-defined. By Fatou’s lemma, g is in Lq with a norm
bounded by ∥H∥. Note that fχFn

→ f in Lp by the dominated convergence theorem. Since H is a bounded linear
functional on Lp, we have Hn(f) = H(fχFn

) → H(f). On the other hand

Hn(f) =

∫
Fn

fgn =

∫
Fn

fg → ∫
fg

by the dominated convergence theorem. Thus H(f) =
∫
fg. Again by Hölder’s inequality ∥H∥ ≤ ∥g∥q.



Chapter 15

Hardy-Littlewood Maximal Operator

We begin with a preliminary section, before we embark on the big goal of BMO spaces. This section will provide
both background and motivation. However, before we get to this we make one more detour to distribution functions
and weak Lp spaces.

15.1 Distribution Functions and Weak Lp

Definition 150 (Distribution Function). For f a measurable function on X, the distribution function of f is the function
df defined on [0,∞) as follows:

df(α) = µ({x ∈ X | |f(x)| > α}).

The distribution function captures the size of f, but not the behavior of f around any particular point. Note that
the distribution function is nonincreasing. The decrease of df(α) as α grows describes the relative largeness of the
function, while the increase of df(α) as α tends to zero describes the relative smallness of the function at infinity.

Example.

(a) Let

f(x) =

N∑
j=1

ajχEj
(x)

be a simple function where the Ej are pairwise disjoint and a1 > · · · > aN. If α ≥ a1, then df(α) = 0. However,
if a2 ≤ α < a1, then |f(x)| > α when x ∈ E1, and in general, if aj+1 ≤ α < aj, then |f(x)| > α precisely when
x ∈ ⋃j

k=1 Ek. Setting

Bj =

j∑
k=1

µ(Ek),

for j ∈ {1, . . . ,N}, B0 = aN+1 = 0 and a0 = ∞, we have

df(α) =

N∑
j=0

Bjχ[aj+1,aj)
(α).
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Figure 15.1: Graph of f(x) = x and df(α) = 1−α.

(b) Consider the function f(x) = xχ[0,1]. If α < 0, then df(α) = ∞. Suppose that α ∈ [0, 1]. Then µ({x ∈ X | |x| >

α}) = µ((α, 1)) = 1−α. Finally, if α > 1, then df(α) = 0. See figure 15.1.

(c) Next, consider the function f(x) = x2χ[0,1]. If α ∈ [0, 1] then

df(α) = µ({x ∈ X | x2 > α}) = µ((
√
α, 1)) = 1−

√
α.

And if α > 1, then df(α) = 0. See figure 15.2.

Proposition 151 (Properties of df, [Gra14a] Proposition 1.1.3). Let f and g be measurable functions on (X,µ). Then for
all α,β > 0 we have

(a) |g| ≤ |f| µ-a.e. implies that dg ≤ df.

(b) dcf(α) = df(α/|c|), for all c ∈ C\{0}.

(c) df+g(α+β) ≤ df(α) + dg(β).

(d) dfg(αβ) ≤ df(α) + dg(β).

Proof. For (a) let α ∈ X, then dg(α) = µ ({x ∈ X : |g(x)| > α}) but since α < |g(x)| < |f(x)| almost everywhere,

dg(α) ≤ µ ({x ∈ X : |f(x)| > α}) = df(α).

Next, for (b) we have

dcf(α) =µ ({x ∈ X : |cf(x)| > α}) (15.1)

=µ ({x ∈ X : |f(x)| > α/|c|}) (15.2)

=df(α/|c|). (15.3)
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Figure 15.2: Graph of f(x) = x and df(α) = 1−α.

To prove (c) we have

df+g(α+β) =µ ({x ∈ X : |f(x) + g(x)| > α+β}) (15.4)

≤µ ({x ∈ X : |f(x)|+ |g(x)| > α+β}) (15.5)

≤µ ({x ∈ X : |f(x)| > α}) + µ ({x ∈ X : |g(x)| > β}) = df(α) + dg(β), (15.6)

where the last inequality comes from the fact that there could exist an x ∈ X such that either |f(x)| > α or |g(x)| > β,
but |f(x)|+ |g(x)| ≤ α+ β, but if |f(x)|+ |g(x)| > α+ β, then either |f(x) > α or |g(x)| > β, so the x will still be
accounted for in the second term. Finally, for (d) we have

df+g(α+β) =µ ({x ∈ X : |f(x)g(x)| > α+β}) (15.7)

=µ ({x ∈ X : |f(x)||g(x)| > α+β}) (15.8)

≤µ ({x ∈ X : |f(x)| > α}) · µ ({x ∈ X : |g(x)| > β}) = df(α)dg(β), (15.9)

by the same reasoning as in (c).

Now we will show that we can actually use the distribution function to calculate the Lp norm of f.

Proposition 152 ([Gra14a] Proposition 1.1.4). Let (X,µ) be a σ-finite measure space. Then for f ∈ Lp(X,µ), 0 < p < ∞,
we have

∥f∥pLp = p

∫∞
0

αp−1df(α)dα.

Moreover, for any increasing continuously differentiable function φ on [0,∞) with φ(0) = 0 and every measurable function
f on X with φ(|f|) integrable on X, we have ∫

X
φ(|f|)dµ =

∫∞
0

φ ′(α)df(α)dα.
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Proof. First we have

p

∫∞
0

αp−1df(α)dα =p

∫∞
0

αp−1

∫
X
χ{x : |f(x)|>α}dµ(x)dα (15.10)

=

∫
x

∫ |f(x)|
0

pαp−1dαdµ(x) (15.11)

=

∫
X
|f(x)|pdµ(x) (15.12)

= ∥f∥pLp , (15.13)

where the second inequality comes from Fubini’s theorem, which requires the measure space to be σ-finite. For the
second equality we have ∫∞

0
φ ′(α)df(α)dα =

∫∞
0

φ ′(α)

∫
X
χ{x : |f(x)|>α}dµ(x)dα (15.14)

=

∫
X

∫ |f(x)|
0

φ ′(α)dαdµ(x) (15.15)

=

∫
X
φ(|f(x)|)dµ(x). (15.16)

Definition 153 (Weak Lp). For 0 < p < ∞, the space weak Lp(X,µ) is defined as the set of all µ-meausurable
functions f such that

∥f∥Lp,∞ = inf{C > 0 | df(α) ≤
Cp

αp
for all α > 0} (15.17)

= sup{γdf(γ)
1/p | γ > 0} (15.18)

is finite, and where df is the distribution function of f. The space weak L∞(X,µ) is by definition L∞(X,µ) . Note
that this is not actually a normed space though. Indeed, if f = 0 almost everywhere, then ∥f∥Lp,∞ = 0, so there can
be functions that are not zero everywhere that have zero norm.

We quickly show that the two definitions of ∥f∥Lp,∞ are equal. We have

inf{C > 0 | df(α) ≤
Cp

αp
for all α > 0} = inf{C > 0 | αdf(α)

1/p ≤ C for all α > 0}.

Setting C = sup{γdf(γ)
1/p | γ > 0}, we clearly have that αdf(α)

1/p ≤ C for all α. So the two are in fact equal.

Remark 154. The norm we defined above is not actually a norm. It is only a semi-norm.

Proposition 155 ([Gra14a] Proposition 1.1.6). (Lp(X,µ) ⊆ Lp,∞) For any 0 < p < ∞ and any f ∈ Lp(X,µ) we have

∥f∥Lp,∞ ≤ ∥f∥Lp .

Hence the embedding Lp(X,µ) ⊆ Lp,∞(X,µ) holds.
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Proof. We apply Chebyshev’s Inequality with the function g(x) = |x|:

df(α) = µ({x ∈ X | |f(x)| ≥ α}) ≤ 1

αp

∫
|f(x)|>α

|f(x)|pdµ ≤ 1

αp

∫
X
|f(x)|pdµ = ∥f∥pLp

Then

∥f∥Lp,∞ = sup{αdf(α)
1/p | α > 0} ≤ sup

(∫
|f|>α

|f|pdµ

)1/p

≤
(∫

X
|f|pdµ

)1/p
= ∥f∥Lp .

15.2 Hardy-Littlewood Maximal Operator

One might ask why we are always taking the supremum of functions over a certain set, such as cubes or balls
in Rn. Why not the limit as the diameter of the sets go to 0? We start with some motivation. First consider the
differentiation of the integral for one dimensional functions. Suppose f is given on [a,b] and it is integrable on that
interval, we let

F(x) =

∫x
a
f(y)dy

for x ∈ [a,b]. Now we can look at F ′(x) using the quotient definition of the derivative

F ′(x) = lim
h→0

F(x+ h) − F(x)

h
.

Notice that this can be rewritten as
1

h

∫x+h

x
f(y)dy =

1

|I|

∫
I
f(y)dy,

where I = (x, x+ h), and |I| is the length of this interval. Now, one might see that this is the average of f over I. As
|I| → 0 we might expect that

lim
|I|→0
x∈I

1

|I|

∫
I
f(y)dy = f(x)

holds for suitable x. In higher dimensions we can reformulate this as the question: does

lim
r→0

1

µ(B(x, r))

∫
B(x,r)

f(y)dy = f(x),

for almost all x? The above equation is true if f is continuous at x. Now, in order to study the limit, it is often
convenient to replace limr→0 with supr>0 to see what the maximal value that an integral of this form can take is.

Given a Lebesgue measurable subset A ⊆ Rn, we denote by |A| its Lebesgue measure. Given δ > 0 and a locally
integrable function f on Rn, let

AvgB(x,δ)|f| =
1

|B(x, δ)|

∫
B(x,δ)

|f(y)|dy

denote the average of |f| over the ball of radius δ centered at x.
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Definition 156 (Centered Hardy-Littlewood maximal function). Let f be a locally integrable function on Rn. The
function

M(f)(x) = sup
δ>0

AvgB(x,δ)|f| = sup
δ>0

1

vnδn

∫
|y|<δ

|f(x− y)|dy,

where vn is the Lebesgue measure of the unit ball in Rn, is called the centered Hardy-Littlewood maximal function of f.
We change the area we integrate over to all y such that |y| < δ, so that we can work with balls centered at the origin,
this creates the change of variables f(y) to f(x− y).

Example. On R, let f be the characteristic function of the interval [a,b]. For x ∈ (a,b), clearly M(f) = 1. For x ≥ b

it can be seen that the largest average of f over all intervals (x− δ, x+ δ) is obtained when δ = x− a, so that the
whole interval where f is nonzero is included. Similarly, if x ≤ a, the largest average is obtained when δ = b− x.
Therefore,

M(f)(x) =


(b− a)/(2|x− b|) when x ≤ a,

1 when x ∈ (a,b),

(b− a)/(2|x− a|)

Note that M is a sublinear operator, i.e., M(f+ g) ≤ M(f) +M(g) for all locally integrable functions f and g.
Indeed

M(f+ g) = sup
δ>0

1

δnvn

∫
|y|<δ

|f(x− y) + g(x− y)|dy (15.19)

≤ sup
δ>0

1

δnvn

∫
|y|<δ

|f(x− y)|dx+
1

δnvn

∫
|y|<δ

|g(x− y)|dy (15.20)

≤ sup
δ>0

1

δnvn

∫
|y|<δ

|f(x− y)|dx+ sup
δ>0

1

δnvn

∫
|y|<δ

|g(x− y)|dx (15.21)

=M(f) +M(g). (15.22)

Also, M(λf) = |λ|M(f) for all complex constants λ. The following is an interesting fact about M.

Theorem 157. If f ∈ L1(Rn) is not identically zero, then M(f) is never integrable on the whole of Rn, i.e., M(f) /∈ L1(Rn).

Proof. We can choose an N large enough such that∫
B(0,n)

|f(y)dy ≥ 1

2
∥f∥L1 .

Then, we take an x ∈ Rn such that |x| ≥ N. Let r = |x|+N, we have

M(f) ≥ 1

|B(x, r)

∫
B(x,r)

|f(y)|dy (15.23)

=
1

vn(|x|+N)n

∫
B(x,r)

|f(y)|dy (15.24)

≥ 1

vn(|x|+N)n

∫
B(0,N)

|f(y)|dy (15.25)
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where the last inequality comes from the fact that B(0,N) ⊂ B(x, r). Then

1

vn(|x|+N)n

∫
B(0,N)

|f(y)|dy ≥ 1

2vn(|x|+N)n
∥f∥L1 (15.26)

≥ 1

2vn(2|x|)n
∥f∥L1 . (15.27)

It follows that for sufficiently large |x|, we have

M(f)(x) ≥ c|x|−n

where c = (vn2
n+1)−1 ∥f∥L1 . It follows that if we integrated the right hand side of this over Rn it would be infinite,

and thus M(f)(x) /∈ L1(Rn) unless ∥f∥L1 = 0, which implies that f = 0 almost everywhere.

Corollary 158. If M(f)(x) = 0 for some x0 ∈ Rn, then f = 0 almost everywhere.

Proof. Take x = x0 in the previous theorem, and we get

0 = M(f)(x) ≥ 1

vn(|x|+N)n

∫
B(0,N)

|f(y)|dy

and thus
0 =

∫
B(0,N)

|f(y)|dy

for all sufficiently large N. Thus f = 0 almost everywhere.

Definition 159 (Uncentered Hardy-Littlewood Maximal Function). The uncentered Hardy-Littlewood maximal function
of f,

M(f)(x) = sup
δ>0

|y−x|<δ

AvgB(y,δ)|f|,

is defined to be the supremum of the averages of |f| over all open balls B(y, δ) that contain the point x.

Note that M(f) ≤ M(f) for the simple fact that we are taking the supremum of a larger set of balls in the
uncentered version than in the centered one.

Example. Let f be the characteristic function on the interval I = [a,b]. For x ∈ (a,b) we have M(f)(x) = 1, but
if x ≥ b we can see that the largest average of f over all intervals (y − δ,y + δ) occurs when δ = 1

2 (x − a) and
y = 1

2 (x+ a). Similarly, when x ≤ a, the largest average obtained is when δ = 1
2 (b− x) and y = 1

2 (b+ x). We can
conclude that

M(f)(x) =


(b− a)/|x− b| when x ≤ a

1 when x ∈ (a,b)

(b− a)/|x− a| when x ≥ b.

Note that M(f) does not have a jump at x = a and x = b, while M(f) did have jumps at those points.

Theorem 160 ([Gra14a] Theorem 2.1.6). The uncentered and centered Hardy-Littlewood maximal operators M and M map
L1(Rn) to L1,∞(Rn), where Lp,∞ is weak Lp, with constant at most 3n and also Lp(Rn) to Lp(Rn) for 1 < p < ∞ with
constant at most 3n/pp(p− 1)−1. For any f ∈ L1(Rn) we also have

|{M(f) > α}| ≤ 3n

α

∫
{M(f)>α}

|f(y)|dy.

The idea of the proof uses a covering lemma for balls which we will not prove here.
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Chapter 16

BMO Spaces

In this section we will look at spaces of bounded mean oscillation (BMO). Loosely, a function is in BMO if it doesn’t
grow too quickly. For example, the function log |x| is in BMO while ex is not. They were initially introduced by
Fritz John and Louis Nirenberg for the purpose of studying PDEs. About a decade after their introduction Charles
Fefferman proved that the dual space of the Hardy space H1 is BMO, answering a long standing open problem. We
will introduce these spaces, and one of the most important theorems about them, the John-Nirenberg Theorem. To
do this we will also look at the Calderón-Zygmund decomposition.

This section is based off of [Gra14b].

Definition 161. Let f be a locally integrable function on Rn and Q a measurable set in Rn. Denote by

AvgQ f =
1

|Q|

∫
Q
f(x)dx

the mean of f over Q, where |Q| is the Lebesgue measure of Q. Then the oscillation of f over Q is the function∣∣∣f− AvgQ f
∣∣∣, and the mean oscillation of f over Q is

1

|Q|

∫
Q

∣∣∣f(x) − AvgQ f
∣∣∣dx.

This quantity measures how far a function gets from its average, on average.

Definition 162. For f a complex-valued locally integrable function on Rn, set

∥f∥BMO = sup
{

1

|Q|

∫
Q

∣∣∣f(x) − AvgQ f
∣∣∣dx | Q a cube in Rn

}
.

We say that f has bounded mean oscillation if ∥f∥BMO < ∞ and BMO(Rn) is the set of all locally integrable functions
f on Rn with ∥f∥BMO < ∞.

Example. Here we see that ex is not in BMO. The mean oscillation continues to increase as x increases and because
of this it cannot be in BMO.

Proposition 163. BMO(Rn) is a linear space.

101
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Proof. Let α ∈ R, f ∈ BMO(Rn). Then

∥αf∥BMO = sup
{

1

|Q|

∫
Q

∣∣∣αf(x) − AvgQ αf
∣∣∣dx | Q a cube in Rn

}
= sup

{
1

|Q|

∫
Q

∣∣∣αf(x) −αAvgQ f
∣∣∣dx | Q a cube in Rn

}
= |α| ∥f∥BMO < ∞

so αf ∈ BMO(Rn). Now, let f,g ∈ BMO(Rn). Then

∥f+ g∥BMO = sup
{

1

|Q|

∫
Q

∣∣∣f(x) + g(x) − AvgQ f− AvgQ g
∣∣∣dx | Q is a cube in Rn

}
≤ sup

{
1

|Q|

∫
Q

∣∣∣f(x) − AvgQ f
∣∣∣dx+ 1

|Q|

∫
Q

∣∣∣g(x) − AvgQ g
∣∣∣dx | Q is a cube in Rn

}
≤ sup

{
1

|Q|

∫
Q

∣∣∣f(x) − AvgQ f
∣∣∣dx | Q a cube

}
+ sup

{
1

|Q|

∫
Q

∣∣∣g(x) − AvgQ g
∣∣∣dx | Q a cube

}
= ∥f∥BMO + ∥g∥BMO < ∞

thus f+ g ∈ BMO(Rn).

Remark 164. We now know that BMO(Rn) is a normed linear space, and as we will see in the next chapter, it is
actually a Banach space.

Proposition 165. ∥·∥BMO is seminorm, but not a norm because ∥f∥BMO = ∥f+ c∥BMO where c ∈ R.

Proof. By Proposition 163, ∥·∥BMO is a seminorm. For the second part we have

∥f+ c∥BMO = sup
{

1

|Q|

∫
Q

∣∣∣f(x) + c− AvgQ(f+ c)
∣∣∣dx | Q a cube in Rn

}
,

but
AvgQ(f+ c) −

1

|Q|

∫
Q
f(x) + cdx =

1

|Q|

∫
Q
f(x)dx+ c

1

|Q|

∫
Q
dx = AvgQ f+ c.

Thus

∥f+ c∥BMO = sup
{

1

|Q|

∫
Q

∣∣∣f(x) + c− AvgQ f− c)
∣∣∣dx | Q a cube in Rn

}
= ∥f∥BMO .

As a consequence we have that ∥c∥BMO = 0, when c is a constant.
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As a result of Proposition 165 we define f ∼ g if f− g = c for some constant c ∈ R.

Proposition 166. The relation ∼ is an equivalence relation.

Proof. Clearly f ∼ f. If f− g = c, then g− f = −c. If f− g = c and g− h = d, then f− g+ g− h) = f− h = c+ d, so
f ∼ h, and ∼ is an equivalence relation.

We will now identify functions by ∼ and define

BMO(Rn) =
{
f | ∥f∥BMO < ∞ and f is locally integrable on Rn

}
/ ∼ .

The following eight propositions are Proposition 7.1.2 in [Gra14b], but we break it into smaller pieces, filling in
details for all the proofs.

Proposition 167 ([Gra14b] Proposition 3.1.2). If ∥f∥BMO = 0, then f is equal to a constant almost everywhere.

Proof. Suppose ∥f∥BMO = 0. Then

∥f∥BMO = sup
{

1

|Q|

∫
Q

∣∣∣f(x) − AvgQ f
∣∣∣dx | Q a cube in Rn

}
= 0

which implies that ∫
Q

∣∣∣f(x) − AvgQ f
∣∣∣dx = 0

for all cubes Q in Rn. But then this means that f(x) − AvgQ f = 0 almost everywhere, so f(x) = AvgQ(f) almost
everywhere, which is a constant.

Example. Let f = c be a constant function. Then the average of f over any cube Q is c, so its mean oscillation

1

|Q|

∫
Q
|c− c|dx = 0.

Thus the mean oscillation of a constant function is 0. This makes sense because it never deviates from its average.

This next theorem tells us that every bounded function also has bounded mean oscillation. This is one of the most
important properties of BMO. As we saw previously the dual space of Lq is Lp if 1 < p < ∞ and p−1 + q−1 = 1.
However, this doesn’t work if p = 1 or p = ∞, the Lp spaces don’t behave as well in these settings, so instead we
can replace L∞ with BMO and as we will see in the next chapter we can replace L1 with H1 to achieve better duality
results.

Proposition 168 ([Gra14b] Proposition 3.1.2). L∞(Rn) ⊂ BMO(Rn) and ∥f∥BMO ≤ 2 ∥f∥∞.

Proof. Suppose f ∈ L∞(Rn), then f is bounded, and thus it must be within a bounded distance of its mean, so
f ∈ CMO(Rn). Then note that

sup
{

AvgQ

∣∣∣f− AvgQ f
∣∣∣ | Q a cube in Rn

}
= sup

{
1

|Q|

∫
Q

∣∣∣f− AvgQ f
∣∣∣dµ | Q a cube

}
= ∥f∥BMO

Then

AvgQ

∣∣∣f− AvgQ f
∣∣∣ = 1

|Q|

∫
Q

∣∣∣f− AvgQ f
∣∣∣dµ ≤ 1

|Q|

∫
Q
|f(x)|dµ+

1

|Q|

∣∣∣AvgQ f
∣∣∣dµ = AvgQ |f|+

∣∣∣AvgQ f
∣∣∣ .
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But then ∣∣∣AvgQ f
∣∣∣ = ∣∣∣∣ 1

|Q|

∫
Q
fdµ

∣∣∣∣ ≤ 1

|Q|

∫
Q
|f(x)|dµ = AvgQ |f| .

Giving us
AvgQ

∣∣∣f− AvgQ f
∣∣∣ ≤ 2AvgQ |f| .

Finally, the average of a function is less than its essential supremum, and giving us

2AvgQ |f| ≤ 2 ∥f∥L∞
and since this is true for any cube Q in Rn, it is also true for the supremum, thus

∥f∥BMO ≤ ∥f∥L
∞

.

This next proposition tells us that BMO is closed under taking absolute values, minimums and maximums.

Proposition 169 ([Gra14b] Proposition 3.1.2). If f ∈ BMO(Rn), then so is |f|. Similarly, if f,g are real-valued BMO

functions, then so are max(f,g) and min(f,g). In other words, BMO is a lattice. Moreover,

∥|f|∥BMO ≤ 2 ∥f∥BMO

∥max(f,g)∥BMO ≤ 3

2

(
∥f∥BMO + ∥g∥BMO

)
∥min(f,g)∥BMO ≤ 3

2

(
∥f∥BMO + ∥g∥BMO

)
.

Proof. The first statement is a consequence of the fact that∣∣∣|f(x)|− AvgQ |f|
∣∣∣ = ∣∣∣∣|f|− 1

|Q|

∫
Q
f(t)dµ

∣∣∣∣
=

∣∣∣∣ 1

|Q|

∫
Q
||f(x)|− f(t)|dt

∣∣∣∣
≤
∣∣∣∣ 1

|Q|

∫
Q

∣∣∣f(x) − AvgQ f+ AvgQ f− f(t)
∣∣∣dt∣∣∣∣

≤
∣∣∣∣ 1

|Q|

∫
Q

∣∣∣f(x) − AvgQ f
∣∣∣dt+ 1

|Q|

∫
Q

∣∣∣AvgQ f− f(t)
∣∣∣dt∣∣∣∣

=
∣∣∣f− AvgQ f

∣∣∣+ AvgQ

∣∣∣AvgQ f− f
∣∣∣ .

Then averaging over Q and taking supremums we see that the right hand side is bounded, and thus the left hand
side is as well, so |f| ∈ BMO(Rn). Note that we can write

max(f,g) =
|f− g|+ f+ g

2
.

Indeed, |f−g|
2 is half of the distance between f and g, while f+g

2 is the midpoint, so adding half the distance to the
midpoint brings us to the maximum. Similarly,

min(f,g) =
f+ g− |f− g|

2
.
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Now, we have

∥max(f,g)∥BMO = sup
{

1

|Q|

∫
Q

∣∣∣max(f,g)(x) − AvgQ max(f,g)
∣∣∣dµ | Q is a cube in Rn

}
,

and

AvgQ(max(f,g)) =
1

|Q|

∫
Q

|f− g|+ f+ g

2
dµ

=
1

2 |Q|

(∫
Q
|f(x) − g(x)|dµ+

∫
Q
f(x)dµ+

∫
Q
g(x)dµ

)
= AvgQ |f− g|+ AvgQ f+ AvgQ g.

So we have

∥max(f,g)∥BMO =
1

2
sup

{
1

Q

∫
Q

∣∣∣∣ |f− g|+ f+ g

2
− AvgQ |f− g|− AvgQ f− AvgQ g

∣∣∣∣dµ | Q a cube in Rn

}
≤
(
∥|f− g|∥BMO + ∥f∥BMO + ∥g∥BMO

)
.

Using the first result of this proposition, we see that

1

2

(
∥|f− g|∥BMO + ∥f∥BMO + ∥g∥BMO

)
≤ 1

2

(
2 ∥f− g∥BMO + ∥f∥BMO + ∥g∥BMO)

)
≤ 3

2

(
∥f∥BMO + ∥g∥BMO

)
.

The last statement simply follows from the fact that min(f,g) ≤ max(f,g).

Proposition 170 ([Gra14b] Example 3.1.3). L∞(Rn) is a proper subspace of BMO(Rn).

Proof. We claim that log |x| ∈ BMO(Rn), but not in L∞(Rn). Clearly log |x| /∈ L∞(Rn) since it is unbounded. To
prove that it is in BMO(Rn), for every x0 ∈ Rn and R > 0, we must find a constant cx0,R such that the average of∣∣log |x|− cx0,R

∣∣ over the ball {x ∈ Rn | |x− x0| ≤ R} is uniformly bounded. Since

1

vnRn

∫
|x−x0|≤R

∣∣log |x|− cx0,R
∣∣dµ =

1

vn

∫
|z−R−1x0|≤1

∣∣log |z|− cx0,R + logR
∣∣dµ,

we may take cx0,R = cR−1x0,1 + logR, and things reduce to the case that R = 1 and x0 is arbitrary. If R = 1 and
|x0| ≤ 2, take cx0,1 = 0 and observe that∫

|x−x0|≤1
|log |x||dµ ≤

∫
|x|≤3

|log |x||dµ = c.

When R = 1 and |x0| ≥ 2, take cx0,1 = log |x0|. In this case notice that

1

vn

∫
|x−x0|≤1

|log |x| = log |x0||dx =
1

vn

∫
|x−x0|≤1

∣∣∣∣log
|x|

|x0|

∣∣∣∣ ≤ log 2.

Since when |x− x0| ≤ 1 and |x0| ≥ 2, we have

log
|x|

|x0|
≤ log

|x0|+ 1

|x0|
≤ log

3

2
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Figure 16.1: Graph of log |x|

which comes from the assumption that |x0| ≥ 2, and

log
|x0|

|x|
≤ log

|x0|

|x0|− 1
≤ log 2.

Thus log x ∈ BMO(Rn).

Example ([Gra14b] Example 3.1.4). Now we show that not all functions are in BMO(Rn). We claim that h(x) =

χx>0 log 1
x /∈ BMO(Rn), where χx>0 is the characteristic function. The problem is at the origin. Consider the

intervals (−ϵ, ϵ) with 0 < ϵ < 1
2 . We have that

Avg(−ϵ,ϵ) h =
1

2ϵ

∫ϵ
−ϵ

h(x)dx =
1

2ϵ

∫ϵ
0

log
1

x
dx =

1+ log 1
ϵ

2
.

But then
1

2ϵ

∫ϵ
−ϵ

∣∣∣h(x) − Avg(−ϵ,ϵ) h
∣∣∣dµ ≥ 1

2ϵ

∫0
−ϵ

∣∣∣Avg(−ϵ,ϵ) h
∣∣∣dµ =

1+ log 1
ϵ

4
,

but the right hand side of this is unbounded as ϵ → 0.
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16.1 Calderón-Zygmund Decomposition

We want to prove the John-Nirenberg inequality which says that BMO functions are exponentially integrable. How-
ever, we first need to make a detour to understand the Calderón Zygmund Decomposition.

Definition 171. A dyadic cube in Rn is the set

[2km1, 2k(m1 + 1))× · · · × [2kmn, 2k(mn + 1)),

where k,m1, . . . ,mn ∈ Z. Two dyadic cubes are either disjoint or related by inclusion.

Example. Put an example in here.

We also need one more theorem, which we state without proof.

Theorem 172 (Lebesgue’s Differentiation Theorem, [Gra14a] Corollary 2.1.16). For any locally integrable function f on
Rn we have

lim
r→0

1

|B(x, r)|

∫
B(x,r)

f(y)dy = f(x)

for almost all x ∈ Rn.

Remark 173. Lebesgue’s differentiation theorem says that the value of a function at a point is the limit of its average
on the ball surrounding it.

Now we come to the Calderón-Zygmund decomposition which says that for any absolutely integrable function
we can decompose it into a good part and a bad part. The bad part also has mean zero and is also in L1.

Theorem 174 ( [Gra14a] Corollary 5.3.1). Let f ∈ L1(Rn) and α > 0. Then there exist functions g and b on Rn such that

(a) f = g+ b.

(b) ∥g∥L1 ≤ ∥f∥L1 and ∥g∥L∞ ≤ 2nα.

(c) b =
∑

j bj where each bj is supported in a dyadic cube Qj. Furthermore, the cubes Qk and Qj are disjoint when j ̸= k.

(d)
∫
Qj

bk(x)dx = 0.

(e) ∥bj∥L1 ≤ 2n+1α
∣∣Qj

∣∣.
(f)

∑
j

∣∣Qj

∣∣ ≤ α−1 ∥f∥L1 .

Proof. We first construct the cubes Qj. Start by decomposing Rn into a mesh of disjoint dyadic cubes of the same
size such that

|Q| ≥ 1

α
∥f∥L1

for every cube Q in the mesh. We call these cubes generation zero. To build the next generation, subdivide each
cube of generation zero in 2n congruent cubes by bisecting each of its sides. This will be a new mesh of dyadic
cubes of generation one. Now, choose a cube Q of generation one if

1

|Q|

∫
Q
|f(x)|dx > α.
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We are singling out the cubes where f is too big, and these will be the cubes we define the bj on. Let S(1) be the set
of all cubes selected in generation one. Now subdivide each nonselected cube of generation one into 2n congruent
subcubes by dissecting the sides. These cubes will be generation two. Then let S(2) be the set of cubes such that

1

|Q|

∫
Q
|f(x)|dx > α.

Repeat this procedure indefinitely. The set of all selected cubes
⋃∞

m=1 S
(M) is countable and is exactly the set of

cubes Qj that we want for the proposition. Indeed, for each selected sube we have

1

|Q|

∫
Q
|f(x)|dx > α.

1

α

∫
Q
|f(x)|dx >

∣∣Qj

∣∣
1

α
∥f∥L1 >

∑
j

∣∣Qj

∣∣ .

Note that the cubes Qj are disjoint, since otherwise some Qk would be a proper subset of some Qj, which is
impossible since the selected cube Qj was never subdivided. Now define

bj

(
f−

1∣∣Qj

∣∣ ∫
Qj

fdx

)
χQj

,

b =
∑

j bj and g = f−b. For a selected cube Qj there exists a unique nonselected cube Q ′ with twice its side length
that contains Qj. Call Q ′ the parent of Qj. Since the parent Q ′ of Qj was not selected, we have 1

|Q ′|

∫
Q ′ |f|dx ≤ α.

Then
1∣∣Qj

∣∣ ∫
Qj

. |f(x)|dx ≤ 1∣∣Qj

∣∣ ∫
Q ′

|f(x)|dx =
2n

|Q ′|

∫
Q ′

|f(x)|dx ≤ 2nα.

And thus ∫
Qj

∣∣bj∣∣dx ≤
∫
Qj

|f|dx+
∣∣Qj

∣∣ ∣∣∣∣∣ 1∣∣Qj

∣∣ ∫
Qj

fdx

∣∣∣∣∣ ≤ 2

∫
Qj

|f|dx ≤ 2n+1α
∣∣Qj

∣∣ .

Now we need to obtained the estimates for g. We have

g =

f on Rn\
⋃

jQj,
1

|Qj|

∫
Qj

fdx on Qj.

On the cube Qj, g is equal to the constant
∣∣Qj

∣∣−1 ∫
Qj

fdx, which is bounded by 2nα. It suffices to show that g is
bounded outside the union of the Qj’s. Indeed, for each x ∈ Rn\

⋃
jQj and for each k = 0, 1, 2, . . . there exists a

unique nonselected dyadic cube Q
(k)
x of generation k that contains x. Then for each k ≥ 0 we have∣∣∣∣∣∣ 1∣∣∣Q(k)
x

∣∣∣
∫
Q

(k)
x

f(y)dx

∣∣∣∣∣∣ ≤ 1∣∣∣q(k)
x

∣∣∣
∫
Q

(k)
x

|f(y)|dy ≤ α.
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The intersection of the closures of the cubes Q
(k)
x is a singleton {x}. Using Lebesgue’s Differentiation Theorem, we

have that for almost all x ∈ Rn\
⋃

jQj we have

f(x) = lim
k→∞ 1∣∣∣Q(k)

x

∣∣∣
∫
Q

(k)
x

f(y)dy.

Since these averages are at most α, we conclude that |f| ≤ α almost everywhere on Rn\
⋃

jQj, and hence |g| ≤ α

almost everywhere on this set. Finally, it follows that ∥g∥L1 ≤ ∥f∥L1 .

16.2 John-Nirenberg Inequality

We now come to one of the most important inequalities in the theory of BMO spaces. The proof is long, and we
have tried to fill in as many details as possible. This section is based off of section 7.1.2 in [Gra14b].

Theorem 175 ([Gra14b] Corollary 3.1.6). For all f ∈ BMO(Rn), for all cubes Q, and all α > 0 we have∣∣∣{x ∈ Q :
∣∣∣f(x) − AvgQ f

∣∣∣ > α
}∣∣∣ ≤ e−Aα/∥f∥BMO (16.1)

with A = (2ne)−1.

Proof. Since the inequality in 16.1 is unchanged when we multiply both f and α by a constant, we can assume that
∥f∥BMO = 1. We now fix a closed cube Q and a constant b > 1 which we will assign a value to later.

We apply Calderón Zygmund decomposition to the function f− AvgQ f inside the cube Q. The decomposition
will differ slightly since in the Calderón-Zygmund decomposition we looked at before, we were decomposing a
function on Rn, but the proof will be similar. We introduce the following selection criterion for a cube R:

1

|R|

∫
R

∣∣∣f(x) − AvgQ f
∣∣∣dx > b.

Since
1

|Q|

∫
Q

∣∣∣f(x) − AvgQ f
∣∣∣dx ≤ ∥f∥BMO = 1 < b

Q will not be chosen. Set Q(0) = Q and subdivide Q(0) into 2n equal subcubes of side length equal to half of the
side length of Q. Select a subcube R if it satisfies the selection criterion. Now subdivide all nonselected cubes into 2n

equal subcubes of half their sidelength by bisecting the sides, and select the cubes that meet the selection criterion.
By continuing this process indefinitely, we will obtain a countable collection of subcubes

{
Q

(1)
j

}
j

satisfying the

following properties:

(A-1) The interior of every Q
(1)
j is contained in Q(0).

(B-1) b <
∣∣∣Q(1)

j

∣∣∣−1 ∫
Q

(1)
j

∣∣∣f(x) − AvgQ(0) f
∣∣∣dx ≤ 2nb.

(C-1)
∣∣∣∣Avg

Q
(1)
j

f− AvgQ(0) f

∣∣∣∣ ≤ 2nb.

(D-1)
∑

j

∣∣∣Q(0)
j

∣∣∣ ≤ 1
b

∑
j

∫
Q

(1)
j

∣∣∣f(x) − AvgQ(0)

∣∣∣dx ≤ 1
b

∣∣∣Q(0)
∣∣∣.
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(E-1)
∣∣∣f− AvgQ(0) f

∣∣∣ ≤ b almost everywhere on the set Q(0)\
⋃

jQ
(1)
j .

We prove these quickly. Properties (A-1) and the first inequality follow from construction. For the second
inequality in (B-1) suppose that

2nb <
1∣∣∣Q(1)
j

∣∣∣
∫
Q

(1)
j

∣∣∣f(x) − AvgQ(0)

∣∣∣dx,

then
b <

1

2n
∣∣∣Q(1)

j

∣∣∣
∫
Q

(1)
j

∣∣∣f(x) − AvgQ(0)

∣∣∣dx ≤ 1

2n
∣∣∣Q(1)

j

∣∣∣
∫
2nQ

(1)
j

∣∣∣f(x) − AvgQ(0)

∣∣∣dx
but 2nQ(1)

j is the size of the cube containing Q
(1)
j which was not selected. Thus by this it should have been selected

which is a contradiction, establishing (B-1). For (C-1) we have

∣∣∣∣Avg
Q

(1)
j

f−Q(0)

∣∣∣∣ =
∣∣∣∣∣∣ 1∣∣∣Q(1)

j

∣∣∣
∫
Q

(1)
j

f(x)dx− AvgQ(0) f

∣∣∣∣∣∣
=

∣∣∣∣∣∣ 1∣∣∣Q(1)
j

∣∣∣
∫
Q

(1)
j

f(x) − AvgQ(0) fdx

∣∣∣∣∣∣
≤ 1∣∣∣Q(1)

j

∣∣∣
∫
Q

(1)
j

∣∣∣f(x) − AvgQ(0)

∣∣∣dx ≤ 2nb

by the second inequality in (B-1). For (D-1) the first inequality just follows from the first inequality in (B-1). For the
second inequality note that

1∣∣Q(0)
∣∣
∫
Q(0)

∣∣∣f(x) − AvgQ(0)

∣∣∣dx ≤ 1 < b.

Then
1

b

∫
Q(0)

∣∣∣f(x) − AvgQ(0)

∣∣∣dx ≤ 1

b

∣∣∣Q(0)
∣∣∣ .

Note that ∫
Q

(1)
j

∣∣∣f(x) − AvgQ(0) f
∣∣∣dx ≤

∫
Q(0)

∣∣∣f(x) − AvgQ(0) f
∣∣∣dx,

in fact, ∑
j

∫
Q

(1)
j

∣∣∣f(x) − AvgQ(0) f
∣∣∣dx ≤

∫
Q(0)

∣∣∣f(x) − AvgQ(0) f
∣∣∣dx,

since the Q
(1)
j are all disjoint and contained inside Q(0). Thus we get the second inequality in (D-1). Finally, for

(E-1) we can apply the Lebesgue differentiation theorem to the function
∣∣∣f(x) − AvgQ(0)

∣∣∣ to obtain the result.

We call the cubes Q
(1)
j the first generation. We now fix a selected first generation cube Q

(1)
j and we introduce

the following selection criteria for a cube R:

1

|R|

∫
R

∣∣∣∣f(x) − Avg
Q

(1)
j

f

∣∣∣∣dx > b.
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Similar to the decomposition we did before, Q(1)
j does not satisfy the selection criteria. We again apply a Calderón-

Zygmund decomposition to the function f− Avg
Q

(1)
j

f inside the cube Q
(1)
j . Subdivide Q

(1)
j into 2n equal closed

subcubes of Q(1)
j . Select a subcube R if it satisfies the selection criteria. Then divide the nonselected cubes into 2n

subcubes and repeat. Continue this process indefinitely. Also, repeat this process for any other cube Q
(1)
j in the first

generation. We obtain a collection of cubes
{
Q

(2)
l

}
l

that are the second generation cubes. Versions of (A-1)-(E-1)
are satisfied by replacing the superscript (1) with (2) and with (1) replacing (0). We use the superscript (k) to denote
the generation of the selected cubes.

For a fixed selected cube Q
(2)
l in the second generation we introduce the selection criteria

1

|R|

∫
R

∣∣∣∣f(x) − Avg
Q

(2)
l

f

∣∣∣∣dx > b

and repeat the previous process to obtain a third generation of cubes. Denote by
{
Q

(3)
s

}
s

this third generation.

We iterate this procedure indefinitely to obtain a doubly indexed family of cubes Q
(k)
j satisfying the following

properties.

(A-k) The interior of every Q
(k)
j is contained in a unique Q

(k−1)
j ′ .

(B-k) b <
∣∣∣Q(k)

j

∣∣∣−1 ∫
Q

(k)
j

∣∣∣∣f(x) − Avg
Q

(k−1)

j ′
f

∣∣∣∣dx ≤ 2nb.

(C-k)
∣∣∣∣Avg

Q
(k)
j

f− Avg
Q

(k−1)

j ′
f

∣∣∣∣ ≤ 2nb.

(D-k)
∑

j

∣∣∣Q(k)
j

∣∣∣ ≤ 1
b

∑
j ′

∣∣∣Q(k−1)
j ′

∣∣∣.
(E-k)

∣∣∣∣f− Avg
Q

(k−1)

j ′
f

∣∣∣∣ ≤ b almost everywhere on the set Q(k−1)
j ′ \

⋃
jQ

(k)
j .

Note that (A-1) and the first inequality of (B-1) are satisfied by construction. Then similar to the last case the second
inequality in (B-1) is a consequence of the fact that the unique cube Q

(k)
j0

with double the side length of Q(k)
j that

contains it was not selected in the process. Then (C-K) follows from the upper inequality in (B-K). Indeed,

∣∣∣∣Avg
Q

(k)
j

−Q
(k−1)
j ′

∣∣∣∣ =
∣∣∣∣∣∣ 1∣∣∣Q(k)

j

∣∣∣
∫
Q

(k)
j

∣∣∣∣f(x) − Avg
Q

(k−1)

j ′
f

∣∣∣∣dx
∣∣∣∣∣∣

≤ 1∣∣∣Q(k)
j

∣∣∣
∫
Q

(k)
j

∣∣∣∣f(x) − Avg
Q

(k−1)

j ′
f

∣∣∣∣dx ≤ 2nb.

Next, (E-k) follows from the Lebesgue Differentiation theorem in the same way that (E-1) did. Finally, for (D-k) we
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have ∑
j

∣∣∣Q(k)
j

∣∣∣ ≤ 1

b

∑
j

∫
Q

(k)
j

∣∣∣∣f(x) − Avg
Q

(k−1)

j ′
f

∣∣∣∣dx
=

1

b

∑
j ′

∑
j corresp. to j ′

∫
Q

(k)
j

∣∣∣∣f(x) − Avg
Q

(k−1)

j ′
f

∣∣∣∣dx
≤;

∑
j ′

∫
Q

(k−1)

j ′

∣∣∣∣f(x) − Avg
Q

(k−1)

j ′
f

∣∣∣∣dx
≤ 1

b

∑
j ′

∣∣∣Q(k−1)
j ′

∣∣∣ ∥f∥BMO

=
1

b

∑
j ′

∣∣∣Q(k−1)
j ′

∣∣∣ .

Now we look at some consequences of (A-k)-(E-K). If we apply (D-k) k− 1 times successively we get∑
j

∣∣∣Q(k)
j

∣∣∣ ≤ b−k
∣∣∣Q(0)

∣∣∣ .

For any fixed j we have that ∣∣∣∣Avg
Q

(1)
j

f− Avgq(0)

∣∣∣∣ ≤ 2nb

and
∣∣∣∣f− Avg

Q
(1)
j

f

∣∣∣∣ ≤ b almost everywhere on Q
(1)
j \

⋃
lQ

(2)
l . This gives∣∣∣f− AvgQ(0) f
∣∣∣ ≤ 2nb+ b

almost everywhere on Q
(1)
j \

⋃
lQ

(2)
l . Indeed,∣∣∣f− AvgQ(0) f

∣∣∣ = ∣∣∣∣f− Avg
Q

(1)
j

f+ Avg
Q

(1)
j

−AvgQ(0) f

∣∣∣∣ ≤ ∣∣∣∣f− Avg
Q

(1)
j

f

∣∣∣∣+ ∣∣∣∣Avg
Q

(1)
j

−AvgQ(0) f

∣∣∣∣ ≤ 2nb+ b

almost everywhere on Q
(1)
j \

⋃
lQ

(2)
l . We will use the fact that 2nb+ b ≤ 2n2b combined with (E-1) to see that∣∣∣f− AvgQ(0)

∣∣∣ ≤ 2n2b

almost everywhere on Q(0)\
⋃

lQ
(2)
l . Now, for every fixed l we also have that

∣∣∣∣f−Avg
Q

(2)
l

f

∣∣∣∣ ≤ b almost every-

where on Q
(2)
l \

⋃
sQ

(3)
s , which combined with

∣∣∣∣Avg
Q

(2)
l

f− Avg
Q

(1)

l ′
f

∣∣∣∣ ≤ 2b and
∣∣∣∣Avg

Q
(1)

l ′
f− AvgQ(0) f

∣∣∣∣ ≤ 2nb

yields ∣∣∣f− AvgQ(0) f
∣∣∣ ≤ 2n3b

almost everywhere on Q
(2)
l \

⋃
sQ

(3)
s . And the same estimate is valid on Q(0)\

⋃
sQ

(3)
s Continuing this way by

induction we have that for all k ≥ 1, ∣∣∣f− AvgQ(0) f
∣∣∣ ≤ 2nkb



114 CHAPTER 16. BMO SPACES

almost everywhere on Q(0)\
⋃

sQ
(k)
s . This proves the following inclusion almost everywhere{
x ∈ Q |

∣∣∣f(x) − AvgQ f
∣∣∣ > 2nkb

}
⊆
⋃
j

Q
(k)
j

for all k ∈ N. Now, fix α > 0. If
2nkb < α ≤ 2n(k+ 1)b

for some k ≥ 0, then ∣∣∣{x ∈ Q |
∣∣∣f− AvgQ f

∣∣∣ > α
}∣∣∣ ≤ ∣∣∣{x ∈ Q |

∣∣∣f− AvgQ f
∣∣∣ > 2nkb

}∣∣∣
≤

∑
j

∣∣∣Q(k)
j

∣∣∣ ≤ 1

bk
|Q|

= |Q| e−k log(b)

≤ |Q|be−α log(b)/(2nb)

where the last inequality comes from the fact that −k ≤ 1− α
2nb . Choosing b = e > 1 yields the inequality.



Chapter 17

BMO on Shapes

Now we want to look at a variant of BMO spaces. In the definition of the BMO(Rn) norm we take the supremum
over all cubes of the mean oscillation, however, there is nothing special about cubes. We can define BMO on any set
of shapes. These spaces are called BMO on shapes and were first introduced by Dafni and Gibara in [DG20]. There
are a couple of minimal requirements we need this set of shapes to satisfy.

Definition 176 ([DG20] Definition 2.1). A shape in Rn is any open set in S such that 0 < |S| < ∞. We call a collection
S of shapes a basis if each S ∈ S is a shape and

⋃
S∈S S = Rn.

Example. In one dimension all shapes are the same, as they are just intervals. In higher dimensions there are many
differences between different bases of shapes. For example, let R be the basis of rectangles with sides parallel to
the axis, and let Q be the basis of cubes with sides parallel to the axis. Then these bases are very different because
a sequence of rectangles can have their measure go to zero while the diameter does not. This does not happen in
Q. Other examples included balls centered at the origin or rectangles without sides parallel to the axes. See some
more examples in figure 17.1.

From this we can then define BMO on shapes.

Definition 177 ([DG20] Definition 3.1). Let S be a basis of shapes on Rn. A function f such that f ∈ L1(S) for all

−1 1

−1

1

−1 1

−1

1

−1 1 2

−1

1

Figure 17.1: Examples of Shapes in R2
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S ∈ S is in the space BMOS(R
n) if

sup
S∈S

1

|S|

∫
S
|f− fS|dx

is bounded, where fS = 1
|S|

∫
S fdx.

Before we move onto the main duality result we prove that BMOS(R
n) is indeed a Banach space. We follow the

proof of [DG20] which does not pass to the dual space as the classical completeness proofs for BMOQ(R
n) do.

Theorem 178 ([DG20] Theorem 3.9). For any basis of shapes, BMOS(R
n) is complete.

Proof. Let {fi} be a Cauchy sequence in BMOS(R
n). Then, for any shape S ∈ S, the sequence {fi − (fi)S} is Cauchy

in L1(S). Since L1(S) is complete, there exists a function fS ∈ L1(S) such that fi − (fi)S → fS in L1(S). Note that fS

has mean zero on S. Indeed, since fi − (fi)S converges to fS in L1(S), it follows that

1

|S|

∫
S
fS = lim

i→∞ 1

|S|

∫
S
fi − (fi)S = 0.

If we have two shapes S1,S2 ∈ S such that S1 ∩ S2 ̸= ∅, by the above there is a function fS1 ∈ L1(S1) such that
fi − (fi)S1

→ fS1 in L1(S1) and a function fS2 ∈ L1(S2) such that fi − (fi)S2
→ fS2 in L1(S2). Since both of these

hold in L1(S1 ∩ S2), we have

(fi)S2
− (fi)S1

= [fi − (fi)S1
] − [fi − (fi)S2

] → fS1 − fS
2

int Lp(S1 ∩ S2). This implies hat the sequence C(S1,S2) = (fi)S2
− (fi)S1

converges as constants to a limit that we
denote by C(S1,S2), with

fS1 − fS2 = C(S1,S2) on S1 ∩ S2.

Note that these constants are antisymmetric, i.e., C(S1,S2) = −C(S2,S1).
By a finite chain of shapes we mean a finite sequence

{
Sj
}k
j=1

⊂ S such that Sj ∩ Sj+1 ̸= ∅ for all 1 ≤ j ≤ k− 1.

Furthermore, by a loop of shapes we mean a finite chain
{
Sj
}k
j=1

such that S1 ∩ Sk ̸= ∅. If
{
Sj
}k
j=1

is a loop of
shapes, then

C(S1,Sk) =
k−1∑
j=1

C(Sj,Sj+1).

To see this, consider the telescoping sum

(fi)Sk
− (fi)S1

=

k−1∑
j=1

(fi)Sj+1
− (fi)Sj

,

for a fixed i. The above formula follows from this as each (fi)Sj+1
−(fi)Sj

converges to C(Sj,Sj+1) since Sj ∩ Sj+1 ̸=
∅ and (fi)Sk

− (fi)S1
converges to C(S1,Sk) since S1 ∩ Sk ̸= ∅.

Now we fix a shape S0 ∈ S and consider another shape S ∈ S such that S0 ∩ S = ∅. For any pair of points
(x,y) ∈ S0 × S there exists a path γx,y : [0, 1] → Rn such that γx,y(0) = x and γx,y(1) = y. Since S covers Rn and
the image of γx,y is a compact set, we may cover γx,y by a finite number of shapes. From this we may extract a
finite chain connecting S to S0.
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Now we build the limit function f. If x ∈ S0, then set f(x) = fS0(x). If x /∈ S0, then there is some shape S

containing x and by a preceding argument, a finite chain of shapes
{
Sj
}k
j=1

where Sk = S. In this case, set

f(x) = fSk(x) +

k−1∑
j=0

C(Sj,Sj+1).

To see that this is well-defined, let
{
S̃j
}l
j=1

be another finite chain connecting some S̃l with x ∈ S̃l to S0 = S̃0. Then
we need to show that

fSk +

k−1∑
j=0

C(Sj,Sj+1) = fS̃l +

l−1∑
j=0

C(S̃j, S̃j+1).

First, we use the fact that x ∈ Sk ∩ S̃l to write fSk − fS̃l(x) = C(Sk, S̃l). Then, from the antisymmetry property of
the constants, this is equivalent to

C(Sk, S̃l) = C(Sk,Sk−1) + · · ·+C(S1,S0) +C(S0, S̃1) + · · ·+C(S̃l−1, S̃l).

Finally, we show that fi → f in BMOS(R
n). Fixing a shape S ∈ S, choose a finite chain

{
Sj
}k
j=1

such that Sk = S.
Then we have that, on S f = FS modulo constants, and so, using the definition of fS we get

1

|S|

∫
S
|(fi(x) − f(x)) − (fi − f)S|dx =

1

|S|

∫
S

∣∣∣(fi(x) − fS(x)) − (fi − fS)S

∣∣∣dx
=

1

|S|

∫
S

∣∣∣fi(x) − (fi)S − fS(x)
∣∣∣dx → 0

as i → ∞.

17.1 H1 −BMO Duality

One of the most important theorems of harmonic analysis in the second half of the twentieth century was the du-
ality between the Hardy space H1 and BMO by Charles Fefferman in [Fef71]. The space H1 has many different
characterizations, but we will define it using atomic decomposition. It is usually defined first as a space of holo-
morphic functions, or more generally, as a space of tempered distributions subject to a maximal condition. It is
then possible to show that these are all equivalent but we will not do that here. This is because the equivalency of
these definitions relies heavily on the fact that they are defined using cubes, and does not work as well for shapes.
However, the atomic characterization easily translates over to shapes. The outline of the rest of this thesis is that we
will define a Hardy space on shapes and show that its dual space is the BMO on shapes that we defined above.

Hardy Spaces were originally introduced in the following way.

Definition 179 (Hardy Space). The Hardy space Hp for 0 < p < ∞ is the class of holomorphic functions f on the
open unit disk that satisfy

sup
0≤r<1

(
1

2π

∫2π
0

∣∣∣f(reiθ)∣∣∣2 dθ)1/p

< ∞.

Recall that for a fixed r and 0 ≤ θ ≤ 2π, the quantity reiθ is the circle centered at the origin of radius r. So we
are almost taking the average value of the function over the unit circle. There are a couple of other important things
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to note about this definition. First, the norm is very similar to the Lp norm, but we allow 0 < p < 1. Recall that if
p < 1, then Lp is no longer a normed space. This makes the Hardy spaces a possible stand in for the classical Lp

spaces when p < 1.
The way that our duality theorem will eventually be proven is by using a different characterization of Hardy

spaces, called atomic decomposition. We introduce this below.
The idea of atomic decomposition is to take a function and write it as a linear combination of much simpler

functions. We will, in a sense, be reversing this by defining our Hardy space on shapes to be all linear combinations
of such functions. We start with the definition of these simple functions, called atoms.

Definition 180 (Atom). Let S be a basis of shapes and let S ∈ S. Then a measurable function a : Rn → C is called
an atom on shapes if

(a) Suppa ⊂ S.

(b) ∥a∥2 ≤ 1
|S|1/2

(c)
∫
S adx = 0.

Remark 181. A more conventional definition would change item (2) to |a(x)| ≤ |S|−1 almost everywhere, but these
two conditions are equivalent. Indeed, this inequality can be rewritten as

|S|1/2
(∫

S
|a|2dx

)1/2
≤ 1.

Then, by Hölder’s inequality we have ∫
S
|a|dx ≤ |S|1/2

(∫
S
|a|2dx

)1/2
≤ 1.

So ∫
S
|a|dx ≤ 1 =

∫
S

1

|S|

and thus |a| ≤ |S|−1.

Example. Suppose our basis of shapes is the set of all intervals on R. Let I = [−1, 1] and define

a(x) =

{
1
2 if 0 ≤ x ≤ 1

−1
2 if − 1 ≤ x < 0.

See figure 17.2.

Now we can define the Hardy space on shapes.

Definition 182. Let

H1
S =

{ ∞∑
i=1

λiai | ai is an atom on shapes and λi ∈ C,
∞∑
i=1

|λi| < ∞}
.
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−1 −0.8 −0.6 −0.4 −0.2 0.2 0.4 0.6 0.8 1
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−0.2
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0.4

Figure 17.2: Example of an atom

Remark 183. In the set H1
S there may be some functions appearing twice since there could be multiple ways to

represent a typical function as a linear combination of atoms. Also, note that H1
S is a linear space since adding two

linear combinations of atoms and multiplying by a scalar is clearly still in the space.

Lastly, we need to put a norm on this set to show that it is a normed linear space. Let f ∈ H1
S and define

∥f∥H1
S
= inf

{ ∞∑
i=1

|λi| | f =

∞∑
i=1

λiai

}

The idea is that since there may be many different ways of representing one particular function, we want to take
the ”smallest” way to and define that to be the norm.

The last important idea we will need for the proof is that of a dense linear subspace. When we have infinite
series sometimes the integral of such a function will not converge absolutely. So instead we will take the following
subspace

H1
S,a = H1

a =

{
n∑

i=1

λiai | λi ∈ C,a1 is an atom

}
of all finite linear combinations of atoms. This space is dense in H1

S since any convergent infinite series can be
approximated by finite ones.

Now we will prove the following main theorem which follows the outline for the case of balls presented in
[Ste93].

Theorem 184 (Main Theorem).

(a) Suppose f ∈ BMOS(R
n). Then the linear functional given by

ℓ(g) =

∫
Rn

f(x)g(x), g ∈ H1
S,
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initially defined on the dense subspace H1
a, has a unique bounded extension to H1

S and satisfies

∥ℓ∥ ≤ c ∥f∥BMOS
.

(b) Conversely, every continuous linear function ℓ on H1
S can be realized as above, with f ∈ BMOS(R

n), and with

∥f∥BMOS
≤ c ′ ∥ℓ∥ .

Note that this theorem is telling us that the dual space of H1
S is BMOS(R

n), (H1
S)

∗ = BMOS, just as in the case
with cubes.

Proof. To prove that for every f ∈ BMOS(R
n) the linear functional is bounded on H1 depends on the inequality∣∣∣∣∫n
R

fgdx

∣∣∣∣ ≤ c ∥f∥BMOS
∥g∥H1

S

for f ∈ BMOS and g ∈ H1
a ⊂ H1

S. To prove this we will start by assuming that f is bounded. Then we can write∫
Rn

fgdx =
∑
k

λk

∫
Rn

f(x)ak(x)dx

where g =
∑N

k=1 λkak is an atomic decomposition for g ∈ H1
a. Since each ak is supported in some shape Sk and∫

Sk
akdx = 0 we can write ∫

Rn
f(x)ak(x)dx =

∫
Sk

[f(x) − fSk
]ak(x)dx

since fSk
is a constant the right and side of that equation is∫

Sk

[f(x) − fSk
]ak(x)dx =

∫
Sk

f(x)ak(x)dx−

∫
Sk

fSk
ak(x)dx =

∫
Sk

f(x)ak(x)dx.

Using the fact that |ak(x)| ≤ |Sk|
−1, we have that∣∣∣∣∫ f(x)g(x)dx∣∣∣∣ ≤ N∑

k=1

|λk|

|Sk|

∫
Sk

∣∣f(x) − fSk

∣∣dx ≤
N∑

k=1

|λk| ∥f∥BMOS
.

Thus we have proven the inequality for bounded f. To prove it for general f, let g ∈ H1
a again and we replace f by

f(k) where

f(k) =


−k if f(x) ≤ −k

f(x) if − k ≤ f(x) ≤ k

k if k ≤ f(x).

Then since
∥∥∥f(k)∥∥∥

BMOS

≤ c ∥f∥BMOS
, we get by the case just proved that

∥∥∥f(k)∥∥∥
BMOS

≤ c ∥f∥BMOS
∥g∥H1

a
.
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Finally, since f(k) tends to f almost everywhere as k → ∞, the dominated convergence theorem gives the inequality.
It is here that we need the fact that f ∈ H1

a and cannot take general g ∈ H1
S. We have therefore seen that each

f ∈ BMOS gives a bounded linear function on the dense subspace H1
a and thus it extends to all of H1

S.
Now we prove the converse. The idea is to find a suitable function f that can serve as the representation of the

linear functional on each shape S and then we can glue them together to get a global f that works everywhere. We
will then show that this function f is indeed in BMOS. Fix a shape S ⊂ Rn, and let

L2S =

{
f ∈ L1loc | Supp f ⊂ S,

∫
S
|f(x)|2dx < ∞}

.

Now let

L2S,0 =

{
f ∈ L2S |

∫
S
f(x)dx = 0

}
.

Note that for any g ∈ L2S,0 we have ∥g∥H1
a
≤ |S|1/2 ∥g∥L2

S
. Indeed, since g ∈ L2S,0 we know that ∥g∥L2

S
= ∥g∥2 < ∞.

Let λ = ∥g∥2 |S|1/2. Then observe that ∥∥∥g
λ

∥∥∥
2
=

1

|S|1/2 ∥g∥2 =
1

|S|1/2 .

Additionally, we have Supp g
λ ⊂ S and

∫
S

g
λdx = 1

λ

∫
S gdx = 0. Thus g

λ is an atom, and one representation of it is
g/λ. This means that ∥g/λ∥H1

a
≤ 1. So we get

∥g∥H1
a
= λ

∥∥∥g
λ

∥∥∥
H1

a

≤ λ = |S|1/2 ∥g∥2 ,

proving the inequality. This inequality tells us that L2S,0 ⊂ H1
a. Next, if ℓ is a given linear functional on H1

a, we
will assume that it has norm less than or equal to 1, then ℓ extends to a linear functional on L2S,0 with norm at most
|S|1/2. By the Riesz representation theorem for the Hilbert space L2S,0, there exists an element FS ∈ L2S,0 so that

ℓ(g) =

∫
S
FS(x)g(x)dx, if g ∈ L2S,0,

with (∫
S

∣∣∣FS(x)∣∣∣2 dx)1/2
≤ |S|1/2.

Thus for each shape S, we get a function FS that represents the linear functions on S. We want to combine these in
a way to get a single function f so that, on each shape S, f differs from FS by a constant. To construct this f observe
that if S1 ⊂ S2 are shapes, then FS1 − FS2 is constant on S1. Indeed, both FS1 and FS2 give the same functional
on L2S1,0, so they must differ by a constant on S1. We can modify FS, replacing it with fS = FS − cS where cS is a
constant chosen so that fS has integral 0 on the unit ball centered at the origin. It follows that fS1 = fS2 on S1 if
S1 ⊂ S2. Therefore we can unambiguously define f on all of Rn by taking f(x) = fS(x) for x ∈ S.

Note that

1

|S|

∫
S
|f(x) − cS|dx ≤ 1

|S|
|S|1/2

(∫
S
|f(x) − cS|

2 dx

)1/2
=

(
1

|S|

∫
S

∣∣∣FS∣∣∣2 dx)1/2
≤ 1.
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Therefore, f ∈ BMOS with ∥f∥BMOS
≤ 1. Also, this gives

ℓ(g) =

∫
Rn

f(x)g(x)dx

whenever g ∈ L2S,0 for some S, in particular this representation holds for all g ∈ H1
a. Thus (b) is proved.
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