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Abstract: The purpose of this project is to develop a user controlled mobile robot that maps an area of
terrain such as a floor of a building. The motivation for this project is to build a robot that can perform
tasks that are too menial, difficult, or dangerous to be performed by humans, The robot is a radio-
controlled truck with a computer system and sensory equipment attached to it. The user, who stands in the
room with the robot, drives the robot through a room with a radio control system while the robot uses its
rotating SONAR to detect the surrounding terrain. The robot records its position with every point of the
SONAR data so that it can accurately modify a map stored in the memory of its computer system. It
calculates this position with a compass and an optical wheel encoder.  The time required to map an entire
room is anticipated to be less than an hour. Objects such as walls, doorways, trashcans, desks, etc. will be
mapped. SONAR data is in the form of the time required for sound to travel to an object and be bounced
back. An object’s distance from the truck is calculated by knowing the time measurement and the speed
that sound travels in air under standard conditions. The SONAR transducer is - mounted to a servomotor
mast that is controlled by an algorithm so that its direction is always known. The position of the robot is
calculated by the distance traveled and the direction it has traveled in. After-this datais transmitled to the
computer a map of the area can be generated. The success of this project will be determined by the
accuracy of the map generated,
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1 Introduction

Mobile robots are a growing area of research and development in the engineering world. They can
often perform tasks too menial, risky, or difficult to be carried out by humans. The goal of this project is to
create a user-controlled mobile robot that will successfully use SONAR to map an area of flat terrain of
approximately 100 m”. Some future applications of this design project include the mapping of areas
unreachable by humans (such as a distant planet), the mapping of areas dangerous to humans (such as an
area contaminated by radiation), or for tracking and environment adaptation for autonomous robotic
systems (such as robotic wheelchairs).

A mobile robot needs certain basic components to work properly. It needs a brain to perform
functions; it needs input and output capabilities; and it needs a method of moving from one place to
another. Since the mobile robot will be mapping an area, it is also crucial for it to have a way of keeping
track of its position within the given area. Another necessity for a terrain mapping mobile robot is the
ability to detect where objects are within the given area so that a precise map can be generated. All of these
necessary segments of the robot also need a way of transmitting data to and from the brain of the robot, 50
communication is also important. Finally, all of the gathered data needs to be organized and processed into

a recognizable map for use by the robot’s human users.

2 Base Components

The mapping project will use a computer, a Handy Board controller board and a user controlled
vehicle to carry the map generating components around the space to be mapped. When deciding what
products to use for these applications it is necessary to first consider what is already owned. Next a cost-

benefit analysis of buying a new component is performed. For some applications, the benefits of the new

component greatly outweigh the price.




2.1 Computer Considerations

Considerations for the computer include size, weight, speed, memory, cost, and desired
functionality. The size and weight of the computer must allow it to be carried by a standard remote control
vehicle. This specification requires that a laptop computer instead of a personal computer be used. The
laptop will perform mathematic functions that are too time consuming to be calculated on the Handy Board.
The laptop will generate the map from the data provided by the peripherals. A laptop donated by Brian
Deaton is currently being used for the project, however in the future, a laptop provided the Engineering

Science Department at Trinity University will be used.

2.2 Controller Considerations
The controller must be able to handle the data from the position tracking and object detection
components. The Motorola Handy Board (HB) plus the Expansion Board was chosen as the data

acquisition board. The Handy Board is a 68HC11-based controller board developed by Massachusetts
Institute of Technology (MIT) professor Fred Martin. In addition to the sixteen I/O ports provided by the
Handy Board, the expansion board provides eight more digital outputs, twelve analog inputs, six

servomotor ports, a socket for the Polaroid 6500 SONAR module, and an open prototyping area.

Table X: I/0 Ports

Digital [nputs | Digital Outputs [ Analog Inputs | Servo Outputs
Handy Board 9 0 7 0
Expansion Board 0 8 12 6
Total 9 8 19 6

The amount of inputs will be sufficient to handle the data generated by the object detection and
position tracking segments of the project. The board’s 32 Kbytes of memory allows it to store the data
momentarily until it is sent to the laptop. The flexibility that the Handy Board provides makes it the clear
choice for the data acquisition board.

The Handy Board plus Expansion Board controls the Polaroid 6500 ultrasonic ranging system

(SONAR), the servo motor mast angle, the digital compass, and the optical encoder. The HB has its own
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two-megahertz processor with 32 Kbytes of memory that allows for programs to be stored and executed.
Programming on the HB to control the peripherals is written in Interactive C, a simpler version of C++.
The expansion board provides a nine pin easy connect for the SONAR system. The wiring for the other
peripherals is connected through the HB’s input and output pins.

2.3 Vehicle Considerations and Alterations

A vehicle is needed to move the object detection components around the room to ensure that the
area has been completely mapped. The payload of the vehicle will be approximately 5 kilograms and
require approximately .1 m” of area to be mounted. The payload and area requirements are determined by
measuring and weighing the laptop and the Handy Board (the two largest components). A maximum car
speed is set to ensure that all encoder ticks are counted. The full details of this consideration will be
discussed in Section 3.3 for the optical encoder.

The initial idea for the vehicle was an RC10 remote control car. It has an aluminum frame that
allows for mounting a platform to store the components; however, its speed control and suspension proved
to be inadequate. The car accelerated too quickly and would not provide a stable base for the rest of the
mapping components.

To accommodate the payload and the space required to carry all of the components required,
1/10™ scale electric remote control monster truck was purchased. The Traxxas Stampede monster truck has
fiber-composite frame and a 26.9cm wheelbase providing both the strength and stability required for the
project.

To provide for the peripherals, some vehicle alterations are required. The factory suspension is
too soft, so the springs were replaced with solid aluminum tubes. A 31.8 cm x 34.3 cm Plexiglas platform
(Figure 1) is mounted to the frame of the truck. This provides a base for the laptop, the Handy Board as
well as the mapping peripherals. Because the project only requires one optical encoder for position

tracking, a trailing wheel design was implemented (Figure 1).




Figure 1: Modifications made to RC vehicle
This design counts the distance that the center of the truck has traveled. The base hardware

components are organized as seen below in Figure 2.

Figure 2: Overall hardware component organization
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3 Position Tracking System

In order to generate a map of a terrain, it is necessary to know the position of the robot within
terrain itself. Keeping track of the position of the robot is a crucial aspect of the terrain mapper design and
requires both the necessary tracking hardware and the software to manipulate the acquired data into a

usable form,

3.1  Position Tracking Options

There are many options available for position tracking. The options most focused on are the
Global Positioning System (GPS), infrared sensors mounted on the robot, SONAR (SOund Navigation And
Ranging) triangulation with the SONAR modules placed inside the terrain area, and odometry.

The GPS system is used extensively in real world applications such as navigation systems.
However, civilian use of the GPS system is restricted to an accuracy of about 100 meters. Since this project
requires a very high degree of accuracy, GPS clearly will not have sufficient accuracy for this project.

Infrared sensors mounted on the robot provide a cheap method of position tracking, However, due
to their limited range (10 — 80 cm), IR would require a large number of readings to accomplish a full
mapping of the area.’

SONAR triangulation would simply involve mounting SONAR modules inside the terrain area (in
this case, the room MEB 322). The information gathered from these fixed SONAR modules is then
analyzed to determine the position of the robot. Although the accuracy is high for this method, SONAR
triangulation requires a preparation of the terrain area ahead of time and also is not contained on the robot
itself. The robot would also not be able to move outside the prepared area, which does not allow much
flexibility. Therefore, SONAR triangulation was ruled out for this project.

Finally, odometry provides a relatively inexpensive and accurate method of tracking the robot’s
position within a terrain. Odometry works by using some device to keep track of the distance that a vehicle

has traveled. Since odometry is well understood and widely used, it will be used in this project. Optical




encoders provide the easiest way to implement the odometry configuration for the project because they are

used extensively and are easy to work with.

3.2 Odometry

Two optical encoders can be used to calcuiate the direction that the robot is traveling in.
An encoder is attached to each wheel on the rear axle, The difference in the distance traveled by each
encoder, a difference that is a result of the turning motion, is used to calculate the angle of rotation. The
angle of rotation can then be used to determine the direction of travel.

In using two optical encoders for odometry, there are many sources of error, which accumulates as
the encoders are being used. For instance, if the wheel circumferences are incorrectly measured, the
translation of ticks into fractions of the circumference will not be accurate. Incorrect circumference
measurement is a systematic error, which means it occurs at the same rate as long as the vehicle is moving.
Therefore, if the wheel circumference is off by 1%, the final map scale will be off by 1%. If the error is
discovered, the scale of the final map can be changed to account for the error. If the wheel circumferences
are unequal, a natural turning motion will result in the robot “thinking” it is traveling in a straight line when
it is actually turning slightly. This error causes the map to be distorted to varying degrees, depending on the
difference in the wheel circumferences and the wheelbase. Another source of error occurs when there is
uncertainty about the length of the wheelbase. If the wheelbase is incorrectly measured, the angle of
rotation will be calculated incorrectly.” Finally, another source of error is wheel slippage because the
slipping of one wheel makes the robot think it has rotated through an angle when it hasn’t. The reason this
error is particularly bad is because the error is not systematic, meaning it can occur randomly at unknown
instances to unknown degrees. If the wheel slips 5%, it causes the distance the encoder sees to be off by
5%, but it also may cause the vehicle to think it has turned. Steps to minimize wheel slippage can be taken,
such as having wheels with higher coefficients of friction, running the vehicle on a rougher surface, and
minimizing quick accelerations of the vehicle. Because of some of these sources of error, another method

of implementing odometry may be needed.




A digital compass is a good solution for some of the sources of error. A digital compass provides
the angle in which the robot is pointing without the need to calculate the angle of rotation. This eliminates
the need for the second optical encoder. Therefore, the wheelbase error and half of the slippage and wheel
circumference etrors are excluded from the total error, leaving only one circumference error and the
slippage of one wheel to contribute to the error.

The single optical encoder is mounted on a trailing wheel placed in the center of the robot, behind
the back axle. The wheel is placed in the center because the center distance traveled is the average of the

left and right wheel distances.

3.3 Optical Encoder
An optical encoder is a thin, clear disk with small, opaque divisions around its circumference

(Figure 3).

Figure 3: A sample optical disk.

The encoder also has a phototransistor through which the optical disk passes. The phototransistor
consists of a light source and a light sensor. The light from the source passes through the optical disk and
the sensor receives the light. Each time an opaque region interrupts the light, the output of the
phototransistor produces a digital output of “1”. The clear region will not intercept the light and will
therefore produce an output of “0”. A clear region and an opaque region together represent one cycle. If the
optical encoder disk is divided into 500 cycles, each cycle represents 1/500™ of a full rotation of the disk.

The angle that the disk has rotated through can then be translated into a distance that the robot has traveled.
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In the case of this project, the wheel circumference is 31.9 cm and the encoder has 500 cycles, so each
cycle represents (1/500)*31.9 cm, or about 0.64 mm of distance traveled by the robot.

The encoder attaches to the axle of a wheel and as the wheel turns, the encoder outputs a “tick.”
Ideally, the output of the encoder would generate a hardware interrupt. This would make more ¢fﬁcient use
of the processor time because the optical encoder would only have to be attended to when it is producing an
output (when the vehicle is moving). Several attempts to implement this procedure proved to be
unsuccessful. The alternative procedure of software or timed interrupts is currently implemented. This
method generates a one kHz-timed interrupt. Every time this interrupt is generated, the Handy Board looks
at the optical encoder to see if a “tick” needs to be counted. This is not processor efficient because the
Handy Board looks for an encoder “tick” 1000 times each second even if the vehicle is stationary.

The Handy Board can only handle one function at a time, so the velocity of the robot must be low
enough so that the Handy Board can perform other functions between the encoder ticks. At a wheel
circumference of 31.9 cm with an interrupt (or poll) every millisecond, the maximum velocity needed to
catch every interrupt is 0.64 m/s. However, this would not allow time for other programming to be carried
out. Therefore, the maximum velocity must be lower. Currently, the maximum velocity is 0.3 m/s, but

anything slower than that is desired.

3.4  Digital Compass

The digital compass consists of a 2-axis magnetometer that measures the magnetic field in a plane.
As the compass turns, the magnetic field changes slightly. The compass takes the measurement of the
magnetic field and translates it into an angle.® Through experimentation, it was found that East = 0 degrees
and the angle is measured counter-clockwise. The output of the compass is an input to the Handy Board.
The Handy Board updates the current compass angle periodically so that the position of the vehicle can be

accurate.




3.5 Position Determination Software

In order to calculate the position of the robot, it is necessary for a program on the Handy Board to
keep track of the total number of interrupts from the optical encoder as well as the most recently available
compass angle.

Since the Handy Board will be running the peripherals of the robot, and the processor of the HB
can only perform one task at a time, it is necessary to determine the priority that each peripheral has. The
position of the vehicle in the room is vital. Without the correct position of the vehicle, the map will not be
accurate. Therefore, the optical encoder receives the highest priority. The digital compass receives the next
highest priority since it is also crucial to know the direction that the vehicle is moving in for the odometry
calculations.

The HB can only store a limited amount of data, so it is necessary to upload the data to the laptop
frequently. Therefore, the laptop/HB communication receives the third highest priority. Finally, the

SONAR readings receive the lowest priority. This is divided into two parts: turning the SONAR mast and

getting the SONAR data.

3.5.1 Optical Encoder Programming

The programming overview of the encoder is fairly simple. The program must receive and count
the interrupt from the encoder, determine if the robot is moving in forward or reverse, and increment or
decrement the total distance (number of ticks) traveled based on that determination. All of this must be
done quickly so that the HB can get back to the main program in order to complete other tasks.

Code was written in Assembly language to receive and count interrupts from the encoder.
Attempts to get this code working on the Handy Board, however, were unsuccessful. An error message kept
occurring which read 519 file not contiguous.” Despite efforts to fix this problem, the code was never able
to be loaded onto the Handy Board. Therefore, assembly code written by Fred Martin of MIT will be used.
This code uses timer generated interrupts at a set interval rather than getting hardware (encoder) generated

interrupts. This code also counts in the forward direction only. This means that the vehicle cannot travel in
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reverse. Otherwise, the encoder count will be incremented despite the reverse motion, resulting in

erroneous data.

3.5.2 Compass Programming

The Vector-2X Digital Compass from Precision Navigation can operate in one of two modes. In
Master mode, the Handy Board can poll the compass once or choose to receive data continuously. The
compass data is then clocked out by the compass at 4 kHz. In Slave mode, the compass is controlled by the
Handy Board operating at a maximum clock of 1 MHz. The compass can be polled for data at any time
convenient to the Handy Board and clocked out at any speed less than 1 MHz.

Slave mode will be best for this particular application because of the ability the Handy Board has
to control the compass at any desired speed. The Handy Board will also not be continuously interrupted by
the compass with data. The compass angle will be stored on the HB in two bytes, since the number will
range from 0 —359.

The compass code was first written in assembly and worked on the 68HCI1 trainer board.
However, attempts to put the code onto the Handy Board were unsuccessful because of the same problems
that occurred with the encoder code. Code therefore needed to be written in C language. This code was

successful, and the compass can give an angle reading between 0 and 359.

3.6  Position Calculation

The position of the robot is calculated using the data gathered from the optical encoder and the
digital compass. First, the digital compass measures the angle at which the robot starts, The compass
continues to measure subsequent angles periodically and the most current angle is kept for uploading to the
laptop.

Each tick for the encoder wheel represents 0.64 mm of distance traveled. Since the encoder data
will be uploaded to the laptop frequently, the vehicle will most likely not have traveled a large distance
between uploads. Also, the vehicle will probably not have traveled through a large angle between uploads.

Therefore, the distance traveled can be approximated by a straight line. The angle of the straight line can
11




just be represented by the most recent angle, since the angle should not have changed much. Figure 4A
shows the original data gathered by the encoder and compass while Figure 4B shows the approximated

straight-line distance and angle.

Figure 4A: Original data Figure 4B: Straight-line approx.

The distance traveled in the x direction is calculated by multiplying the encoder distance, d, by the
cosine of the angle 6. The distance traveled in the y direction is calculated by multiplying d by the sine of
0. Figure 5 shows a sample calculation of the x and y values for an angle. All of these calculations are done

on the laptop PC using the data gathered by the encoder and the compass.
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Figure 5: Sample Calculation

4 Object Detection

An essential for map generation is to detect objects in the area to be mapped. For this project,
there are two primary options: the Sharp GPD02 infrared sensor and the Polaroid 6500 SONAR ranging
module. Either option will be mounted on a mast that rotates 180° to scan the area for objects (Figure 6).
These half-rotations will greatly decrease the time required to map an area by scanning the room instead of
having to position the car to face each obstruction in an area. The Sharp GP2D02 infrared sensor is capable
of detecting objects that are between 10 and 80 cm away with exceptional accuracy and repeatability.' At a
cost of $21.00 per sensor, this initially appears to be a good option. However, with the possible mapping
area reaching 100 m?, being able to cover an area of only 1 m? per half revolution requires a minimum of
200 half revolutions of readings. A half revolution of readings is the readings taken by the object detection
device in one half revolution. The number of half revolutions required is based on each point being
covered at least twice to allow for a certainty evaluation. A certainty evaluation is required because faulty
readings are possible. If an object is detected only once it is possible that a reflection may have distorted
the reading, but if an object has been detected multiple times in the exact same place, a degree of certainty

is developed. The Polaroid 6500 SONAR ranging module can detect objects up to 10 meters away with an
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accuracy of +3 cm.® Each module has a price of $50.00, but the extra area covered per half revolution is

worth the increased cost for this application.

SONAR Module

Servo Mast

JServo Motor

Figure 6: SONAR module mounted on a SONAR mast

The mast is attached to a servomotor that rotates the mast 180°. Each half revolution covers approximately

150 m® The increased area covered makes the SONAR module the obvious choice for object detection.

4.1 SONAR Software

The routines used to control the Polaroid 6500 series SONAR module were provided by Dr. Fred
Martin of the Massachusetts Institute of Technology Media Lab. These routines are written in Interactive C
to be used on the Handy Board. The software routine calculates the time required for a SONAR pulse
wave to be transmitted and echoed back to the module. The start time of the pulse is defined by the value
of the HB’s internal clock. A SONAR pulse is sent immediately after recording the start time. When the

SONAR transducer receives the return pulse the HB collects the current time of the internal clock. The
14




difference between the two time values is stored as a global variable allowing Interactive C to call for its
value at any time. The conversion from time to distance will be calculated on the laptop after the data has
been transmitted.

See Appendix E for Coding

4.2 SONAR Hardware

The SONAR hardware includes the SONAR transducer and the SONAR module board. The
transducer (Figure 7) is a combination speaker/receiver. It performs both functions of transmitting and
receiving SONAR pulses. The transducer is connected directly to the SONAR module board that

determines if the transducer is transmitting or receiving pulses.

Figure 7: SONAR Transducer and SONAR Module Board

The module board is connected directly to and controlled by the Handy Board.

5 Laptop Software

The Laptop software is organized into three different parts: graphical user interface, map
generation, and communications. Each of these different parts of the software is run separately as a thread.
A thread is the basic entity to which the operating system allocates processor time. A thread can execute

any part of the application's code, including a part currently being executed by another thread. All threads
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of a process share the virtual address space, global variables, and operating system resources of the process
9.

When the main thread starts it does some initialization and starts the map generation thread and
the communication thread. The main thread is also responsible for handling most of the graphical user
interface.

The map generation thread shares a thread-safe list data structure with the communications thread.
It waits for the communications thread to receive data from the Handy Board and put that data into the list.
The map generation thread continuously check to see if there is any data in the list. When it finds data in
the list it removes an element of data from the list. The current position variable is then updated and the
data manipulated so that the map modification function can use it. The modified data is then sent to the
map modification function.

The map modification function uses the direction and distance reading of the sonar to draw a sonar
arc on the map at the current vehicle position. The details of this sonar arc are outlined in Section 6. The
map modification function modifies the image of the map that the user sees on the graphical user interface
in addition to the actual map represented as a two-dimensional array that is stored in the laptop’s memory.

The communications thread opens the serial port and then continuously reads data from it in
anticipation of the Handy Board sending a packet of data. This data packet consists of the compass angle,
the encoder data, the sonar angle, and the sonar distance reading. The data packet is then stored in the
thread-safe list shared by the map generation thread.

Locking mechanisms must be used for global variables so that the threads do not try to modify the
same variable at the same time. The map generation thread and the communications thread use a shared list
so that the communications thread can transfer the data it receives to the map generation thread. This list
has a locking mechanism so that the map generation thread does not try to read the data from the list while
the communications thread is writing data to the list. The map itself also has a lock so that a command
from the user interface does not try to modify the map at the same time the map generation thread is tries to
modify it. When a thread wants to use a shared data structure it merely locks the structure, uses the

structure, and then unlocks the structure,

16




Screenshots of the laptop software are shown below in Figure 8.

Map Generator

Figure 8: Screenshots from map-generation software
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6 Map Generation

As the robot travels through rooms in a building a map is generated on the laptop computer to
store the surrounding terrain. This map is continuously updated from the data gathered by the Handy Board
as the user drives the robot through the room.

The map is a two dimensional grid based representation of the floor of the chosen room. Each
grid cell of this two dimensional grid represents a small square section of the floor. Currently each cell of
the grid represents nine square centimeters of floor space. Depending on the computer’s memory capacity
and the desired resolution the cells can be assigned a different area of floor space.

The cells of the map are assigned a numerical value based on the certainty of an object’s existence
in the nine square centimeters of floor space represented by the grid cell. The range of these numerical
values or occupation values is from 0 to 255. This range was chosen because it is large enough to
accommodate this application and, in addition, a number in this range can be stored in an 8-bit register or
variable and make effective use of memory. An occupation value of zero assigned to a grid cell means that
the robot is sure that that section of the floor is vacant and the occupation value of 255 means that the robot
is certain that that section of floor is occupied by a wall or an object.

Initially, the grid cells are assigned values of 127 because this value is in the middle of the range
of possible values (0-255). The value 127 in a grid cell signifies that there is a fifty-percent chance that an
object is occupying the floor space represented by that grid cell. As the robot collects more sonar data for a
particular grid cell the value changes of the grid cell. If a section of the floor is not occupied by an object
or a wall then the corresponding grid cell value is reduced every time sonar data is collected for that grid
cell. Eventually when enough sonar data is collected, the grid cell that corresponds to the empty floor

space will contain an occupation value of zero. A sample map generated the laptop software is shown in

Figure 9.
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Figure 9: Sample map — color coded to show certainty

The map is stored in a large two-dimensional array. Sonar data is stored to the array in arcs to
represent the actual arc shape of the sonar pulses. This method does not draw accurate corners; it merely
gives a rough outline of an area of terrain. For instance, if the sonar detects a wall five meters away the
radius of the arc is five meters centered at the vehicles current position. The arc’s half angle is drawn 10
degrees wide because the sonar is accurate within about 10 degrees. The grid cells on the arc are modified
with higher values to represent the presence of an object and the grid cells between the arc and the car
within 10 degrees are modified with lower values to represent the absence of objects. For example, if a
wall is detected five meters away a 10 degree arc is drawn on the map five meters from the robot’s current
position in the map. All of the grid cells that lie on the arc are modified with higher values to represent that

the robot is more certain that there is an object occupying the space represented by those grid cells. In
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addition, all of the grid cells that lie between the arc and the robot’s current position are modified with
lower values to represent that the robot is less certain that there is an object occupying the space

represented by those grid cells.’

7 Conclusion

Currently all portions of the project work correctly except for the sonar servo motor control
software. If we were to figure out how to control the sonar servo motor with the handy board software we

would have a functional terrain mapping system. The experience gained from this project is invaluable.
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Appendix A Engineering Design Process

A.1  Establishment of design specifications and criteria

From the start, we needed to establish what this project was going to do and
decide the best method to accomplish the goal. We knew we wanted to map a terrain, but
what kind of terrain? We chose a flat terrain, specifically a classroom of about 100 m? in
area. We needed a method of gathering various data, so we chose those components as
well.
A.2  Analysis

Analysis of the problem involved determining the best way to accomplish the
design criteria. We analyzed various computer possibilities, data acquisition methods,
and position tracking methods, and eventually made some final decisions.
A.3  Synthesis

The purpose of the project is to synthesize a real-world terrain in a computer-
generated map.
A4  Health and Safety

The safety of the user operating the robot is a concern. If the user begins to take
the robot apart or tries to alter the robot in any other way, electrical shock could result.
Therefore, it will be necessary to protect the dangerous parts of the robot from
interference.
A.5 Social, environmental and political issues

There are no relevant social, environmental or political issues for this project.
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A.6  Construction

An optimal construction is desired for this project so that parts can be easily
accessed for repair. The materials used in the construction of the robot are also a
consideration. For instance, the frame of the vehicle must be strong enough to support the
weight of the laptop and other hardware.
A7  Testing

Testing of the project will be done next semester.

A.8 Evaluation

Evaluation of the project will be done next semester.
A.9 Communication

Communication between group members was vital in the design process up to this
point. We divided the project into roughly three parts, and each part has relevance to the
other two. If communication were poor, the three parts would not fit together in the end.
Weekly meetings with both the advisor and the group alone helped communication
greatly.
A.10 Mathematical Modeling

This project involves taking a physical area and creating a map based on data
taken from that area. A mathematical model must be made to convert the data into a map.
Using a grid system and odometry are both examples of the mathematical modeling that
will be done.
A.11 Chemical, electrical and mechanical engineering analogs

There are no analogs relevant to this project.
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A.12 Optimization

We will need to optimize the space that the robot takes up in order for it to be
useful in the future. Optimizing the programming is another issue, since we don’t have
unlimited space to store the program or unlimited memory to store the gathered data.
A.13 Ethics

This project could be used for malicious purposes, such as spying, but ethical
issues are generally not a concern for this project.
A.14 Aesthetics

Aesthetics in this project is primarily concerned with the programming. Making
the programming pleasing and able to be followed by a qualified person is important to
this project. If the programming is ugly, the project has little chance of being taken
seriously by anyone.
A.15 Robust design

Robust design is another important aspect of our project. We want the robot to
handle any kind of user, no matter what unexpected things they try to do with it.
Eventually, a robot like this would be autonomous, but that aspect is not crucial to our
design at this point.

A.16 Economics (life cycle analysis)

Although this project will not be sold or mass produced, it may be used by future
design groups. Therefore, it is important to spend money wisely so that the robot will last

for years to come.
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A.17 Manufacturability, sustainability and reliability

The robot must be reliable as well because if it fails to work in the future, there is

something wrong with the design.
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Appendix B - Budget Status

Maximum Budget allotted: $ 1000.00
Budget Spent
SONAR Ranging Module (2) $50.00
Digital Compass: $56.50
Optical Encoder: $39.00
New RC vehicle $156.00

Handy Board + Expansion Board ~ $380.00

Servomotor $17.00
Extras (Batteries, Wheel, etc.) $50.00
Total: $748.50
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Appendix C — Project Overview

Project Overview
February March April May

Compass
Programiming

Sonar
Programming

Lo B
Programming

Map Software
Programming

Testing/
Debugging

ot B
with Blectronics
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Appendix D - Group Member Contributions

Jared Newton: For the project, I have been primarily responsible for organizing group meetings and
keeping everyone in the group on the same page. Iresearched the hardware components. This includes the
computer to act as the brain of the project, the SONAR ranging modules, the optical encoder, and the
digital compass. Once I found the components Brian and Jeff helped decide what would be best for our
application. A large portion of my time working on this project was spent searching through the Internet
finding other projects similar to ours and trying to gain an understanding how terrain mapping is
traditionally performed. For the paper, my primary responsibilities are the Base Components, Object
Detection, and portions of the Abstract.

Brian Deaton: I have been involved with the overall vehicle hardware and software design. I wrote all of
the C++ software that runs on the laptop. I have also helped some with the programming for the Handy
Board.

Jeff Dickerson: My contribution to the project was researching the position tracking options available,
researching the odometry, and flowcharting the odometry programming. This included the decision to
purchase the optical encoder and the digital compass, as well as doing initial calculations for the position
tracking algorithm. I also did some of the initial calculations for the final mapping algorithm, which takes
into account both the odometry data and the SONAR data. For the paper, I wrote the sections involving the
Position Tracking System (Section 3) and the Introduction.

27




Appendix E — Coding

Compass Code

void main(){

int i;

int c;

int X;

int in_byte=0;

int bit_5=32; /* 000100000 */
int SDO=0;

int temp;
while(1){

temp=0;

SDO=0;

set_digital _out(6);
set_digital _out(5);
set_digital_out(4);
set_digital out(3);
msleep(10L);
in_byte=0;
clear_digital out(6);
msleep (10L);

clear_digital_out(5);
msleep(10L);

set_digital out(6);
msleep(190L);

set_digital out(5);
msleep(20L);

clear_digital_out(4);
msleep(20L);

for (i=0; i<7; i++){
clear digital out(3);
/* msleep(2L); */
set digital out(3);
/* msleep(2L); */
}

for (i=8; i>=0; i--){
clear_digital_out(3);
/* msleep(2L); */
set_digital out(3);
/* msleep(2L); */

in_byte=peek(0x7FFF);




in_byte=in_byte & bit_5;

if(in_byte > 0){
temp=1;
/* 27 function */

for (c=i-1; c>=0; c--)}{
temp=temp*2;

}
SDO=SDO-+temp;
}
}
printf("SDO = %d\n",SDO);
msleep(500L);
}
}
Sonar Code
/*
sonar.c
Polaroid 6500 routines for Handy Board / Interactive C
by Fred Martin, fredm@media.mit.edu
Sat Nov 22 13:57:35 1997
echo signal is connected to tic3/pa0;
init signal is pdS (SS);
binh signal is pd4 (SCK)
*/
int x=10;
void sonar_init() {
bit_set(0x1009, 0x30); /* ddrd */
bit_set(0x1021, 1); /* at tctl2, */
bit_clear(0x1021, 2); /* set tic3 for rising edge */
}

int sonar_sample() {
int start_time;

poke(0x1023, 1); /* clear tic3 flag */

start_time= peekword(0x100e);  /* capture start time */
bit_set(0x1008, 0x20); /* trigger pulse */

while (!(peek(0x1000) & 0x1)) { /* wait until receive echo */
if ((peekword(0x100e¢) - start_time) <0) {
/* if too much time has elapsed, abort */
bit clear(0x1008, 0x20);
return -1;
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}
defer();

}
bit_clear(0x1008, 0x20);

return peekword(0x1014) - start_time;
}

int sonar_closeup() {
int start_time;

poke(0x1023, 1);
start_time= peekword(0x100e);
poke(0x1008, 0x20);

/* let others run while waiting */

/* clear pulse trigger */

/* tic3 has time of echo */

/* clear tic3 flag */

while ((peekword(0x100e) - start_time) < 1000);

bit_set(0x1008, 0x30);

while (1(peek(0x1000) & 0x01)) {

/* turn on BINH */

if ((peekword(0x100e) - start_time) <0) {
/* if too much time has elapsed, abort */

bit_clear(0x1008, 0x30);
return -1;

}
defer();

}
bit_clear(0x1008, 0x30);

return peekword(0x1014) - start_time;

/* 0x1014 is tic3 */

}
void main()
{
sonar_init();
while (1) {
int result;
result= sonar_closeup();
if (result 1= -1) printf("%d\n", result);
else printf("*******\p");
msleep(50L);
send_int(x);
}
}
void send_int(int x){
msleep(10L);
poke(0x102f, x);
}
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Main.cpp

/******************************************************************************

* Main.cpp
* by Brian Deaton
*

******************************************************************************/

RSN e

#include <vcl\vcl.h>
#pragma hdrstop

#include "Main.h"
#include "SerialThread.cpp”
//#include "MapDisplay.cpp"

#pragma link "CSPIN"
#pragma resource "*.dfm"
TMainForm *MainForm;

/e oo

__fastcall TMainForm: : TMainForm (TComponent* Owner)
TForm (Owner)

{

TSerialThread *SerialThread = new TSerialThread(false);
TMapThread *MapThread = new TMapThread(false);
if (SerialThread == NULL || MapThread == NULL)

cerr << "Thread Creation Failed";

void _ fastecall TMainForm: : FormCreate (TObject *Sender)

{
Application->OnHint = ShowHint;

void _ fastcall TMainForm: : ShowHint (TObject *Sender)

{
StatusLine~>SimpleText = Application->Hint;

void _ fastcall TMainForm: : FileOpen (TObject *Sender)

{
if (OpenDialog->Execute())

//---- Add code to open OpenDialog->FileName -—--

void __ fastcall TMainForm: :FileSaveAs (TObject *Sender)

{
if (SaveDialog->Execute())

{
map->dump map_ to file(SaveDialog->FileName);

void __ fastcall TMainForm: :FilePrint (TObject *Sender)

{
if (PrintDialog->Execute())
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//---—- Add code to print current file ---—-

void __ fastcall TMainForm: :FilePrintSetup (TObject *Sender)
{
PrintSetupDialog->Execute ()

Close();

void _ fastcall TMainForm: : HelpAbout (TObject *Sender)

{
//---- Add code to show program's About Box —-———

void - fastecall TMainForm: :ModifyMapClick (TObject *Sender)
{
COORDS temp;
if (PositionCheckBox->Checked) {
temp.x=map->position.x;
temp.y=map-~>position.y;
PositionLock->Acquire () ;
map->position.x=XcoordSpinEdit->Value;
map->position.y=YcoordSpinkEdit->Value;
PositionLock~->Release();
}
map—>modify_map((PI*AngleSpinEdit—>Value)/180,DistSpinEdit—>Value);
if (PositionCheckBox->Checked) {
PositionLock->Acquire ()
map->position.x=temp.x;
map->position.y=temp.y;
PositionLock->Release ()

void _ fastcall TMainForm: : SaveMapClick (TObject *Sender)
if (SaveDialog->Execute())

map->dump map_ to_file(SaveDialog->FileName);

void __ fastecall TMainForm: :RefreshImageClick {TObject *Sender)
{

// int color base= pow(2,16)+pow(2,8)+1;




Main.cpp Page 3

// int color base BR = 127*pow(2,16)+1;
// int color base G=pow(2,8);
: for (int m=0;m<rows;m++) {
for (int n=0;n<cols;n++) {
MapDisplayForm->Image->Canvas~>Pixels[n] [rows-m] = 65793*map->get map_value(n,m);

void _ fastcall TMainForm::ShowMap (TObject *Sender)

{
if (MapImageCheckBox~>Checked)

MapDisplayForm->Show () ;
else
MapDisplayForm—>Hide () ;
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/******************************************************************************

* Main.h

* by Brian Deaton
*

*************7('****************************************************************/

kifndef MainH
$define MainH

finclude <vcl\sysutils.hpp>
#include <vcl\windows.hpp>
#include <vcl\messages.hpp>
#include <vecl\sysutils.hpp>
#include <vcl\classes.hpp>
#include <vcl\graphics.hpp>
#include <vcl\controls.hpp>
#include <vcli\forms.hpp>
#include <vcl\dialogs.hpp>
#include <vcl\stdctrls.hpp>
#include <vcl\buttons.hpp>
#include <vcl\extctrls.hpp>
#include <vcl\menus.hpp>
#include <Classes.hpp>
#include <ComCtrls.hpp>
#include <Controls.hpp>
#include <Dialogs.hpp>
#include <Menus.hpp>
#include "CSPIN.h"

#include <StdCtrls.hpp>
#include <ExtCtrls.hpp>
#include <queue>

‘class TMainForm : public TForm
{
published:

__ TMainMenu *MainMenu;
TMenultem *FileNewItem;
TMenultem *FileOpenItem;
TMenultem *FileSaveltem;
TMenultem *FileSaveAsItem;
TMenulItem *FilePrintItem;
TMenultem *FilePrintSetupltem;
TMenultem *FileExitItem;
TMenultem *HelpContentsItem;
TMenultem *HelpSearchItem;
TMenultem *HelpHowToUseltem;
TMenultem *HelpAboutItem;
TStatusBar *StatusLine;
TOpenDialog *OpenDialog;
TSaveDialog *SaveDialog;
TPrintDialog *PrintDialog;
TPrinterSetupDialog *PrintSetupbDialog:;
TButton *ModifyMapButton;
TButton *SaveMapButton;
TCSpinEdit *AngleSpinEdit;
TCSpinEdit *DistSpinEdit;
TLabel *Labell;
TLabel *Label2;
TButton *Buttonl;
TCSpinEdit *XcoordSpinEdit;
TCSpinEdit *YcoordSpinEdit;
TLabel *Position;
TLabel *Xcoords;
TLabel *Ycoords;
TCheckBox *PositionCheckBox;
TCheckBox *MapImageCheckBox;
void _ fastcall FormCreate (TObject *Sender); .
void __ fastcall ShowHint (TObject *Sender);
void __ fastcall FileNew(TObject *Sender);




Main.h
void __ fastcall FileOpen (TObject *Sender);
void _ fastcall FileSave (TObject *Sender);
void __ fastcall FileSaveAs (TObject *Sender);
void __ fastcall FilePrint (TObject *Sender);
void _ fastcall FilePrintSetup (TObject *Sender);
void __ fastcall FileExit (TObject *Sender);
void __ fastcall HelpContents (TObject *Sender);
void _ fastcall HelpSearch (TObject *Sender);
void __ fastcall HelpHowToUse (TObject *Sender);
void __ fastcall HelpAbout (TObject *Sender);
void __ fastcall ModifyMapClick (TObject *Sender);
void __ fastcall SaveMapClick (TObject *Sender);
void __ fastcall RefreshImageClick (TObject *Sender);
void __ fastcall ShowMap (TObject *Sender);

private // private user declarations

public // public user declarations
virtual __ fastcall TMainForm (TComponent* Owner);

'}

S oo

extern TMainForm *MainForm;

#endif
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C:\WINDOWS\Desktop\Sen. Design Project\code\map\MapGenerator Final\SerialThread.cpp

/********************************7('7(‘********************************************

* SerialThread. cpp

* by Brian Deaton
*

******************************************************************************/

#include <vcl.h>
#pragma hdrstop

#include "SerialThread.h"
#include "MapThread.cpp"

#pragma package (smart init)

/7 Important: Methods and properties of objects in VCL can only be
// used in a method called using Synchronize, for example:

/7

v/ Synchronize (UpdateCaption) ;

/7

// where UpdateCaption could look like:

/7

// void  fastcall TSerialThread::UpdateCaption()

/7 {

// Forml->Caption = "Updated in a thread"”;

// }

e s

_ fastcall TSerialThread: :TSerialThread (bool CreateSuspended)
TThread (CreateSuspended)

void _ fastcall TSerialThread: :Execute ()
q{
DCB dcb;
HANDLE hCom;
DWORD dwError;
BOOL fSuccess;
DWORD BytesToRead=1;
unsigned long BytesRead;
char text[]=" i) ";
PacketPtr data;
TList* Templist;

//These need to be changed
short* compass_angle;
short* sonar dist;
short* encoder data;
short* sonar angle;

hCom = CreateFile("COM1",
GENERIC READ | GENERIC_WRITE,
0, /* comm devices must be opened w/exclusive-access x/
NULL, /* no security attrs */
OPEN EXISTING, /* comm devices must use OPEN EXISTING */
0, /* not overlapped I/0 */
NULL /#* hTemplate must be NULL for comm devices */
)

if (hCom == INVALID_HANDLE_VALUE) {
dwError = GetLastError{):;

}
J*

* Omit the call to SetupComm to use the default queue sizes.
* Get the current configuration.

*/

fSuccess = GetCommState (hCom, &dcb):;
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C:\WINDOWS\Desktop\Sen. Design Project\code\map\MapGenerator Final\SerialThread.cpp

if (!fSuccess) {
ShowMessage ("COM port cannot be opened");

}
/* Fill in the DCB: baud=9600, 8 data bits, no parity, 1 stop bit. */

decb.BaudRate = 9600;
dcb.ByteSize = 8;
dcb.Parity = NOPARITY;
dcb.StopBits = ONESTOPBIT;

fSuccess = SetCommState (hCom, &dcb);

if (!fSuccess) {
ShowMessage ("COM port cannot be opened");

while (1) {

compass_angle= new short;
sonar dist= new short;
encoder data= new short;
sonar_ angle= new short;

if (!ReadFile (hCom, compass angle, 2, &BytesRead, NULL)){
ShowMessage ("Cannot read COM1");
}

if (!ReadFile (hCom, encoder data, 2, &BytesRead, NULL) ) {
ShowMessage ("Cannot read COM1");
}

if (!ReadFile (hCom, sonar dist, 2, &BytesRead, NULL))({
ShowMessage ("Cannot read COM1");
}

if (!ReadFile (hCom, sonar angle, 2, &BytesRead, NULL)){
ShowMessage ("Cannot read COM1");

}

data~>compass_angle = *compass_angle;
data->encoder data = *encoder_data;
data->sonar dist = *sonar_dist;

data->sonar angle = *sonaz_angle;

TempList = DatalList~>LockList();
try
{
TempList->Add (data) ;
}
__finally
{
DataList->UnlockList ();

}

delete compass_angle;
delete sonar dist;
delete encoder data;
delete sonar_angle;

compass_angle=NULL;
sonar_ dist=NULL;
encoder data=NULL;
sonar_angle=NULL;

// delete TempList; ??2?? really delete this????
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} //end while

CloseHandle (hCom); //yes this is unreachable but windows closes
//all files on exit anyway
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/******************************************************************************

* SerialThread.h

* by Brian Deaton
*
******************************************************************************/

fifndef SerialThreadH
kdefine SerialThreadH

/oo
finclude <Classes.hpp>
[ oo
class TSerialThread : public TThread
{
orivate:
orotected:
void __fastcall Execute () ;
public:
__fastcall TSerialThread (bool CreateSuspended);
}i
= oo

#endif




MapThread. cpp Page 1

/*********************************************7('********************************

* MapThread. cpp

* by Brian Deaton
*

******************************************************************************/

finclude <vcl.h>
fpragma hdrstop

finclude "MapThread.h”
Finclude "map.cpp"
#include "Datalist.cpp"
#pragma package (smart init)

// Important: Methods and properties of objects in VCL can only be
/7 used in a method called using Synchronize, for example:

Va4

7/ Synchronize (UpdateCaption) ;

/7

/7 where UpdateCaption could look like:

Va4

// void  fastcall TMapThread::UpdateCaption ()

/7 { “

// Forml->Caption = "Updated in a thread";

// }

e e

__fastcall TMapThread: : TMapThread (bool CreateSuspended)
TThread (CreateSuspended)

void __ fastecall TMapThread: : Execute ()
{

TList* TempList;

PacketPtr data;

ThataPacket tempdata;

bool NewData Flag=0;

while(1l) {
TempList = DatalList->LockList();:
try
{
if (TempList->Count > 0){
data = (PacketPtr) TempList->First();
if (data != NULL) {
tempdata.sonar dist = data->sonar_dist;
tempdata.compass_angle = data->compass_angle;
tempdata.encoder data = data->encoder_data;
tempdata.sonar angle = data->sonar_angle;
TempList->Remove (data);
NewData Flag=1:;
} // end if 2
}//end if 1
} //end try
__finally

{
DatalList->UnlockList ()

}
// delete TempList; ??? do i really need to delete this???

if (data!=NULL && NewData Flag){
map—>modify_map(extract_data_from_packet(tempdata), data->sonar dist);
NewData Flag=0;




MapThread. cpp
}

} //end while
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MapThread.h

/**************************************k***************************************

* MapThread. h
A by Brian Deaton
*

**********************k*******************************************************/

fifndef MapThreadH
#define MapThreadH

class TMapThread : public TThread
{
orivate:
protected:
void __fastcall Execute () ;
public:
__fastcall TMapThread (bool CreateSuspended);
}i

#endif
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/*****************************************7(—************************************

* DatalList.cpp
* by Brian Deaton
*

******************************************************************************/

#include <vcl.h>
#pragma hdrstop

#include "DataList.h"

double extract data from packet(TDataPacket data) {
double angle,
int x,y;

angle = (data.compass_angle) + 90;
while(angle > 360)

angle-=360;
while (angle < 0)

angle+=360;

angle = (PI*angle)/180;

x=(data.encoder data)*cos(angle);
y=(data.encoder data)*s1n(angle)
PositionLock- >Acqu1re()
map->position.x+=x;
map->position.yt+=y;
PositionLock->Release();

// data.sonar angle-=90;
angle = angle + ((PI*data.sonar angle)/180);

MapDisplayForm->MapStatusBar->SimpleText = "Position: X=" + IntToStr (map->position.x)
+ " y=" 4+ IntToStr (map->position.y) +" Compass Angle="
+ IntToStr (data.compass_angle) + " Encoder="
+ IntToStr(data.encoder data) + " Sonar Dist="
+ IntToStr(data.sonar dist) + " Sonar Angle="
+ IntToStr (data.sonar angle);

return angle;

#pragma package (smart init)
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/******************************************************************************

* DataList.h

* by Brian Deaton
*
******************************************************************************/

#ifndef DatalistH
#define DatalListH

typedef struct ADataPacket {
short sonar_ dist,compass_angle;
int encoder data;

'short sonar angle;
}TDataPacket;

typedef TDataPacket* PacketPtr;

double extract data from packet (PacketPtr data);

TThreadList *Datalist = new TThreadList();

#endif




MapDisplay.cpp

/****************************************k*************************************

* MapDisplay.cpp
ad by Brian Deaton
*

*****************************************k************************************/

#include <vcl.h>
#pragma hdrstop

#include "MapDisplay.h"
#include "globals.h"

#pragma package (smart_init)

#pragma resource "*.dfm"

TMapDisplayForm *MapDisplayForm;

2 TG

fastecall TMapDisplayForm::TMapDisplayForm(TComponent* Owner)

— TForm (Owner)

{
Image->Canvas->Lock();
Image->Canvas->Brush->Color = 8355711; //grey 127
Image->Height=rows;
Image->Width=cols;
Image—>Canvas—>FillRect(Rect(0,0,rows,cols));
Image->Canvas—>Unlock () ;
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MapDisplay.h

/******************************************************************************

* MapDisplay.h
* by Brian Deaton
*

***********************************************************************k******/

#ifndef MapDisplayH
#define MapDisplayH

#include <Classes.hpp>
#include <Contrecls.hpp>
#include <StdCtrls.hpp>
#include <Forms.hpp>

#include <ExtCtrls.hpp>
#include <ComCtrls.hpp>

/e oo
class TMapDisplayForm : public TForm
{
published: // IDE-managed Components

TImage *Image;

TStatusBar *MapStatusBar;
private: // User declarations
public: // User declarations

__fastcall TMapDisplayForm(TComponent* Owner) ;
bi .
e
extern PACKAGE TMapDisplayForm *MapDisplayForm;
e

$endif
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/******************************************************************************

* map.cpp

* by Brian Deaton

*
******************************************************************************/

fpragma hdrstop
#include <condefs.h>
#include <iostream.h>
#include <fstream.h>
#include <stdlib.h>
#include <math.h>

#include "map.h"
#include "MapDisplay.cpp”

#pragma argsused
extern TMap *map= new TMap();
TMap::TMap () {

position.x=cols/2;
position.y=rows/2;

for (i=0;i<rows;i++) {
for (j=0;j<cols;j++) {
map (il [J1=127;
}

}

TMap::~TMap () {
}

bool TMap::modify map(/*changed from short*/double angle, double dist) {
//angle is measured up from positive x-axis.
//everything in this function is done in relative coords
//until map plot is called

if (angle<0 || angle>(2*PI) || dist<=0)
return 0;

COORDS rm,rl,r2;
/*changed from short*/double rl_angle,r2_ angle;

rl angle=angle + (PI/18); //(PI/18) /%10 degrees*/;
r2 angle=angle - (PI/18);

get relative coords(rm,angle, dist);
get relative coords(rl, rl angle,dist);
get relative coords(r2 r2 angle,dist);

// Lock Globals to avoid simultaneous thread access
MapDisplayForm->Image->Canvas->Lock();
MapLock—->Acquire () ;

S The arc is on the left side of the circle:
if(rl.x <= 0 && r2.x <= 0) {
sweep_left(rl_angle,rZ_angle,dist);
J ) e e e e End left side
S The arc 1s on the right side of the circle:
if(rl.x >= 0 && r2.x >= 0) {
sweep right (rl_angle,r2_angle,dist);

F ittty End right side
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VAR The arc is on the middle of the circle:
if((rl.x <= 0 && r2.x >= 0) || (rl.x >= 0 && r2.x <= 0)) {
sweep left(rl angle,rZ angle,dist);
sweep right(rl angle,r2 angle,dist);
S End middie

draw_arc(rl,r2,angle,dist);

MaplLock->Release () ;
MapDisplayForm->Image~>Canvas~>Unlock () ;

return 1;

}

void TMap::sweep left (double rl angle, double r2 angle, double dist) {

COORDS r,sl,s2,ch,cl;
int vbar,m;

if (r2 angle < PI/2) {
get relative coords(r,rl angle,dist);
for (vbar=0;vbar >= r.x;vbar--) {

get y{sl,rl angle,vbar)};
circle edge x(ch,dist,vbar);

for (m=ch,y-1;m>=sl.y;m——) {
map minus (vbar,m);
}
} //end for
} //end if

else if (rl angle > (3*PI)/2) {
get relative coords(r,r2 angle,dist);
for (vbar=0;vbar >= r.x;vbar--) {

get y(s2,r2 angle,vbar);
circle edge x(ch,dist,vbar);
cl.y=-ch.y;

for(m=s2.y;m>cl.y;m--) {
map minus (vbar,m};
}
} //end for

} //end else if

else {
for (vbar=0;vbar >= -dist;vbar--) {

get y(sl,rl angle,vbar);

get y(s2,r2 angle,vbar);
circle edge x(ch,dist,vbar);
cl.y=-ch.y;

cl.x=ch.x;

if((ch.y > s2.y) && (sl.y > cl.y)) {
for (m=s2.y;m>=sl.y;m—~) {
map minus (vbar,m);

}

else if((s2.y >= ch.y) && (sl.y >= cl.y)) {
for(m=ch.y-1;m>=sl.y;m—--) {
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map minus (vbar,m);

}

else if((ch.y >= s2.y) && (sl.y <= cl.y)) {
for(m=s2.y;m>cl.y;m--) {
map minus (vbar,m);
}
}

else if((s2.y > ch.y) && (sl.y < cl.y)) {
. for (m=ch.y-2;m>cl.y+1l;m-—) {
map minus (vbar,m);
}
}
} //end for

) } //end else
}
void TMap: :sweep right (double rl angle, double r2_angle, double dist){

COORDS r,sl,s2,ch,cl;
int vbar,m;

if ((rl angle > PI/2) && (rl angle < (3*PI)/2)) |
get_relative_coords(r,r2_angle,dist);
for (vbar=1;vbar <= r.x;vbar++) {

get y(s2,r2_angle,vbar);
circle edge x(ch,dist,vbar);

for (m=ch.y-1;m>=s2.y;m--)} {
map minus (vbar,m);
}
} //end for
} //end if

else if ((r2 angle < (3*PI)/2) && (rZ_angle > PI/2)){
get_relative_coords(r,rlmangle,dist);
for (vbar=1;vbar <= r.x;vbar++) {

get y(sl,rl angle,vbar);
circle edge x(ch,dist,vbar);
cl.y=-ch.y;

for (m=sl.y;m>cl.y;m—--) {
map. minus (vbar,m) ;
}
} //end for

} //end else if

else{
for (vbar=0;vbar <= dist;vbar++) {

get_y(sl,rl_angle,vbar);

get v (s2,r2_angle,vbar);
circle_edgeux(ch,dist,vbar);
cl.y=-ch.y;

cl.x=ch.x;

if((ch.y > sl.y) && (s2.y > cl.y)) {
for (m=sl.y;m>=s2.y;m——) {
map minus (vbar,m);

}
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}

else if(({sl.y >= ch.y) && (s2.y >= cl.y)) {
for (m=ch.y-1;m>=s2.y;m—-) {
map minus (vbar,m);

}

else if((ch.y >= sl.y) && (s2.y <= cl.y)) |
for (m=sl.y;m>cl.y;m--) {
map minus (vbar,m);
}
}

else if((sl.y > ch.y) && (s2.y < cl.y)) |
for (m=ch.y-2;m>cl.y+1l;m--) {
map minus (vbar,m);
}
}
} //end for
} //end else

}
void TMap::get_relative_coords(COORDS &point, /*changed from short*/double angle,double dist) {

point.x=(dist*cos(angle));
point.y=(dist*sin(angle));
}

void TMap::get absolute_coords (COORDS &point, /*changed from short*/double angle,double dist) {
point.x=position.x* (dist*cos(angle));
point.y=position.y* (dist*sin(angle));

}

void TMap::get y(COORDS gpoint, /*changed from short*/double angle, double x coord) {
point.y=x coord*tan(angle);

}

void TMap::circle edge x(COORDS &point, double dist, double x_coord) {
double angle=acos(x_coord/dist);
point.y=dist*sin(angle);
point.x=x coord;

}

void TMap::circle edge y(COORDS &point, double dist, double y_coord) {
double angle=asin(y_coord/dist);
point.x=dist*cos (angle);
point.y=y coord;

}

void TMap::map minus(int x coord, int y_coord) ({
unsigned int x=x coord + position.x;
unsigned int y=y coord + position.y;
if (y<=rows && x<=cols){
if (map(y] [x] > 231) {
map[y] [x]=255;
MapDisplayForm—>Image—>Canvas—>Pixels[x][rows—y] = 65793*map{y] [x]:
}
else {
map[y] [x]= map(y] [x]*1.1;
MapDisplayForm->Image->Canvas->Pixels[x] [rows-y] = 65793*map[y] [x];

}

void TMap::map plus(int x coord, int y_coord) {
unsigned int x=x coord + position.x;
unsigned int y=y coord + position.y;
if (y<=rows && x<=cols) {
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maplyl [x]= map[y] [2]*0.9;
MapDisplayForm->Image->Canvas->Pixels[x] [rows~y] = 65793*maply] [x];

}

void TMap::draw arc(COORDS rl, COORDS r2, double angle, double dist) ({
: COORDS ch;
int vbar, hbar;

if(abs(r2.x-rl.x)>=abs(r2.y-rl.vy)) {
for (vhbar=(r2.x>=rl.x ? r2.x : rl.x);vbar>={r2.x>=r1.x ? rl.x : r2.x);vbar—-){
circle edge x(ch,dist,vbar);
ch.y=(sin(angle)>=07?1:~1)*ch.y;
if(ch.x<={x2.x>=r1l.x ? r2.x : rl.x) && ch.x>=(r2.x>=rl.x ? rl.x : r2.x)){
if (sin(angle)}>=0) {
map plus(vbar,ch.y);
map plus(vbar,ch.y+1});
}
else
map plus(vbar,ch.y);
map plus(vbar,ch.y-1);
}

} //end if
} //end for
}

else {
for (hbar=(r2.y>=rl.y ? r2.y : rl.y);hbar>=(r2.y>=rl.y ? rl.y : r2.y):hbar—--){
circle edge y(ch,dist,hbar);
ch.x=(cos(angle)>=07?1:-1)*ch.x;
if(ch.y<=(r2.y>=rl.y ? r2.y : rl.y) && ch.y>=(r2.y>=rl.y ? rl.y : r2.y))}{
if (cos (angle)>=0) {
map plus(ch.x+1,hbar);
map plus(ch.x+2,hbar);
}
else {
map plus(ch.x-1,hbar);
map_plus{(ch.x-2,hbar);

}

oool TMap::dump map to file(AnsiString filename) {

long r,c;
ofstream outfile(filename.c str(), ios::out);

if (loutfile) {
cerr << "Map output file could not be opened" << endl;
return false;

}

outfile << "P5" << endl
<< cols << ' ' << rows << endl
<< "255" << endl;

for (r=rows-1;r>=0;r--) {
for (c=0;c<cols;c++) {
outfile << maplr]lcl;

}
}

outfile.close();

return true;

}

thar TMap::get map value (unsigned int x, unsigned int y) {
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return maply] [(x];
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/******************************************************************************
* map.h

* by Brian Deaton
*

******************************************************************************/

#ifndef MAP H
#define MAP H

#include "globals.h"
struct xycoords {
int x,y; //1! used to be unsigned int

yi
“typedef struct xycoords COORDS;

class TMap {

public:

short sonar dist,compass angle;

unsigned int encoder data;

double sonar angle;

COORDS position;

TMap () ;

~TMap () ;

bool modify map(/*changed from short*/double angle, double dist);

bool dump map to file(AnsiString filename);

char get map value(unsigned int x, unsigned int y);
vrivate:

unsigned char map{rows] [cols];
unsigned int 1i,73;
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void get relative coords(COORDS &point,/#changed from short*/double angle,double dist);
void get absolute coords (COORDS &point, /*changed from short*/double angle,double dist);

void get y(COORDS &point, /#*changed from short*/double angle, double x_coord) ;

void circle edge x(COORDS &point, double dist, double x_ coord);
void circle edge y(COORDS &point, double dist, double y_coord);
void map minus(int x coord, int y coord);

void map plus(int x coord, int y coord);

void draw arc(COORDS rl, COORDS r2, double angle, double dist);
void sweep left (double rl angle,double rZ2_ angle,double dist);
void sweep right (double rl angle, double r2 angle, double dist);

bi

tendif
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/******************************************************************************

* globals.h

* by Brian Deaton
*

**********************************************k****k**************************/

#ifndef GLOBALS H
#define GLOBALS H

#include <SyncObjs.hpp>

extern TCriticalSection* MapLock = new TCriticalSection{():;
extern TCriticalSection* PositionLock = new TCriticalSection{();
fdefine PI 3.141592653589379

extern const unsigned int rows=500;
extern const unsigned int cols=500;

fendif




Memorandum

To: Terrain Mapper Group (Brian Deaton, Jeff Dickerson, Jared New-
ton)
From: Dr. Kevin Nickels, Senior Design Group Administrator
Date: May 9, 2000
Subject: End of Semester Senior Design Comments/Evaluation
Evaluation

1.

If T believe the report, the project can do everything (together) except move
the sonar? If that’s true (I don’t think that it is), you should show some actual
maps generated by moving the robot around a room with a fixed sonar mast.
If it’s not, you should give an accurate status of the project. If you put your
names (and mine) on a report, it should be accurate and complete!!

. My knowledge of the current state of the project is that each individual portion

(except possibly the intelligent control of the sonar mast...I don’t think I've even
seen an algorithm for that) works in isolation, but that the integral product
hasn’t been shown to work. I've seen the following demonstrations:

(a) map generator using manual data input.

(b) sonar mast movement

(c) sonar measurement (output to HB screen)

(d) encoder counting (forward only, output to HB screen)
I've not seen the following demonstrations, that might have been expected:

(a) compass readings (output to HB screen) / I believe that this has been

done, I just haven’t seen it.

(b) Intelligent control of sonar mast.

(c) compass & encoder readings (output to HB screen)

(d) compass & encoder readings (output to laptop screen)

(¢) map generator using HB inputs — final product!




3. Based on the incomplete project and the inattention to scheduling (at the very
least, for the reports), I’'m assigning the following grades:
Name Project Grade Report Grade Overall Grade

Brian C 75 (C)
Jeff C- C 70 (C-)
Jared B 82 (B-)

Report Comments

1. Organization
(a) There should be a paragraph at the end of §1 describing the organization
of the rest of the report, and explaining how to read it.

(b) §2 purports to describe the base components of the system, then starts
to discuss the decisions involved. There’s no clear tie-in to the report. If
you’re trying to address the analysis you chose to do, why not say that?
It seems like this section is trying to do two things.

(c) §3 is well organized, and seems to go through the hardware and software
needed to understand the position tracker.

(d) §4 organization looks ok, TOC is poorly formatted.

(e) §5, §6 seem (from the TOC) like they could be combined... what’s the
difference between software that happens to be on the laptop, and software
that generates the map?

(f) App B - isn’t this the final budget? Not a status report?

(g) §8 - references normally go before appendices.
2. §1 - Introduction
3. §2 - Base Components

(a) will use the components? future tense?
(b) Table X 7

4. §3 - Position Tracking System

(a) 3.2 Odometery — a 5% wheel slip won’t cause your design to think that
it’s turned.

(b) 3.6 - There are a lot of assumptions sprinkled through here. A list or table
would help the reader understand where your method is applicable. Also,
an explicit description (pseudo-code, maybe) would make the method more
understandable.




10.
11.
12.
13.

14.

CC:

84 - Object Detection
§5 - Laptop Software
86 - Map Generation
(a) Seems like this should be a sub-section of §5.
§7 - Conclusion

(a) You can’t conclude anything about your methods for solving odometry, or
interfacing differing applications/hardware, mixing off-the-shelf hardware
with custom applications, mixing “public” software applications/modules
with custom code, or system-level engineering design?

Appendix A - Engineering Design Process
Isn’t this last semesters?

Appendix B - Budget Status
Appendix C - Project Overview
Appendix D - Contributions

Appendix E - Coding
This isn’t in the TOC? Will there be another appendix for the other software?

§8 - References

Dr. Paul Giolma, Senior Design Adminstrator
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