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Abstract

A general branching process is proposed to model a population of
cells of the yeast Saccharomyces cerevisiae following loss of telomerase.
Previously published experimental data indicate that a population of
telomerase-deficient cells regain exponential growth after a period of
slowing due to critical telomere shortening. The explanation for this
phenomenon is that some cells engage telomerase-independent path-
ways to maintain telomeres that allow them to become “survivors.”
Our model takes into account random variation in individual cell cycle
times, telomere length, finite lifespan of mother cells, and survivorship.
We identify and estimate crucial parameters such as the probability of
an individual cell becoming a survivor, and compare our model pre-
dictions to experimental data.
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1 Introduction

Telomeres are specialized structures found at the ends of linear chromosomes,
which consist of protein bound, tandem repeats of short DNA sequences
called telomeric repeats (Denchi, 2009). Telomeres function to prevent the
factors that detect and repair chromosome breaks from acting upon natural
chromosome ends. When telomere function is lost, either through the loss
of telomeric repeats or certain proteins that associate with them, telomeres
become substrates of the DNA double strand break repair machinery, which
results in telomere-telomere fusions and genomic instability.

During semi-conservative DNA replication of linear chromosomes, there is
loss of terminal telomeric DNA due to the so-called end replication problem
(Baird, 2008). To offset this loss, certain cell types, such as germ cells, express
telomerase, which catalyzes the addition of telomeric repeats onto chromo-
some termini. Most human somatic cells, however, express insufficient or
undetectable levels of telomerase and as a consequence, telomeres shorten in
these cells with each cell cycle. Eventually, one or more telomeres reach a
critical length that triggers an irreversible halt in cellular proliferation known
as cellular senescence. Rarely, cells bypass the induction of senescence, but
go on to die due to the eventual loss of telomeric function and secondary
genomic instability. A rare population of cells, however, may bypass this cri-
sis by reactivating telomerase or engaging a recombination-based mechanism
of telomere maintenance, allowing for continued proliferation. These pro-
cesses of telomere dysfunction followed by telomere stabilization are thought
to represent important steps in the development of cancer, and thus are of
substantial interest.

The budding yeast, Saccharomyces cerevisae, is a genetically tractable
model organism for the study of telomere biology. Telomerase-deficient strains
can be readily generated and telomere loss rates of 3–5 base pairs have been
determined in the absence of telomerase (Lundblad and Szostak, 1989; Singer
and Gottschling, 1994). As in higher eukaryotes, telomerase deficiency in
yeast results in eventual cellular senescence, and rare cells that evade this
fate can be isolated (Lundblad and Blackburn, 1993). Two major classes of
these telomerase-independent/post-senescence “survivors” have been char-
acterized, which can be distinguished in part by their telomere structures
and growth properties. Chromosome ends in type I survivors have exten-
sively amplified subtelomeric Y’ elements and terminate with short tracts of
telomeric repeats, whereas the chromosome ends in type II survivors exhibit
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a much lesser degree of Y’ amplification and terminate with heterogeneous
and long telomeric repeat tracts (Lundblad and Blackburn, 1993; Teng and
Zakian, 1999). Type II telomeres are akin to those that are observed in cancer
cells that don’t activate telomerase, but rather use an alternative lengthening
of telomeres (ALT) pathway for telomere maintenance (Bryan et al., 1997).
Although type I survivors arise more frequently than type II survivors, they
exhibit severely impaired growth (Teng and Zakian, 1999). Type II survivors,
in contrast, grow comparable to wild type cells, and consequently predomi-
nate with serial propagation of telomerase-deficient strains in liquid culture.
Although many of the proteins that are required for or influence one or both
of the pathways have been identified, the molecular events that drive the
telomere recombination choice and the rate they occur are poorly defined.

Previous mathematical models of the process of telomere loss include
Levy et al., 1992; Arino et al., 1995 and 1997; Olofsson and Kimmel, 1999
and 2005; Rubelj et al., 1999; Tan, 1999; Olofsson, 2000; Op Den Buijs et
al., 2004; Dyson et al., 2007; and Portugal et al., 2008. In the present paper
we develop a model of cellular proliferation in response to telomere dynam-
ics in yeast that takes into account the facts that mothers and daughters
are distinguishable individuals, that the proliferative potential of a cell is
limited by factors other than telomere length, and, in particular, that pop-
ulation growth can be restored after a period of slowing due to the bypass
mechanisms mentioned above.

2 The branching process model

We propose a general branching process (Haccou et al., 2005; Jagers and
Nerman, 1984) where individuals reproduce by budding. The times between
consecutive budding events (i.e., the cell cycle times) are assumed to be
independent random variables with the same distribution. This is where the
general branching process comes into play: a mother cell produces daughter
cells at different times during her life which is relevant to budding yeast
and different from, for example, the binary fission of bacterial reproduction
that can be modeled by simpler branching processes. As we are also keeping
track of loss of telomeric DNA, we are in fact using a multitype process
(Jagers, 1992) where type accounts for telomere length, however, specific
results for multitype processes will not be needed. An individual cell contains
16 chromosomes so it has 32 telomeres. In cells that express telomerase, the
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number of telomeric repeats present varies to a certain extent from end to
end resulting in a distribution of telomere lengths around a strain-specific
point (Shampay and Blackburn, 1988). In the absence of telomerase, the
rate of loss of telomeric DNA follows a probability distribution over a range
from 3–5 base pairs per end per cell division (Lundblad and Szostak, 1989;
Singer and Gottschling, 1994). We therefore define a “telomere unit” to be
4 base pairs and, for the time being, assume that one telomere unit is lost
per division. We let the type of a cell be the number of remaining telomere
units.

For increased clarity, we will first describe a simplified model and succes-
sively extend it to incorporate all the features we need, leading up to the de-
scription in Proposition 2.2. The population starts from a single telomerase-
deficient cell of type n and upon completion of the cell cycle, this cell has
produced one daughter cell. As all telomeres have shortened by one unit
in the preceding round of DNA replication and are randomly allocated to
mother and daughter cell, it is reasonable to assume that both mother and
daughter, after division, have type n− 1. For simplicity, we refer to the two
cells as the first generation. When a cell reaches type 0 (the critical telom-
ere length mentioned in Section 1), it stops dividing and becomes senescent,
unless one of the alternative mechanisms for telomere maintenance described
in Section 1 is established. We will address this situation later. Senescent
cells remain in the population but do not further reproduce. As the ultimate
fate of a senescent cell is likely to be death, we could let each senescent cell
remain in the population for a time following some probability distribution.
However, as the mean in this distribution is likely far to exceed the duration
of the experiment, senescent cells can for practical purposes be considered
simply nondividing. Again, it is not difficult to adjust the model but any
possible gain would hardly outweigh the increased complexity of the model.

We assume that cell cycle times are independent random variables with
the common cumulative distribution function (cdf) F . The main quantity of
interest is the number of cells in the population at time t, which we denote
by Zt. The population starts from a single cell of type n at time t = 0. In
this basic model, the expected value of Zt is

E[Zt] = 1− F (t) +
n−1∑
k=1

2k
(
F ∗k(t)− F ∗(k+1)(t)

)
+ 2nF ∗n(t)

where F ∗k denotes k-fold convolution of F , that is, the cdf of the sum of k
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cell cycle times. The factor 2k is the expected number of cells in the kth
generation (recall our use of “generation” mentioned above). Now note that
each cell in the kth generation is present in the population if the sum of k
cell cycle times is less than t but the sum of k + 1 cell cycle times is greater
than t. As the probability of this event is F ∗k(t) − F ∗(k+1)(t), the expected
number of cells from the kth generation that are present at t equals

2k
(
F ∗k(t)− F ∗(k+1)(t)

)
and, noting that cells of type 0 do not further reproduce, summing over k
gives the expression for E[Zt]. Note that E[Zt] → 2n as t → ∞ so 2n is the
final number of cells.

Additional factors influence the replicative capacity of budding yeast cells,
such that a given cell will undergo a finite number of cell divisions even
when telomerase is expressed and telomere length is maintained (D’Mello
and Jazwinski, 1991). We denote this maximum number of divisions by n0

and assume for now that it is constant. Thus, if a cell has telomere length
k, it will produce min(k, n0) more daughter cells, which means that we must
break up the expression for E[Zt] above in a term for k ≤ n0 and one for
k > n0. The general expression is

E[Zt] = 1− F (t) +
n−1∑
k=1

m(k)
(
F ∗k(t)− F ∗(k+1)(t)

)
+ m(n)F ∗n(t)

where m(k) replaces 2k as the expected number of cells in the kth generation.
As long as k ≤ n0, we still have m(k) = 2k and for k > n0 we describe

a recursive scheme that enables us to compute m(k). To that end, in any
given generation, let kj be the number of cells that are able to reproduce j
times for j = 0, 1, ..., n0. Each cell with j > 1 produces a daughter cell that is
able to reproduce n0 times and is then itself able to reproduce another j − 1
times. Cells with j = 0 remain unchanged. For n0 ≤ k ≤ n, the transition
from generation k − 1 to generation k is therefore as follows:

Generation k − 1 : (k0, k1, ..., kn0−1, kn0)

Generation k : (k0 + k1, k2, ..., kn0 ,
n0∑
i=1

ki)
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and after relabeling in generation k to (k0, k1, ..., kn0) again, we have

m(k) =
n0∑

j=0

kj

The initial configuration in generation 0 is (0, 0, ..., 0, 1) since there is one cell
that is able to divide n0 times. For k > n, all cells are senescent so m(k) stays
constant and we have m(k) = m(n) for k ≥ n. It is interesting to note that
the sequence {k1, ..., kn0} (excluding k0) constitutes an “n0-nacci” sequence,
that is, a generalized Fibonacci sequence where each new number is obtained
by adding the previous n0 numbers, starting from (0, 0, ..., 0, 1). Hence, it
is possible to obtain explicit expressions for the kj (Flores, 1967). We state
this observation as a proposition that is interesting in its own right; for our
computational purposes, however, the recursive formula above is sufficient.

Proposition 2.1 Consider the vector (k0, k1, ..., kn0) in the kth generation
of the branching process above for k ≤ n. Let Fj denote the jth n0-nacci
number and set F0 = F1 = ... = Fn0−1 = 0, Fn0 = 1. Then (k0, k1, ..., kn0)
equals  k∑

j=0

Fj, Fk+1, ..., Fk+n0


To account for the observed phenomenon of restored exponential growth,

we assume that cells that have reached type 0 have the possibility to turn
into “survivors” or become senescent. The expression for m(k) remains the
same for k ≤ n, but for k > n it changes since cells of type 0 may now escape
senescence and keep reproducing. We assume that a cell of type 0 becomes a
survivor with probability p and that the survivor status is inherited by all of
its daughter cells. Thus, each survivor starts a population of survivors where
telomere length is generally maintained and we assume the only limiting
factor is the lifespan n0. The nonsurvivors turn senescent.

To arrive at an expression for the expected number of cells in generation
k for k > n, we first need to figure out how many cells in generation n that
are eligible to become survivors, and for each of those, how many more times
it is able to reproduce. There is a total of m(n) cells, but many of those
cells have ceased reproducing after reaching the threshold imposed by the
maximum number of offspring n0. For now, we assume that the only cells
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in generation n that are eligible to become survivors are those that have
reached type 0 and are still able to reproduce at least once, an assumption
that will later be relaxed. To account for those cells, we use the recursive
scheme above and in generation n arrive at the vector (k0, k1, ..., kn0). We
then have k1 + ... + kn0 cells that are eligible to become survivors. The cells
that do not become survivors become senescent, joining the k0 cells that are
no longer able to reproduce. Thus, in generation n there is an expected
number of k0 +(1− p)(k1 + ...+ kn0) senescent cells and an expected number
of p(k1 + ... + kn0) survivors. Since the survivors differ in the number of
possible daughter cells, they do not contribute equally to the population and
we need to deal with each kj separately.

Let us start with the k1 cells that may reproduce once more. Each
such cell produces one daughter cell that starts a population now capable
of maintaining telomere length, limited only by the reproductive limit n0.
The mother cell turns senescent. Thus, in generation n + j, the expected
size of the population stemming from the original survivor is 1 + m(j − 1).
The k2 cells that may reproduce twice more contribute an expected num-
ber of 1 + m(0) = 2 cells in generation n + 1 and an expected number of
1+m(1)+m(0) cells in generation n+2. After that, the mother turns senes-
cent and, in generation n + j, the expected size stemming from an initial
survivor of this kind is 1 + m(j − 1) + m(j − 2). Generally, a survivor that
can reproduce i more times contributes an expected number of mi,j cells to
generation n + j where

mi,j = 1 +
min(i,j)∑

l=1

m(j − l)

Further, let s(n) be the number of cells in generation n that are eligible to
become survivors (s(n) = k1 + ... + kn0 in the notation above) and let d(n)
be the number of cells in generation n that are already senescent from before
(d(n) = k0 in the notation above). We are now ready for the final expression.

Proposition 2.2 Let M(k) denote the expected number of cells in generation
k in a branching process with survivors as described above. Then
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M(k) =



2k for k ≤ n0

m(k) for n0 < k ≤ n

d(n) + (1− p)s(n) + p
n0∑
i=1

mi,k−n for k > n

and the expected number of cells in the population at time t is

E[Zt] = 1− F (t) +
∞∑

k=1

M(k)
(
F ∗k(t)− F ∗(k+1)(t)

)

Note that all senescent cells are included in the expression for M(k) even
though they have ceased to reproduce. However, the expression for E[Zt]
is still valid by the telescoping properties of the terms in the sum; once a
cell is senescent, it stays in the population forever which is mathematically
equivalent to saying that it “replaces itself” at time intervals with cdf F .

3 Data, estimation, and model fitting

To fit and calibrate our model, we use data from Bertuch and Lundblad
(2004). In this study, telomerase-deficient haploid cells (containing one set
(1n) of chromosomes) were generated from telomerase-proficient diploid (2n)
cells, in which one of the two copies of the gene that encodes the catalytic
subunit of telomerase (EST2) was replaced by a selectable marker (est2∆).
Upon meiosis of a parental diploid cell, four daughters would be formed - two
that would inherit the wild-type EST2 copy and two that would inherit the
deleted est2∆ copy, which would be telomerase-proficient and telomerase-
deficient, respectively. The parental diploid strain also contained one wild-
type and one deleted copy of a gene that encodes an enzyme that degrades
dysfunctional telomeres, EXO1. These similarly segregated 2:2 to the off-
spring haploids. The individual cells were separated from one another on
solid media and allowed to grow into colonies for 4 days. After four days,
the individual colonies were resuspended in their entirety in 5 milliliters (ml)
media and allowed to grow for 1 day. Cells counts were performed and
the cultures subsequently diluted into fresh media at a concentration of 105

cells/ml. The cultures were grown for 22 hours after which time cell counts
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were obtained. The dilution, growth, and cell counting protocol was repeated
every 22 hours for a total of 9 days. The genotypes of the cultures (EST2
vs. est2∆ and EXO1 vs. exo1∆) were ultimately determined.

We convert the growth rate data to logarithmic population size data. For
example, if the initial count by day 1 is 108 cells per ml, the logarithmic
population size is log(5 · 108) ≈ 20.0. Next, suppose the count by day 2 is
again 108. This means that the 105 cells (per ml) that were harvested at the
end of day 1 grew to 108 cells (per ml) by day 2, that is, a 1000-fold increase.
We then estimate the logarithmic population size to be 20.0 + log(1000) ≈
26.9, and so on and so forth.

First, we estimate cell cycle parameters. For this purpose, we use the
data for the wild-type, telomere-proficient strain. Since the data indicate that
this population is in steady exponential growth, we use asymptotic results for
exponentially growing branching processes to estimate the mean and variance
of the population (Haccou et al., 2005; Jagers and Nerman, 1984). For this
purpose we need to describe the reproduction process ξ(t) which gives the
number of daughter cells a mother cell has up to age t. Let the times between
consecutive births (i.e., cell cycle times) be independent random variables
with the common cdf F . Denote the time of the kth birth by Tk and assume
there is a total of n0 daughter cells. The reproduction process becomes

ξ(t) =
n0∑

k=1

I{Tk ≤ t} (3.1)

where I denotes indicator function. The mean of ξ(t) is

µ(t) =
n0∑

k=1

P (Tk ≤ t) =
n0∑

k=1

F ∗k(t)

where F ∗k denotes the k-fold convolution of F with itself, that is, the cdf of
Tk. For simplicity, we assume that n0 is constant, however, a random n0, call
it N0, is easily dealt with. The reproduction process remains

ξ(t) =
N0∑
k=1

I{Tk ≤ t}

and its mean is

µ(t) =
∞∑

n0=1

n0∑
k=1

F ∗k(t)P (N0 = n0)
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We henceforth assume that n0 is constant (see the discussion after (3.5) for
some justification of this assumption). Note that we can write

µ(t) =
∫ t

0
µ(du)

where

µ(du) =
n0∑

k=1

f ∗k(u)du

if F is a continuous distribution with probability density function (pdf) f .
The Laplace transform of ξ is defined as

ξ̂(s) =
∫ ∞
0

e−stξ(dt)

which has expected value

µ̂(s) = E[ξ̂(s)] =
∫ ∞
0

e−stµ(dt)

and the asymptotic growth rate of the process is given by the Malthusian
parameter α which is defined through the relation µ̂(α) = 1. Finally, let

β =
∫ ∞
0

te−αtµ(dt)

The asymptotic mean and variance of Zt are then given by

E[Zt] ∼ eαt 1

αβ
(3.2)

and

Var[Zt] ∼ e2αt Var[ξ̂(α)]

α2β2(1− µ̂(2α))
(3.3)

For technical details and conditions, see Jagers and Nerman, 1984. In order to
estimate cell cycle parameters, we make the assumption that cell cycle times
follow a gamma distribution. This distribution is a flexible two-parameter
family that is commonly used to model lifetimes (Oprea and Kepler, 2001;
Larsson et al., 2008). Specifically, if the parameters are a and b, the pdf is
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f(t) = e−btba ta−1

Γ(a)

where Γ(a) is the gamma function. The Laplace transform of the Γ(a, b)
distribution is

f̂(α) =
∫ ∞
0

e−αtf(t)dt =

(
b

α + b

)a

As Tk is the sum of k independent Γ(a, b) variables, we get Tk ∼ Γ(ka, b) and
as the Laplace transform of the sum of independent random variables equals
the product of the individual Laplace transforms, (3.1) gives

E[ξ̂(α)] =
n0∑

k=1

(
b

α + b

)ka

=
1−

(
b

α+b

)a(n0+1)

1−
(

b
α+b

)a − 1 (3.4)

Our sample contains 18 observed values of Zt where t = 22 hours, the sample
mean is Z̄ = 2136, and sample variance is s2

Z = 261952. Using (3.2) and (3.3)
we can solve the equations

E[Z22] = 2136 and Var[Z22] = 261952

together with E[ξ̂(α)] = 1, to get estimates of α, a, and b. Note that there is
also a fourth parameter n0 so there is no unique solution to the 3 equations.
However, we know that n0 is on average about 25 (Sinclair et al., 1997 and
1998). We also know that the mean cell cycle time (which is a/b in the
gamma distribution) is on the order of 90–120 minutes (depending on strain
background, growth conditions, etc) and with these restrictions we can get
approximate estimates for α, a, and b. Our goal is not to get as precise
estimates as possible, rather, we wish to examine whether our model can
qualitatively reproduce experimental results. As the expressions above are
quite complicated, we suggest the following simplification.

The lifespan n0 of a cell is 25 and at the beginning of each 22-hour time
period, cells are distributed according to Proposition 2.1. By our day 0, there
have been about 30 population doublings and by day 8, there have been about
100 doublings; hence, we have k in the range 30–100 (n can be considered
infinite as telomere length is maintained in the wild-type population). With
n0 and k in these ranges, Proposition 2.1 shows that the fraction of cells that
are not able to keep producing daughter cells for the full 22 hours is very
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small. For example, more than 99% of cells are able to produce at least 18
daughter cells which with overwhelming probability takes far more than 22
hours. In fact, almost 50% of cells are newborn, another 25% are second
generation, and so on. In conclusion, almost all cells are able to produce
daughter cells for the full 22-hour period so we can view the population as
a binary splitting process, also known as a Bellman–Harris process, where
lifetimes are Γ(a, b) and each cell produces 2 daughter cells (one of which is
actually the mother cell).

In such a Bellman–Harris process, the mean reproduction process simpli-
fies to

µ(t) = 2F (t)

which has Laplace transform

µ̂(α) =
2ba

(α + b)a

and setting this expression equal to 1 gives an explicit solution for the Malthu-
sian parameter as

α = b(21/a − 1)

Note that this relation implies that(
b

α + b

)a

=
1

2

which, by (3.4) gives

E[ξ̂(α)] = 1−
(

1

2

)n0

(3.5)

As we have E[ξ̂(α)] < 1 for any n0, the Bellman–Harris approximation in
fact overestimates α, which makes intuitive sense since it disregards the re-
strictions imposed by the finite lifespan of cells. However, for realistic values
of n0, we have E[ξ̂(α)] ≈ 1, confirming that our approximation is reasonable.
Equation (3.5) also provides some justification for assuming a constant n0;
over the range of values that have been experimentally determined (Sinclair
et al., 1997 and 1998) the effect of varying n0 is negligible.

Another source of overestimation of α is the fact that the cells in our
data set of daily counts are not newborn, but have lived for a while at the
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time of harvesting. It is possible to use stable population theory (Jagers and
Nerman, 1984) to establish that the age of a harvested cell has pdf given by

f(t) = ce−αt(1− F (t))

where F is the cdf of the cell cycle time and c is a normalizing constant.
However, such detailed modeling is not likely to yield much improvement
considering all the other sources of error and uncertainly in the data sets. It
is enough for our purposes to get a rough estimate of α, knowing that it is
likely to be a slight overestimate which also has bearing on the estimates of
a and b.

In the Bellman–Harris approximation we also get the explicit expression

β = 2
∫ ∞
0

te−αtf(t)dt =
2aba

(α + b)a+1

and equations (3.2) and (3.3) become

E[Zt] ∼ eαt 1

2αβ

Var[Zt] ∼ e2αt 2µ̂(2α)− 1

4α2β2(1− µ̂(2α))

for details see Haccou et al., 2005 or the classic Harris, 1963. We have thus
eliminated n0 and have been able to express α as a function of a and b, hence,
the equations E[Z22] = 2669 and Var[Z22] = 409300 can be solved to yield the
moment estimates a = 17 and b = 9, rounded to nearest integers. The mean
cell cycle time is estimated to a/b = 1.9 hours with an approximate 95%
confidence interval 1.9 ± 0.2 and the estimate of the Malthusian parameter
is α = 0.37.

As a side note, let us point out that the Bellman–Harris approximation is
bad for small values of n0. For example, if n0 = 2, properties of the regular
Fibonacci sequence shows that the distribution in Proposition 2.1 quickly
converges to the proportions (1, φ, 1) where φ ≈ 0.62 is the golden section.
Thus, in that case, as many as 38% of cells have reached the end of their
lifespan and are no longer able to produce daughter cells.

We are now ready to compare our model to data. For that purpose, we
use the data for the est2∆ EXO1 strain where estimated cell counts exist for
9 consecutive days (22-hour periods). The first such count is after 5 days
(see the description of the experiment above) so we have data for days 5 to
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Figure 1: Cell counts of 7 yeast cultures for 13 days (logarithmic scale).

13, and as each population starts from one single cell, we also have a data
point for day 0. Figure 1 displays the 7 data sets on a logarithmic scale. It
is noticeable how the growth is slower in the beginning. Between days 0 and
5 there have been about 30 population doublings (21/ log 2 ≈ 30), whereas it
only takes a little over 3 days for an additional 30 doublings. Possible reasons
for this phenomenon are a lag in the time from when a single cell is plated
onto rich media and resumes mitotic cell growth, and differences in growth
on solid (the first 4 days) as compared to liquid media (the subsequent days).
All of these factors are unknown so rather than trying to model the initial
5 days, we relabel day 5 as day 0 and rescale the data so that each data set
has one cell on day 0 (by simply dividing each data set by the cell count
on its day 0). These relabeled and rescaled data are displayed in Figure 2
together with the mean (solid line). Note that the line is the logarithm of
the average population counts which is why it is not “in the middle” of the
dots (the logarithm of the average is always greater than the average of the
logarithms, by Jensen’s inequality). Hence, we want our model to give a
result such that log E[Zt] resembles the solid line in Figure 2.

Other than the already estimated n0, a, and b, our model also contains the
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Figure 2: Data from Figure 1 rescaled, with mean.

parameters n and p. As for n, the initial telomere length at day 0, note that
the population by then has passed through about 30 population doublings
and 105 cells are harvested to start the population which means that rather
than one value of n, we have a distribution over many different values. There
is also random variation due to the fact that telomere loss might not be
constant, and due to the asynchronous cell division. Figure 2 indicates that
telomere shortening starts significantly influencing population growth around
days 3–4, when there has been about 30–35 population doublings so we let
the average number of telomere units on day 0 be in that range.

Another potential source of variation comes from the way in which cells
turn into survivors. It is currently unknown how survivorship is related to
telomere length, but it is certainly possible that a cell may achieve survivor
status not only when it is about to become senescent, but also while it still
proliferating. Thus, in our model we can let cells become survivors not only
when their type is 0, but also at type 1, 2, 3, etc. Rather than incorporating
this directly into the model, we can view a population where cells may become
survivors at type j as a population starting with type n− j, and average in
some suitable way over such populations. This is possible as long as we deal
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with the expected value E[Zt]; if we were also to compute the variance of Zt,
we lose linearity and with it, many of he suggested simplifications.

Thus, all of the sources of variation mentioned above can be incorporated
by letting n have a probability distribution over some suitable range of values
and compute the expected value E[Zt] when n is chosen accordingly. There
is much uncertainty and many unknown factors; we shall assume that n has
a probability distribution on some range of integers where the mean is in the
range 30− 35.

The final unknown parameter is p, the probability that a cell becomes a
survivor, for which we try different values to examine the fit to data. Figure
3 displays the 7 data sets (dots), the mean (dashed red line), and 3 lines
computed from our model where n has a uniform distribution with mean 35.
The solid line, which presents the best fit, has p = 2 · 10−5 whereas the 2
dashed lines have p = 10−3 (upper) and p = 2 · 10−6 (lower), respectively. In
Figure 4, n instead has a binomial distribution with mean 35.

Figure 3: Cell count data sets with mean (dashed red line) and model pre-
dictions for different values of p (blue lines) with uniform n.
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Figure 4: Data, mean, and model prediction with binomial n.

4 Discussion

We used a general branching process to model growth and telomere dynamics
in the yeast S. cerevisiae. The model accounts for random variability in cell
cycle times and shortening of telomeres by “telomere units” of 4 bp. Cells
also have the possibility to turn into survivors and we assumed that this
happens independently with probability p in cells that are approaching a
critical telomere length. The model also takes into account the known fact
that cells undergo a finite number of cell divisions even when telomerase is
expressed and telomere length is maintained. The general branching process
easily deals with this problem since it allows a mother cell to repeatedly give
birth to daughter cells until the maximum number is reached.

Cell cycle times were assumed to follow a gamma distribution whose pa-
rameters were estimated from data on telomerase-proficient yeast by applying
asymptotic branching process results. We then used these estimates together
with values of initial cell lifespan and telomere length, taken from the litera-
ture, to predict the development of mean population size over time. Different
values of the remaining parameter p were tried and the best fit to data oc-
curred for p on the order of 2 · 10−5. It should be emphasized that our goal
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was not to get as precise estimates as possible; rather, we aimed at building
a stochastic model that incorporates the necessary parameters to describe
cellular proliferation in response to telomere attrition and maintenance. Our
model agrees with data very well, both qualitatively and quantitatively, but
in order to perform a more sophisticated analysis, a new experimental design
needs to be implemented to eliminate some of the uncertainties present in
the current data.

We have made several simplifications in the model. Here, we considered
the average replicative life span of pre- and post-senescent survivors to be
equivalent, however, recent work on survivors indicates that this limit on
replicative life span is reduced in type II survivors (Chen et al., 2009). We
also disregarded the possibility that cell cycle times slow down progressively
during senescence progression or replicative aging (Sinclair et al., 1998). In
addition, we viewed population counts as actual counts rather than estimates
based on sequential sampling. A more thorough analysis could take into
account sampling errors when the 105 cells are harvested from much larger
populations to initiate another day of growth.

The approach taken here allows for future evaluation of the contribution
of specific factors on growth dynamics and survivor formation in response to
telomerase-deficiency. For example, the effects of an exo1∆ deletion, which
has been shown to slow senescence progression and favor the formation of
type I survivors (Bertuch and Lundblad, 2004; Maringele and Lydall, 2004)
or the effects of a rad50∆ mutation, which eliminates the formation of type
II survivors (Teng et al., 2000), can be mathematically modeled.
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