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Cofinal Types and Bounding Numbers: A
Literature Review

Spencer Chapman

Mathematics Honor’s Thesis, Trinity University 2024

1 Preface

This honor’s thesis will be divided into two parts. The introductory section
will be essentially a literature review surrounding the work on cofinal types
introduced by Tukey, with an emphasis on their behavior under additional set-
theoretic axioms as discussed heavily by Todorcevic. It will also include a sec-
tion on bounding numbers and their role in combinatorial set theory, directed
towards their applications to cofinal types. The second part of this thesis will
include an introduction to Cohen forcing, and will include some novel results on
the classification of cofinal types in generic models created from Cohen forcing.
The thesis will then conclude with some conjectures and ideas for future work.
The material presented in this introductory section is created following the
lecture notes and advice of Dr. Osvaldo Guzmán at the Centro de Ciencias
Matemáticas (CCM), UNAM Campus Morelia. We would like to thank Dr.
Guzmán for presenting this research idea to us, as well as his continued assis-
tance on the project. The introduction section of this thesis should be considered
as a translation and elaboration of his expository on the subject.

2 Introduction

Let X be a set and I ✓ P(X). We say I is an ideal if

1. ; 2 I,

2. If A 2 I and B ✓ A, then B 2 I,

3. If A,B 2 I, then A [B 2 I.

We will typically assert that X 62 I. In this case, I is known as a proper ideal.
Moreover, we observe that [X]<! ✓ I. We denote I† = {A ✓ X : A 62 I}.
Let X and Y be sets, with I an ideal in X and J an ideal in Y , and a map
f : X ! Y . We say that a map

f : (X, I) ! (Y,J )
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is Katetov if for all A 2 J , we have that f�1(A) 2 I.
We may then define the Katetov ordering of ideals, and say J K I if there
exists a map g : (X, I) ! (Y,J ) that is Katetov. We also say I and J are
Katetov equivalent (denoted I =K J ) if I K J and J K I.

Lemma 1. Let I be an ideal in X and J an ideal in Y , with a map f : X ! Y .

Then the following are equivalent:

1. f : (X, I) ! (Y,J ) is Katetov.

2. For all B ✓ X, if B 2 I†
then F [B] 2 J †

.

Proof. Suppose towards contrapositive, that there exists a B 2 I† such that
F [B] 2 J . Since B ✓ f�1(f [B]) 2 I†, we have that f is not Katetov. Con-
versely, if f is not Katetov, then there exists an A 2 J such that f�1(A) 2 I†.
Since f [f�1(A)] ✓ A and J is an ideal, f [f�1(A)] 2 J .

Let (D,) be a partially ordered set. We say that D is a directed set if for
all a, b 2 D, there exists a c 2 D such that a  c and b  c.
For a directed set, it will be useful to define the following sets:

1. bnd(D) = {B ✓ D : B is bounded}

2. ncf(D) = {B ✓ D : B is not cofinal}.

It is clear that bnd(D), ncf(D) ✓ P(D). The empty set is trivially bounded and
not cofinal. Moreover, the union of any two bounded/not-cofinal sets is itself
bounded/not-cofinal, as are their subsets.

Lemma 2. If D is a directed set, then bnd(D) and ncf(D) are ideals on D.

The following propositions will relate the Katetov ordering of ideals to the
Tukey ordering presented in [4].

Let D and E be directed sets. We denote the Tukey ordering on the class of
cofinal sets as T , defined by D T E if (D, ncf(D)) K (E, ncf(E)). We say
that D and E are Tukey equivalent (denoted D =T E) if D T E and E T D.

Proposition 3. Let D and E be directed sets. Then the following are equivalent:

1. D T E,

2. (D, ncf(D)) K (E, ncf(E)),

3. (E, bnd(E)) K (D, bnd(D)),

4. There exists maps f : E ! D and g : D ! E such that for all d 2 D and

e 2 E, if g(d)  e then d  f(e).

We see that (1 ) and (2 ) are equivalent by the above definition. Moreover,
(4 ) is the standard approach to Tukey ordering, presented as convergent maps
in [4].
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Proof. (2 =) 4 ): Let f : (E, ncf(E)) ! (D, ncf(D)) be Katetov. We then
define g : D ! E as follows: given p 2 D, let

Xd = {a 2 D : d 6 a}.

We see that Xp is not cofinal, hence f�1(Xp) is not cofinal. We then choose
g(d) such that for all e 2 f�1(Xd), g(d) 6 e. Equivalently, d 6 f(e) implies
that g(d) 6 e. Thus by contrapositive, g(d)  e implies that d  f(e).

(3 =) 4 ): Similarly, let g : (D, bnd(D)) ! (E, bnd(E)) be Katetov. We
define f : E ! D as follows: For e 2 E let

Ye = {a 2 E : a  e}.

Since Ye is bounded, g�1(Ye) is bounded. We then pick f(e) such that for any
d 2 g�1(Yq), d  f(e). Therefore, for all d 2 D and e 2 E, d 2 g�1(Ye) implies
that d  f(e), and thus g(d)  e implies that d  f(e).
(4 =) 2 and 3 ). Let f and g be maps as described. We will show that
f : (E, ncf(E)) ! (D, ncf(D)) are Katetov. Let C ✓ E be cofinal. Let d 2 D.
Then, g(d) 2 E. Since C is cofinal, there exists an e 2 C such that g(d)  e,
hence d  f(e), so f(C) is cofinal. Similarly, we show that g : (D, bnd(D)) !
(E, bnd(E)) is Katetov. Let A ✓ D be unbounded. Suppose there exists an
e 2 E such that if g(d)  e for all d 2 A, then d  f(e) for all d 2 A. However,
this implies that A is bounded, a contradiction.

Corollary 4. Let D and E be directed sets. Then the following are equivalent:

1. D T E

2. There exists a map f : E ! D that maps cofinal subsets to cofinal subsets.

3. There exists a map g : D ! E that maps unbounded subsets to unbounded

subsets. Such a map is called a Tukey map.

4. There exists maps f : E ! D and g : D ! E such that for all d 2 D and

e 2 E, if g(d)  e then d  f(e).

Lemma 5. Let D be a directed set. If A ✓ D is cofinal, then A =T D.

Proof. The inclusion map Id : A ! D is a cofinal map, and so A T D.
Moreover, Id is Tukey, so D  A.

Theorem 6 (Tukey). Let D and E be directed sets. Then D =T E if and only

if there exists a directed set D such that D and E are both isomorphic to cofinal

subsets of D.

Proof. We see that the converse follows from the above lemma. Suppose that
D =T E. Then there exists maps f : D ! E and g : E ! D such that if
d 2 D and e 2 E, �D g(e) implies that f(d) �E e and e �E f(d) implies that
g(e) �D d. Assuming that D and E are disjoint, let X = D[E. We then define
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X as follows: X restricted to D is D, and X restricted to E is E . For
d 2 D and e 2 E, we say e X d i↵ g(e0) D d for some e0 �E e and d X e
i↵ f(d0) E e for some d0 �D d. It may be shown that X is a quasi-ordering.
Then, taking the family of equivalence classes {[x] : x 2 X} with respect to the
equivalence relation X , and denote this set by X̄. We then have that E and D
are isomorphic to cofinal subsets of X̄ by sending [e] to e and [d] to d for each
e 2 E and d 2 D.

With the introduction of the Tukey ordering completed, we may look at how
various directed sets compare to eachother.

Proposition 7. Let D be a directed set. Let 1 represent the singleton directed

set with the trivial ordering. Then, 1 T D. Moreover, D =T 1 if and only if

D has a maximal element.

Proof. Observe that f : D ! 1 is a cofinal map. Moreover, if g : 1 ! D is a
cofinal map, then the only point in the image of g is the maximum of D.

The product of directed sets is itself directed with the obvious ordering. In
particular, the product of directed sets is not only higher in the Tukey ordering,
but it is the least upper bound of its products. This is proved in [4] for any
finite product, and we present the proof for the product of two directed sets for
the sake of completeness.

Proposition 8. Let D and E be directed sets. Then D,E T D⇥E. Moreover,

if X is directed and D,E T X, then D ⇥ E T X.

Proof. First, fix a e0 2 E. We define the map f : D ! D ⇥ E where f(d) =
(d, e0). As this is an unbounded map, D T D⇥E. The same may be shwon for
E. Moreover, let f : D ! X and g : E ! X be Tukey. We define h : D⇥E ! X
such that for every (d, e) 2 D⇥E, we have that f(d), g(e)  h(d, e). Thus, h is
Tukey.

The next section will discuss what the maximal directed set looks for like in
the family of directed sets of size at most some cardinal. Let  be a cardinal.
We denote []<! to be the set of finite subsets of . We note that []<! is a
directed set when ordered by inclusion.

Proposition 9. Let D be a directed set. If |D|  , then D T []<!
.

Proof. We will enumerate D, possibly with duplicates, by D = {d↵ : ↵ 2 }.
We define the map f : []<! ! D such that d↵1 , . . . , d↵n  f(S) where S =
{↵1, . . . ,↵n}. We see that f is a cofinal map. Indeed, let C ✓ []<! be cofinal
and d↵ 2 D. As C is cofinal, there exists an S 2 C such that {↵} ✓ S. It then
follows that d↵  f(S).

It has not been discussed yet, but it may be easily shown that =T is an
equivalence relation on the class of directed sets. We call the equivalence classes
under the relation =T the cofinal types, or the Tukey types. We have shown
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that []<! is the largest cofinal type on the class of directed sets of cardinality
at most . The rest of this section will be showcasing the work by Tukey and
Todorcevic on classifying the other cofinal types.

Proposition 10. Let D be a directed set. Then []<! T D if and only if

there exists a subset {d↵ : ↵ 2 } ✓ D such that for all S 2 []<!
, the set

{d↵ : ↵ 2 S} is unbounded in D.

Proof. For the forward direction, let f : []<! ! D be Tukey. We see that
ran(f) satisfies the above. Conversely, define f : []<! ! D such that for all
S 2 []<!,

d↵1 , . . . , d↵n  f(S),

where S = {↵1, . . . ,↵n}. Thus, f is Tukey.

Corollary 11. Let D be a directed set of size . Then D =T []<!
if and

only if there exists a set {d↵ : ↵ 2 } ✓ D such that for all S 2 []<!
, the set

{d↵ : ↵ 2 S} is unbounded.

Corollary 12. Let D be a directed set. Then the following are equivalent:

1. ! T D,

2. There exists W 2 [D]! such that every infinite subset of W is unbounded,

3. There exists W 2 [D]! that is unbounded.

Proof. We see that (1 ) is equivalent to (2 ) simply as a property of [!]<!. More-
over, (3 ) follows trivially from (2 ). Let W = {wn : n 2 !} ✓ D be unbounded.
Since D is directed, we may define recursively B = {bn : n 2 !} such that if
n < m then wn < bm.

So, we have shown that there are maximal and minimal directed sets in the
Tukey ordering. The rest of this section will discuss the work on classifying
directed sets of cardinality at most !1. Firstly, we observe that there are only
ever two countable cofinal types.

Proposition 13. Let D be a directed set of size !. Then the following are true:

1. D =T 1 or D =T !,

2. D =T 1 if and only if D has a maximal element,

3. D =T ! if and only if D has no maximal element.

Proof. IfD has no maximal element, we can find a cofinal subset ofD isomorphic
to !.

Our second observation is that there exists cofinal types that are not Tukey
comparable. Namely, ! and !1.

Proposition 14. Let D be a directed set. Then !1 T D if and only if there

exists an S 2 [D]!1 such that every uncountable subset of S is unbounded.
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Proposition 15. It is true that ! 6T !1 and that !1 T !.

Proof. Every countable subset of !1 is bounded. Moreover, ! has no uncount-
able subsets.

We will now discuss where ! ⇥ !1 sits in the Tukey ordering relative to the
other cofinal types thus far. Let D be a directed set and let B ✓ D.
We say that B is !-bounded if every countably infinite subset of B is bounded
in D.

0 1 2 3 4

!

!1

A

Figure 1: An !-bounded subset of ! ⇥ !1.

Note that every column is !-bounded. IfA intersects infinitely many columns,
then A is !-bounded in !⇥!1. The concept of !-boundedness allows us to talk
about ! ⇥ !1 in the Tukey ordering.

Proposition 16. It is true that ! ⇥ !1 <T [!1]<!
.

Proof. We have shown that ! ⇥ !1 T [!1]<!. However, since ! ⇥ !1 is !-
bounded, any uncountable subset contains a countable, bounded subset. Thus
the above inequality is strict.

Proposition 17. Let D be a directed set of size !1. Then D T ! ⇥ !1 if and

only if D is the countable union of !-bounded sets.

Proof. Let f : D ! ! ⇥ !1 be Tukey. We recall that in ! ⇥ !1, each column
{n} ⇥ !1 is !-bounded. So, let Bn = f�1({n} ⇥ !1), and so D =

S
n<! Bn.

Since f is Tukey, each Bn is also !-bounded. Conversely, let D =
S

n<! Bn,
where each Bn is !-bounded. For simplicty, we may assume that each Bn is
disjoint. Then, |Bn|  |D| = !1 for each n 2 !. That is, for each n there exists
a function fn : Bn ! !1 that is injective. We then define f : D ! ! ⇥ !1 such
that

f(d) = (n, fn(d))

6



where d 2 Bn. We see that f is Tukey. Indeed, let X ✓ D be unbounded. We
will show that f(X) is unbounded. We note that if X \ Bn 6= ;, for infinitely
many n, then we are done. Suppose that is not the case, then there exists
an n such that Y = X \ Bn is unbounded. As Bn is !-bounded, Y must be
uncountable, and therefore F (Y ) is unbounded.

Proposition 18. Let D be a directed set of size !1. Then D is Tukey compa-

rable to ! ⇥ !1. That is, ! ⇥ !1 T D and/or D T ! ⇥ !1.

Proof. If D is !-bounded, then D T ! ⇥ !1. Instead, suppose that D is not
!-bounded. Then we will show that ! ⇥ !1 T D. Indeed, it su�ces to show
that ! T D and !1 T D. Since D is not !-bounded, it must contain an
unbounded countable subset. So, !1 T D. Now, let f : D ! !1 be a bijection.
We see that f is a cofinal map. Indeed, it su�ces to show that D has no
countable cofinal subsets. This must be true, otherwise D =T ! <T ! ⇥ !1 by,
implying that D is !-bounded. Thus, D T !1 ⇥ !.

2.1 A Sixth Cofinal Type

The following proposition was presented by Todorcevic in [4] and follows from
our work above. We will state it here for the sake of completeness.

Proposition 19 (Todorcevic). Let D be a directed set of size at most !1. Then

either D =T 1, or D =T !, or D =T !1, or ! ⇥ !1 T D T [!1]<!
.

!

1 ! ⇥ !1 D [D]<!

!1

Figure 2: A diagram of the possible cofinal types of size at most !1.

The motivation for Todorcevic’s work, and for ours are inspired by the fol-
lowing questions:

1. Is it provable from some extension of ZFC that there are more than five
cofinal types of directed sets of size at most !1?

2. Under what assumptions can we have exclusively these five cofinal types?

3. How does the classification of cofinal types in a generic extension compare
to that in a ground model?

The first two questions were answered positively by Todorcevic in [5] and [4].
Namely, Martin’s Maximum implies that the above five cofinal types are the only
ones of size at most !1. However, Todorcevic also showed that there are many
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cofinal types of size continuum, and consequently many cofinal types of size !1

under the Continuum Hypothesis. This section will now cover Todorcevic’s work
on answering these first two questions. The following theorem of Todorcevic
shows answers the second question. The proof is beyond the scope of this
paper, and may be read in either [4] or [5].

Theorem 20 (Todorcevic). If mm > !1, then 1,!,!1,! ⇥ !1, and [!1]<!
are

the only cofinal types of directed sets of size at most @1.

This next theorem of Todorcevic was originally presented in [4], and the
proof was later simplified in [5]. Here we will take the latter approach, and
along the way expand on the argument presented.

Theorem 21 (Todorcevic). If CH holds, then there exists 2!1 many distinct

cofinal types of size !1.

Before proving this theorem, we will introduce some of the machinery that
Todorcevic presented in his book to simplify this proof.
Let X be a topological space. We will define the set

K(X) = {K ✓ X : K is compact}.

We order K(X) by inclusion, and we note that (K(X),✓) is a directed set.

Let us note that if X is a compact space, then clearly K(X) =T 1. We will
now study K(S) for S a subspace of !1, where !1 is a topological space with
its induced order topology. The practice of studying K(S) can be understood
as the set-theoretic practice of ”shooting a club through S”. We also note that
for S ⇢ !1, then

K(S) = {C 2 [S]! : C is closed}.

In particular, all previous cofinal types discussed thus far may be described as
the set of compact subsets of some subspace of !1. The following proposition
states them explicitly.

Proposition 22. Consider !1 a topological space under the order topology.

Then the following hold:

1. K(! + 1) =T 1,

2. K(!) =T !,

3. K(!1) =T !1,

4. K(!1 \ {!}) = ! ⇥ !1,

5. K({↵+ 1 : ↵ < !1}) = [!1]<!
.
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Proof. We see that !+1 is compact, so (1 ) holds. The set{n : n 2 !} is cofinal
in K(!) and {↵ + 1 : ↵ < !1} is cofinal in K(!1), so 2 ) and (3 ) hold. Now,
given n 2 ! and ↵ > !, we construct

Kn,↵ = {0, . . . , n} [ [! + 1,↵].

We see that {Kn,↵ : n 2 ! and ↵ > !}, is a cofinal subset of K(!1 \ {!})
isomorphic to ! ⇥ !1, so (4 ) holds. Lastly, the set {{↵ + 1} : ↵ < !1} has no
bounded countable subsets, so (5 ) holds.

Let NS be the ideal formed by non-stationary subsets of !1. We will write
X ✓NS Y to mean that X \ Y 2 NS.

The following proposition makes use of sequences of elementary submodels. We
will not elaborate on the study of the models here, and instead we direct the
reader to [2].

Proposition 23. Let X,Y ✓ !1 be bistationary. If X T Y, then Y ✓NS X.

Proof. Suppose that K(X) T K(Y ) and that Y 6✓NS X. That is, Y \ X is
nonstationary. Let f : K(X) ! K(Y ) be a Tukey map. Let M be a countable
elementary submodel ofH!2 such thatX,Y, f 2 M and that � = M\!1 2 Y \X.
Consider an enumeration � = {�n : n 2 !} \ {0} and let � 2 X with � > �.
We note that f({�}) 2 K(Y ). In particular, f({�}) is closed. Now, we will
construct recursively a sequence {↵n : n 2 !} ✓ M such that for ever n 2 !:

1. If n < m then ↵n < ↵m,

2. h↵mi ! �,

3. ↵n 2 Z,

4. If m < n, then either �m 2 f({↵n}) or max(f({↵n}) \ �m) = cm.

We will let ↵0 = min(Y \M). We will use the elementarity ofM to construct the
succesors ↵n+1 > ↵n satisfying the conditions above. We note that f({↵n}) 2
M for each n 2 !. Hence, f({↵n}) ✓ �. We may then define K = {�} [S

n2! f({↵n}). We claim that K 2 K(Y ). Indeed, it is clear that K ✓ Y . Let
� 62 K, and we will show that � is not an accumulation point of K. If it were,
then this could only hold if � < �, so there must exists some n 2 ! such that
� = �n. Therefore,

[
K \ � = max

(
cn,

 
[

i<n

f({↵i})
!

\ �

)
< �.

Since each f({↵i}) is compact, � cannot be an accumulation point of them.
Thus, {f({↵n}) : n 2 !} ✓ K(Y ) is bounded, so their preimages must also be
bounded in K(X). That is, there exists some D 2 K(X). such that {↵n : n 2
!} ✓ D. However, we then have that � =

S
n2! ↵n 2 D ✓ X, a contradiction.
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M

�
�

�n
cn

f({�})

Figure 3: Visualizing the construction in Theorem 21

Lemma 24. If S is stationary, then |K(S)| = c.

Theorem 25 (Ulam). There exists a disjoint family of sets {S↵ : ↵ < !1} ✓
NS†.

Corollary 26. There exists a family {Z↵ : ↵ 2 2!1 ✓ NS† such that if ↵ 6= �,
then Z↵ 6=NS Z�.

Corollary 27 (Todorcevic). There exists at least 2!1 many cofinal types of size

c.

Theorem 28 (Todorcevic). If CH holds, then there exists 2!1 many cofinal

types of size !1.

3 Bounding and Dominating Numbers

The study of the bounding and dominating numbers are closely related to the
existence of cofinal types. Loosely speaking, results in combinatorial set theory
surrounding the bounding and dominating numbers can tell us how many cofi-
nal types may exist in certain models of set theory. This section will now build
up the theory of bounding and dominating numbers.

Let f, g 2 !!, and let m 2 !. We define the following relations on and no-
tations for !!:

1. f  g if for all n 2 !, f(n)  g(n).

2. f ⇤ g if for all but finitely many n 2 !, f(n)  g(n).

3. f m g if for all n � m, f(n)  g(n).

4. f =⇤ g if for all but finitely many n 2 !, f(n) = g(n).

5. We denote a finite set of increasing functions on !! as !<!%
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Let (P,) be a partially ordered set. We recall that a set B ✓ P is unbounded
if there does not exist a p 2 P such that q  p for all q 2 B. We say that a
subset D ✓ P is dominant if for all p 2 P , there exists a q 2 D such that p  q.
Now, let P be a partially ordered set without a maximal element. We define
the bounding number of P as

b(P ) = min{card(B) : B ✓ P is unbounded}.

Similarly, we define the dominating number of P as

d(P ) = min{card(D) : D ✓ P is dominant}.

One may immediately note that b(P )  d(P )  |P |.

We now present some results regarding the bounding and dominating numbers,
for !!.

Lemma 29. b(!!,) = !.

Proof. Let B = {fn : n 2 !} where each fn is the constant function at n.

This shows us that the bounding number is rather trivial with the  order-
ing over !!. The situation becomes rather complicated when we consider the
ordering ⇤. We now define the bounding number as

b = b(!!,⇤),

as well as the dominating number

d = d(!!,⇤).

The properties of both the bounding and dominating number are rather myste-
rious.

Proposition 30. !1  b  d  c.

Proof. It is clear that b  d  c. It is enough to see that if B ✓ !! with
|B| = !, then B is bounded. Indeed, let B = {fn : n 2 !}, we define g 2 !! by
g(n) = f0(n) + . . .+ fn(n).

Proposition 31. d = d(!!,).

Proof. It is clear that d  d(!!,). Let D ✓ !!. If D is ⇤-dominant, then
we define

D̄ = {f 2 !! : 9g 2 D(f =⇤ g)}.

We see that D̄ is -dominant, and that |D| = |D̄|.

Proposition 32. b is a regular cardinal.
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Proof. Suppose that  = cf(b) < b. Let B ✓ !! be unbounded with size b.
For all ↵ 2 , we may find B↵ such that |B↵| < b and B =

S
↵< B↵. Since

|B↵| < b, there exists an f↵ that dominates B↵. In particular, for all g 2 B↵,
g  f↵. As  < b, there exists an h 2 !! such that f↵ ⇤ h for each ↵ < . It
follows that h dominates B, which is a contradiction.

Proposition 33. b  cf(d).

Proof. The proof proceeds like the one above.

Statements about the arithmetic of bounding and dominating numbers are
often independent of ZFC. We will now present some results surrounding this.

Let  be a cardinal and Let D = {f↵ : ↵ < } ✓ !!. We say that b is a
scale if

1. Every f↵ is an increasing function,

2. If ↵ < �, then f↵ ⇤ f� ,

3. D is dominant.

Proposition 34. b = d if and only if there exists a scale.

Proof. Let D = {d↵ : ↵ 2 d} be a family of dominant sets. We will recursively
construct the set B = {f↵ : ↵ 2 d} such that

1. f↵ is increasing,

2. If ↵ < � then f↵ ⇤ f� ,

3. d↵ ⇤ f↵.

Let ↵ < d = b. Then {f⇠ : ⇠ < ↵}[{d↵} es bounded. We see that f↵ dominates
this family. Thus, B is a scale.
Conversely, let D be a scale of size . Let B ✓ !! be an unbounded set of size
b. Then, we may find D0 ✓ D such that

1. |D0| = b,

2. For every f 2 B there exists a g 2 D0 such that f ⇤ g.

Such a D0 exists since D is dominant. Moreover, we claim that D0 is cofinal in
D. Indeed, suppose it is not. Then there exists a g 2 D that is not dominated by
any function in D0. However, as D is well-ordered, g must dominate D. Then,
g dominates B, a contradiction. Since D0 is cofinal, it is dominant. Therefore,
d  |D0| = b.

Proposition 35. Let  be a regular cardinal. If D = {f↵ : ↵ < } is a scale,

then b = d = .

12



Proof. Let  be a regular cardinal and D a scale with |D| = . Let D0 be
as constructed in the previous proposition. Since  is regular, we have that
 = |D| = |D0| = b = d.

The following result of Todorcevic in [3] shows that the bounding number is
directly related to adding a new cofinal type.

Theorem 36 (Todorcevic). If b = !1, there is a sublattice Db of !!
such that

! ⇥ !1 <T Db <T [!1]
<!

In particular, let Db be the sublattice of !!
generated by an <⇤

-increasing <⇤
-

unbounded sequence {f⇠ : ⇠ < b} ✓ !"!

4 Classifying Cofinal Types in Models of ZFC

4.1 Introduction to Cohen Forcing

We will now discuss the Cohen forcing notion, described with a treatment á
la Jech in [1]. This section will simply build up the theory of cohen forcing,
following the development of the topic in [1]. This forcing notion was used to
adjoin !2 many real numbers to a ground model. In general, Cohen forcing will
give us the procedure to adjoin  many real numbers, known as Cohen reals, to
a ground model.

let M be a countable transitive model, and let  be an infinite cardinal in
M . Let P be the set of functions such that

1. dom(p) is a finite subset of ⇥ !,

2. ran(p) ⇢ {0, 1},

and let p be stronger than q if and only if q ⇢ p. Now, let G be a generic
set of conditions on P, and let f =

S
G. Since G is a filter, it follows that f

is a function. It may be shown by a genericity argument that f is a function
from ⇥ ! into {0, 1}. For each ↵ < , let f↵ be the function on ! defined by
f↵(n) = f(↵, n), and let a↵ = {n 2 ! : f↵(n) = 1}. Each a↵ is a subset of !,
hence some characterization of a real number.

Proposition 37. For all ↵ < , f↵ 62 M .

Proof. Suppose that ↵ <  and that f↵ 2 M . Let D = {p 2 P : 9n 2 ![(↵, n) 2
dom(p)^p(↵, n) 6= f↵(n)]}. We see that D is dense in P, hence f(↵, n) 6= f↵(n),
a contradiction.

Proposition 38.
�
2@0
�M [G] �

�
@0
�M

.

Proof. �
2@0
�M [G]

=
��
2@0
��M [G] �

�
@0
�M [G] �

�
@0
�M

.
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The Cohen forcing notion actually forces the continuum to be exactly @0 .

Lemma 39. Let � be a cardinal in M and G a generic ultrafilter on a complete

Boolean algebra B. Then
�
2�
�M [G] 

�
|B|�

�M
.

Proof. Working in M , let X be the set of functions f : � ! B such that there
exists Ȧ 2 MB such for f(↵) = k↵̌ 2 Ȧk for all ↵ < �. In M [G], for each
f 2 X we choose an Ȧ satisfying this, and define g(f) = ȦG. In M [G], we
have that P(�) ✓ ran(g). If A ✓ �, we choose Ȧ such that ȦG = A. We
then define f(↵) = k↵̌ 2 Ȧk for all ↵ < �. Therefore, g(f) = A and thus�
2�
�M [G]  |X|M 

�
|B|�

�M
.

Theorem 40. Let  be an infinite cardinal, and let P be the forcing notion

above. Let G be P-generic over M . Then,
�
2@0
�M [G]

=
�
@0
�M

.

Proof. Let B be the complete Boolean algebra of regular open subsets of P with
respect to the order topology. Since P satisfies the countable chain condition,

|B| = @0 . Therefore,
�
2@0
�M [G] �

�
@0
�M

. The other direction follows from
above.

It remains to show that P as a forcing notion preserves cardinals. In particu-
lar, P satisfies the countable-chain condition, and so P preserves both cardinals
and cofinalities. The following result tell us when cardinals are preserved in
generic extensions.

Lemma 41. Suppose that ↵ is a limit ordinal, and and � are regular cardinals.

Let f :  ! ↵ be a strictly increasing function with ran(f) cofinal in ↵, and

g : � ! ↵ strictly increasing with ran(g) cofinal in ↵. Then  = �.

Proof. Suppose not. Without loss of generality, suppose that  < �. For each
⇠ < , let ⌘⇠ < � such that f(⇠) < g(⌘⇠). We define ⇢ = sup⇠< ⌘⇠. Then ⇢ < �
since � is regular. However, f(⇠) < g(⇢) < ↵ for all ⇠ < , a contradiction.

Theorem 42. Let M be a countable transitive model of ZFC. Let P be a notion

of forcing in M , and let  be a cardinal in M .

1. If P preserves regular cardinals � , then it preserves cofinalities � .

2. If P preserves cofinalities �  and  is regular, then P preserves cardinals

� .

3. If P preserves cofinalities, then P preserves cardinals.

Proof. Firstly, suppose that P preserves regular cardinals � . Let ↵ 2 M be
a limit ordinal with (cf(↵))M � . Then (cf(↵))M is a regular in M which
is �  and hence also regular in M [G]. By the lemma above, we have that
(cf(↵))M = (cf(↵))M [G].
Secondly, suppose that P preserves cofinalities �  and that  is regular, but
suppose that cardinals �  are not preserved. Then, let � be the least cardinal
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�  in M that is not a cardinal in M [G]. If � is regular in M , then � =
(cf(�))M = (cf(�))M [G], implying that � is regular in M [G], a contradiction.
Instead if � is singular in M , then � >  as  is regular and � � . That
is, � is the union of some set X of cardinals of M which are regular � , so
the elements of X are cardinals in M [G]. However, � is chosen to be minimal,
implying that � is a cardinal in M [G], a contradiction. Lastly, suppose that P
preserves cofinalities, then the above argument su�ces when  = !.

4.2 Forcing a Directed Set on !1

The notion of Cohen forcing may be used to create a generic extension with a
new directed partial order on !1. We describe the forcing notion here.

Let P be the set of ordered pairs p = (P,p) such that

1. P is a finite subset of !1.

2. p is a partial order on P . In particular, if a, b 2 P with a p b, then
a < b as ordinals.

We partially order P with <, where (P,p) < (Q,q) if and only if Q ⇢ P and
p restricted to Q is q.

Theorem 43. Let M be a ground model of ZFC, and G a P-generic filter in M
with respect to the forcing notion above. Then there exists a partial order D

on !1 in M [G] with D 62 M .

Proof. Let G be the generic filter in question. Then
S
G = D⇥ D, where

D ✓ !1 and D✓ !1 ⇥ !1. We see that D = !. Indeed, let ↵ < !, and let
E = {p 2 P : p 2 dom(p)}. Since E is dense and therefore meets G, we have
that ↵ 2 D. We also see that D is a partial order on !1. Indeed, D is
reflexive by the same density argument. Let a, b 2 !1 such that a D b and
b D a. Then there exists conditions p, q 2 G such that a, b 2 dom(p) and
a, b 2 dom(q) such that a p b and b p a. Since G is a filter, there exists a
condition r 2 G such that r  p and r  q. That is a, b 2 dom(r) and a r b
and b r a. However, r is a partial order by definition, so we have that a = b.
Since r 2 G, we have that D is antisymmetric. Lastly, let a D b D c where
a, b, c 2 !1. Then there exists condition p, q 2 P such that a, b 2 dom(p) with
a p b and b, c 2 dom(q) with b p c. Since G is a filter, there exists an r 2 G
extending p and q. That is, a, b, c 2 dom(r) and (a, b), (b, c) 2r. However, r

is a partial order on dom(p), so (a, c) 2r. Since r 2 G, we have that D is
transitive. Thus, (!1,D) is a directed set.

Let M be a ground model of ZFC + (G)CH. Let P be the forcing notion
adjoining @2 many Cohen reals to M . Let G be a P-generic filter on M . We call
M [G] the Cohen model. It is currently unknown as to how many cofinal types
exist in the Cohen model. The follows result of Todorcevic in [3] tells us that
there are at least six distinct types of size at most !1.
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Theorem 44. Let M [G] be the Cohen model built on some ground model of

ZFC + (G)CH. Then bM [G] = !1.

Corollary 45. There are at least six distinct cofinal types of size at most !1 in

the Cohen model.

4.3 Future Work

There are still several remaining questions regarding this new directed set and
the Cohen model. In particular, it is entirely possible that the forcing that
adjoins a directed partial order on !1 is not cofinally equivalent to any cofinal
type in the ground model. Moreover, in the Cohen model, it is not known how
the directed sets K(X) introduced by Todorcevic behave cofinally with respect
to Cohen forcing. We will end this paper with the following conjectures.

Conjecture 46. Let M be a ground model of ZFC + CH. Let P be the forcing

notion that adjoins a directed partial order G on !1. Let D be a directed set

of size at most !1 in M . Then D 6=T (!1,G).
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