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Abstract

Julio Roberto Hasfura-Buenaga, PhD

Trinity University

Bachelor of Arts

by Hugo Sanchez

Our investigation is two-fold. On one hand, we aim for a self-contained introduction to the theory

necessary in understanding general measure spaces, Banach and Hilbert spaces, and C⇤-algebras.

On the other hand, inspired by the study of a topological space of composition operators on a

weighted Banach algebra of bounded functions on an unbounded, locally finite metric space, we

construct a separable Hilbert subspace of this algebra and consider composition operators on

this space. Firstly, establish conditions for such operators to be elements of the C⇤-algebra of

bounded, linear operators on this Hilbert space. Secondly, we take the weight to be the counting

measure and identify our underlying metric space with N and establish results concerning the

adjoint, invertibility, and the unitary composition operators. Finally, we analyze the spectrum of

these operators. We establish two results that provide an avenue of investigation for the spectral

structure of this class of operators that will hopefully be fruitful in further work.
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Chapter 1

Measure Spaces

We begin by abstracting the most fundamental properties of Lebesgue measure on R in the

absence of any imposition of a topology. Consequentially, the theory highlighted in this chapter

will remain true in every system where the given axioms are satisfied. Recall that to establish

countable additivity on R of the Lebesgue measure defined on a �-algebra, you begin with

fundamental concepts from set-theory. Defining a set function assigning length to every bounded

interval in R, then extending to the outer measure defined on the Borel algebra, and then

restricted this outer measure to the �-algebra of measurable sets to obtain a new measure. This

is based on the Carathéodory construction of Lebesgue measure. Inspired by this, we highlight

this construction for a general abstract set X and elucidate the most important properties

pertaining to our investigation.

1.1 Measures

Definition 1.1. A measurable space is a couple (X,M) consisting of a set X and a �-algebra

M of subsets of X. A subset E ✓ X is measurable if E 2 M.

Definition 1.2. A measure µ : M ! [0,1] on a measure space (X,M) is a set function for

which µ(;) = 0 and that is countably additive in the sense that for any countable collection

{E�}�2⇤ of disjoint, measurable sets,

µ

 
[

�2⇤

E�

!
=
X

�2⇤

µ(E�).

A measurable space (X,M) together with a measure µ is a measure space, (X,M, µ).

Example 1.1. Recall that a subset E ✓ Rn is Lebesgue measurable if

µ⇤(A) = µ⇤(A \ E) + µ⇤(A \ Ec),

1
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for all A ✓ Rn, where µ⇤ is the outer measure. Denote this collection by L(Rn). This set is a �-

algebra, and if we define µ := µ⇤
|L(Rn), then µ is the Lebesgue measure. The triple (Rn,L(Rn), µ)

is then a measure space.

Example 1.2. LetX be any non-empty set and consider P(X), its power set. Then, (X,P(X))

is a measurable space. Let x 2 X. Then, the Dirac measure concentrated at x, �x, defines the

Dirac measure space (X,P(X), �x). Specifically, this is a probability space.

Proposition 1.3. Let (X,M, µ) be any measure space.

(Finite Additivity) For any finite, disjoint collection {Ek}
n
k=1 of measurable sets,

µ

 
n[

k=1

Ek

!
=

nX

k=1

µ(Ek).

(Monotonicity) IF A,B 2 M, and A ✓ B, then

µ(A)  µ(B).

(Excision) If, moreover, A ✓ B and A is of finite measure, then

µ(B \A) = µ(B)� µ(A).

If A is of measure zero, then µ(B \A) = µ(B).

(Countable Monotonicity) For any countable collection {E�}�2⇤ such that

E ✓

[

�2⇤

E�,

where E is measurable, then

µ(E) 
X

�2⇤

µ(E�).

Observe that the countable monotonicity is an amalgamation of the properties of countable

additivity and monotonicity. Moreover, given a measure space (X,M, µ), the measure µ is

continuous in the sense that if {Ak} is an ascending sequence of measurable sets, then

µ

 
1[

k=1

Ak

!
= lim

k!1

µ(Ak).

If {Bk} is a descending sequence of measurable sets for which B1 is of finite measure, then

µ

 
1\

k=1

Bk

!
= lim

k!1

µ(Bk).

Definition 1.4. For a measure space (X,M, µ) and E 2 M, we say that a property holds

almost everywhere on E provided it holds on E \ E0, where E0 2 M is of measure zero.
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Definition 1.5. Let (X,M, µ) be a measure space. The measure µ is called finite provided that

µ(X) < 1. It is called �-finite provided

X =
[

!2⌦

E!,

where {E!}!2⌦ is a countable collection of measurable sets, with µ(E!) < 1 for all ! 2 ⌦.

1.1.1 Outer Measures and Carathéodory Extension

Recall that in the construction of Lebesgue outer measure on subsets of R, you firstly define

a primitive set function assigning length to every bounded interval. Subsequently, you define

the outer measure of a set taking the infimum of all sums of lengths of countable collections of

bounded intervals that cover the set.

Theorem 1.6. Let S be a collection of subsets of a non-empty set X and define µ : S ! [0,1].

Moreover, define µ⇤(;) = 0 and for all non-empty E ✓ X, set

µ⇤(E) := inf
1X

k=1

µ(Ek),

where the infimum is taken over all countable collections of sets in S covering E. Then, the set

function µ⇤ : SX
! [0,1] is an outer measure called the outer measure induced by µ.

Definition 1.7. Let S be a collection of subsets of X, µ a non-negative, extended real-valued

set function defined on S, and µ⇤ the outer measure induced by µ. The measure � = µ⇤
|M,

where M is the �-algebra of µ⇤ measurable sets, is the Carathéodory measure induced by µ.

Now, if we take a non-empty collection S of subsets of a set X and consider a set function

µ : S ! [0,1], it is natural to ask what properties must the aforementioned collection and the

function have in order that the Carathéodory measure induced by µ be an extension of µ. Recall

that a set function µ : S ! [0,1] is said to be finitely additive if whenever {Ek}
n
k=1 is a finite,

disjoint collection of sets in S whose union is also in S, then

µ

 
n[

k=1

Ek

!
=

nX

k=1

µ(Ek).

Definition 1.8. Let S be a collection of subsets of X and µ a set function. Then, µ is called a

premeasure provided that it both finitely additive and countably monotone, and if ; 2 S, then

µ(;) = 0.

Theorem 1.9. Let S be a non-empty collection of subsets of a set X that is closed with respect

to the formation of relative complements and let µ : S ! [0,1] be a premeasure. Then, the

Carathéodory measure � : M ! [0,1] induced by µ is an extension of µ.

It turns out that a number of premeasures are defined on collections of sets that are not closed

under formation of relative complements. Consider the premeasure length defined on the collec-

tion of all bounded intervals in R. Because of this, the notion of a semiring becomes fruitful as it
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provides the property that every premeasure defined on it has a unique extension to a premea-

sure on a collection of sets which is closed with respect to the formation of relative complements.

This will pave the way for an introduction to algebras to be had later, which will be of chief

interest in the latter portion of our two-fold investigation.

Definition 1.10. A non-empty collection S of subsets of a set X is called a semiring if whenever

A,B 2 S, then A \B 2 S and there exists a finite, disjoint collection {Ck}
n
k=1 ✓ S such that

A \B =
n[

k=1

Ck.

Theorem 1.11. (The Carathéodory-Hahn Theorem). Let S be a semiring of subsets of

X and define a premeasure µ : S ! [0,1]. Then, the Carathéodory measure � induced by µ is

an extension of µ. Moreover, if µ is �-finite, then so is �, and � is the unique measure on the

�-algebra of µ⇤-measurable sets extending µ.

1.2 Integration

Now that we have established the above results regarding measures and their extensions, we can

begin in understanding the action of integrating over a general measure space. In considering

measurable functions, the investigation of integration is similar to the development considered

in the study of Lebesgue measurable functions of a single, real variable. Recall that if given a

measurable space (X,M), and a real-valued function f on X, then f is said to be measurable

if, and only if, the preimage of every open set is measurable. Here, we will begin with the

investigation of measurable functions to motivate the general theory of integration on abstract

measure spaces. Firstly, consider an elucidating example about measurable functions.

Example 1.3. Let X be a set and take for a �-algebra M = 2X— the set of all subsets of X.

Then, every extended real-valued function on X is measurable with respect to M. If, instead,

we consider the smallest �-algebra M = {X, ;}, then the only measurable functions are the

constant maps. Considering (X, ⌧) as a topogical space, and if M is the �-algebra of subsets of

X such that ⌧ ✓ M, then every continuous real-valued function on X is measurable with respect

to M.

Definition 1.12. Let (X,M) be a measurable space. A function  : X ! R is simple if there

exsits a finite collection {Ek} ✓ M of measurable sets and a corresponding set {ak} ✓ R for

which

 =
nX

k=1

ak�Ek .

Notice that a simple function is measurable and takes a finite number of values.

Lemma 1.13. Let (X,M) be a measurable space and f a measurable, bounded function on X.

Then, for every ✏ > 0, there exists simple functions  ✏ and '✏ defined on X for which

'✏  f   ✏ and 0   ✏ � '✏ < ✏,
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on X.

Theorem 1.14. Let (X,M, µ) be a measure space and f a measurable function on X. Then,

there exists a sequence { n} of simple function on X converging pointwise on X to f and is such

that | n|  |f | on X for all n.

In the theorem above, if X is �-finite, we may select the sequence { n} so that every  n vanishes

outside a set of finite measure. Moreover, if f is non-negative on X, we may select the sequence

{ n} to be increasing and every  n � 0 on X.

Theorem 1.15. (Egoro↵). Let (X,M, µ) be a finite measure space and {fn} a sequence of

measurable functions defined on X converging pointwise almost everywhere on X to a function

f that is finite almost everywhere. Then, for every ✏ > 0, there exists a measurable X✏ ✓ X

such that fn ! f uniformly on X✏ and µ(X \X✏) < ✏.

In the development of integration of a Lebesgue measurable function of a real variable with

respect to Lebesgue measure, you firstly define the integral of a simple function over a set of

finite Lebesgue measure. Secondly, you construct integrability of a bounded function on a set of

finite measure and use an approximation lemma to show that a bounded, measurable function

that vanishes outside a set of finite Lebesgue measure is integrable. Thirdly, you define the

Lebesgue integral of a non-negative Lebesgue measurable function over an arbitrary Lebesgue

measurable set to be the supremum of the integral of a dominated function over the set which

vanished outside a set of finite Lebesgue measure. This construction is quite clear, and it would

seem natural to try to extend to our case. However, this approach will not be fruitful for us.

The reason?

Consider a measure space (X,M, µ). If µ(X) = 1, we certainly want the integral of the constant

one function over X to be infinite. However, if X is non-empty, and if we take the trivial �-

algebra M = {X, ;}, and we define µ(;) = 0 and µ(X) = 1, then the only measurable function

g vanishing outside a set of finite measure is g ⌘ 0. Hence, the supremum of
R
X g dµ ranging over

all such functions is zero. Something else is needed in our consideration. To circumvent this, for

our purposes, we will define the integral of non-negative simple functions and subsequently pivot

to defining the integral of non-negative measurable functions in terms of integrals of non-negative

simple functions.

Definition 1.16. Let (X,M, µ) be a measure space and  a non-negative simple function on

X. Define the integral of  over X as follows: if  ⌘ 0 on X, define

Z

X
 dµ = 0.

Otherwise, let {a1, a2, . . . , an} be positive values taken by  on X and, for every 1  k  n, let

Ek = {x 2 X| (x) = ak}.

Define

Z

X
 dµ =

nX

k=1

akµ(Ek).
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For E ✓ X measurable, the integral of  over E with respect to µ is

Z

E
 dµ =

Z

X
 · �E dµ.

Definition 1.17. Let (X,M, µ) be a measure space and f : X ! [0,1] measurable. The

integral of f over X with respect to µ is defined as

Z

X
f dµ = sup

⇢Z

X
' dµ

��� ' simple and 0  '  f on X

�

Definition 1.18. Let (X,M, µ) be a measure space and f a non-negative, measurable function

on X. Then, f is integrable over X with respect to µ provided that

Z

X
f dµ < 1.

Now, we can turn to integration of any measurable function. Let (X,M) be a measurable space

and f a measurable function on X. Define the positive and negative part of f by f+ and f�,

respectively, where

f+ := max{f, 0} and f� := max{�f, 0}

on X. Then, given a measure space (X,M, µ), a measurable function f on X is integrable over

X with respect to µ provided |f | = f+ + f� is integrable over X with respect to µ. For such

a function, by linearity, we define its integral as a di↵erence of the integrals of its positive and

negative parts, respectively.

Theorem 1.19. Let (X,M, µ) be a measure space, f integrable over X, and {Xn} a disjoint,

countable collection of measurable sets for which

X =
1[

n=1

Xn.

Then,

Z

X
f dµ =

1X

n=1

Z

Xn

f dµ.

Notice that we have only considered a class of integrable, simple functions vanishing outside a

set of finite measure. Therefore, we give the following theorem.

Theorem 1.20. Let (X,M, µ) be a measure space and f a measurable function on X. If f is

bounded on X and vanishes outside a set of finite measure, then f is integrable over X.

Theorem 1.21. (Lebesgue Dominated Convergence Theorem). Let (X,M, µ) be a

measure space and {fn} a sequence of measurable functions on X for which fn ! f pointwise

almost everywhere on X, and f is measurable. Assume there exists a non-negative function g,
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integrable over X, and dominating {fn} on X. Then, f is integrable over X and

lim
n!1

Z

X
fn dµ =

Z

X
f dµ.

Corollary 1.22. Let X be a compact topological space and M a �-algebra of subsets of X

containing the topology endowed on X. If f : X ! R is continuous, and (X,M, µ) is a finite

measure space, then f is integrable over X with respect to µ.

1.3 Radon-Nikodym

Having established a sense for integration over general measure spaces, and the robustness of

the Lebesgue integral, we give insight into the Radon-Nikodym theorem and its details that will

be useful in the latter sections of this manuscript. To that e↵ect, let (X,M) be a measurable

space. Given a measure µ on (X,M) and a function f : X ! [0,1], measurable with respect

to M, define the set function ⌫ on M by

⌫(E) =

Z

E
f dµ,

for all measurable sets E 2 M. The fact that ⌫ is a measure on (X,M) follows from linearity of

integration and an application of the Monotone Convergence Theorem.

Definition 1.23. Let µ and ⌫ be two measures defined on the same measurable space (X,M).

Then, ⌫ is said to be absolutely continuous with respect to µ provided that for all E 2 M, if

µ(E) = 0, then ⌫(E) = 0. We denote this by ⌫ ⌧ µ.

Proposition 1.24. Let (X,M, µ) be a measure space and ⌫ a finite measure on the measurable

space (X,M). Then, ⌫ is absolutely continuous with respect to µ if, and only if, for every ✏ > 0,

there is a corresponding � > 0 such that for any measurable E 2 M, if µ(E) < �, then ⌫(E) < ✏.

Theorem 1.25. (The Radon-Nikodym Theorem.) Let (X,M, µ) be a �-finite measure

space and ⌫ ⌧ µ a �-finite measure defined on the measurable space (X,M). Then, there exists

a non-negative function f on X which is measurable with respect to M and for which

⌫(E) =

Z

E
f dµ,

for all E 2 M.

Before moving on, we will mention the relationship between absolutel continuity of one measure

with respect to another and their integral representations and the indefinite integral representa-

tion of an absolutely continuous function in terms of its derivative. We will shine light on the

Radon-Nikodym derivative through an example that is central to Probability theory.

Example 1.4. Recall that a function F is an indefinite integral if, and only if, it is absolutely

continuous. Its representation is then

F (x) =

Z x

a
F 0(t) dt+ F (a).
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Let A = [a, b] be a closed, bounded interval and consider  : A ! R to be absolutely continuous.

Then,

 (d)�  (c) =

Z d

c
 0 dµ,

for all [c, d] ✓ A. Observe that this is su�cient to establish the Raodn-Nikodym Theorem if we

consider M as the �-algebra of Borel subsets of A and take µ as the Lebesgue measure on M.

Notice that if we take a finite measure ⌫ on the measurable space (A,M) which is absolutely

continuous with respect to µ, and define a function � on A by

�(x) = ⌫([a, x]),

for all x 2 A, then � inherits absolute continuity from ⌫. We call � the cummulative distribution

function associated to ⌫. Hence, for all E = [c, d] ✓ A, we have that

⌫(E) =

Z

E
�0 dµ.

Because two �-finite measures agreeing on compact subintervals of A agree on the smallest �-

algebra containing such intervals, then the above representation is true for all measurable sets

E. Thus, the probability density function of a random variable is simply the Radon-Nikodym

derivative of the induced measure with respect to a base measure—typically, Lebesgue measure.



Chapter 2

Banach Spaces

Let us detail some history. Banach spaces, introduced and investigated by Polish mathematician

Stefan Banach, play a central role in functional analysis. These spaces arose from the study of

function spaces by German mathematician David Hilbert, French mathematician Maurice René

Fréchet, and the influential Hungarian mathematician Frigyes Riesz. These spaces are very rich,

and a notable example to keep in mind is that of Rn with the usual Euclidean topology. Here,

we will define what a Banach space is, consider some examples, state notable results, and then

define the Lp spaces and their theory to illuminate their necessity in our analysis to come.

Definition 2.1. A linear space X over a field K is one which (X,+) forms an Abelian group,

has a multiplicative identity, vector multiplication is distributive over scalar addition, scalar

multiplication is distributive over vector addition, and scalar multiplication is associative with

respect to scalar multiples of vectors.

Definition 2.2. A norm on a linear space X over a field K is a function || · || : X ! R satisfying:

1. ||x|| � 0 for all x 2 X, and ||x|| = 0 () x = 0.

2. ||�x|| = |�| · ||x||, for all � 2 K and all x 2 X.

3. ||x+ y||  ||x||+ ||y||, for all x, y 2 X.

We call the tuple (X, || · ||) a normed linear space.

Given any normed linear space, a convenient metric is always available. For any two vectors x

and y in the space, one can take as the distance between them

d(x, y) = ||x� y||.

Recall that if in a metric space (X, d), the sequence {xn} has the property that, for any ✏ > 0,

there exists N 2 N such that for all m,n � N 2 N, then d(xn, xm) < ✏, the sequence is said to

be a Cauchy sequence. In the case of R, every Cauchy sequence converges. If a metric space

9
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(X, d) does have the property that every Cauchy sequence in X converges in X, then the space

is called a Complete metric space.

Moreover, with the above metric in mind, we can speak of normed linear spaces as metric spaces.

The illustrated metric has the properties of translation invariance and homogeneity.

Definition 2.3. Let (X, || · ||) be a normed linear space. If (X, d) is complete under the norm-

induced metric, then X is said to be a Banach Space.

Example 2.1. The space C(X) of all continuous, real-valued (or complex-valued) functions

defined on a compact metric space X under the sup-norm is a Banach Space.

Example 2.2. For 1  p < 1, the sequence space `p(N) is the collection of all sequences x that

are absolutely p-summable. That is, sequences for which

1X

i=1

|xi|
p < 1.

When endowed with the norm

||x||p =

 
1X

i=1

|xi|
p

!1/p

,

then `p(N) becomes a Banach space.

The above example will be the basis of our analysis in chapter 5, so the reader is advised to keep

this example in their back pocket for the remainder of the manuscript. Let us now turn to Lp

spaces.

2.1 Lp Spaces

Function spaces are central in many questions in analysis. Of these, Lp spaces are of special

importance to us, and especially when p = 2. Here, we will provide some of the fundamental

background necessary for the material to come later.

To that e↵ect, let (X,M, µ) be a �-finite measure space. If 1  p  1, define Lp(X,M, µ) as

the space of all complex-valued, measurable functions on X such that

Z

X
|f |p dµ < 1.

For any f 2 Lp(X,M, µ), define the Lp norm of f by

||f ||p =

✓Z

X
|f |p dµ

◆1/p

.

Notice that Lp(X,M, µ) is complete in the norm || · ||p, and is thus a Banach space. Moreover,

when p = 2, we have a Hilbert space— this will be of chief interest for us. Furthermore, there is

a technicality we must discuss. The issue is that ||f ||p = 0 does not imply that f ⌘ 0 on X, but
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only that f ⌘ 0 almost everywhere [µ]. Hence, the definition of the above Lp space requires us

to introduce an equivalence relation in which two functions are equivalent if they are the same

µ-almost everywhere. We now introduce important results.

Theorem 2.4 (Hölder). Suppose 1 < p < 1 and 1 < q < 1 are conjugate exponents. If

f 2 Lp and g 2 Lq, then fg 2 L1 and

||fg||L1  ||f ||Lp ||g||Lq .

Theorem 2.5. If 0 < µ(X) < 1 and p0  p1, then Lp1(X) ⇢ Lp0(X) and

1

µ(X)1/p0
||f ||Lp0 

1

µ(X)1/p1
||f ||Lp1 .

Proposition 2.6. If X = Z and µ is the counting measure, then Lp0(Z) ⇢ Lp1(Z) if p0  p1.

Moreover,

||f ||Lp1  ||f ||Lp0 .

For p = 1, then L1(X,M, µ) consists of all equivalence classes of measurable functions on X,

so that there exists 0 < M 2 R such that |f(x)|  M almost everywhere [µ] on X. Then, when

endowed with the norm

||f ||1 = inf{0 < M 2 R : |f(x)|  M for almost every x 2 X},

this collection becomes a Banach space.

Classical results in the theory of Lp spaces are essential in understanding the mechanics of Banach

spaces. Results such as the Hahn-Banach theorem, closed graph theorem, and more illustrate

the richness of the structure in a Banach space. However, here, we state only one result and

illustrate it with an example.

Theorem 2.7. Let (X,M, µ) be a measure space and let p, q 2 [1,1] be Hölder conjugates in

the sense that 1/p+ 1/q = 1. Then, for any measurable functions f 2 Lp(µ) and g 2 Lq(µ), we

have that

||fg||1  ||f ||p||g||q.

Example 2.3. If we consider the counting measure on N, Hölder’s inequality yields that

1X

i=1

|xiyi| 

 
1X

i=1

|xi|
p

!1/p 
1X

i=1

|yi|
p

!1/q

,

for every x, y 2 {Rn,Cn
}, where p and q are Hölder conjugates.



Chapter 3

Hilbert Spaces

An indespensible tool in the study of PDE theory, Quantum Mechanics, Fourier analysis, and

Ergodic theory, Hilbert spaces bear fruit in that they allow for elementary methods of linear

algebra and analysis to be generalized from finite-dimensional Euclidean vector spaces to infinite-

dimensional linear spaces. Their geometry is rich and it lends for an intuitive understanding of

their importance. Here, we will begin by analyzing the geometry of a Hilbert space to then

introduce the algebra of operators on Hilbert spaces. Then, we will establish spectral heuristics

to introduce spectral measures, integrals, and the celebrated, and extremely important, spectral

theorem.

3.1 The Geometry of Hilbert Spaces

Here, we will primarily work with vector spaces over the field C. In case a distinction is made,

we will assume to work over C. The simplest of all such vector spaces is C, itself, if we consider

it under the ordinary operations of addition and scalar multiplication of complex numbers.

In the same vain, as important as C is among all complex vector spaces, so are the linear

transformations whose range space coincides with C important among all linear transformations.

Such transformations are called linear functionals, and they will be of importance for us.

Definition 3.1. A linear functional ⇠ on a complex vector space H is an additive and homoge-

nous linear mapping ⇠ : H ! C. We call ⇠ a conjugate linear functional if ⇠(↵x) = ↵⇤⇠(x), for

all ↵ 2 C and x 2 H.

Definition 3.2. A bilinear functional on a complex vector space H is a function ' : H⇥H ! C
such that if

⇠y(x) = ⌘x(y) = '(x, y),

then, for every x, y 2 H, ⇠y is a linear functional and ⌘x a conjugate linear functional.

Definition 3.3. The quadratic form '̂ induced by a bilinear functional ' on a complex vector

space H is a mapping defined by '̂(x) := '(x, x).

12
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Definition 3.4. An inner product in a complex vector space H is a bilinear functional ' such

that:

1. For every x, y 2 H, then '(x, y) = '⇤(y, x).

2. For every x 2 H, '(x, x) > 0.

We call (H, h, ·, ·i) an inner product space and typically denote h·, ·i as the inner product.

Theorem 3.5. Let H be an inner product space and define a function || · || : H ! C by setting

||x|| :=
p
hx, xi, for all x 2 H. Then, || · || is a norm on H.

Theorem 3.6. Let H be an inner product space. If we let d(x, y) = ||x�y||, for every x, y 2 H,

then (H, d) is a metric space.

Definition 3.7. A Hilbert space is an inner product space which is complete in the metric

induced by the inner product.

Given the above definitions, we may now illustrate a few examples of Hilbert spaces.

3.1.1 Examples

Example 3.1. Let (X,M, µ) be a measure space and recall Lp space associated to (X,M, µ).

If p = 2, we get a Hilbert space. Indeed, if we let

L2(µ) :=

⇢
f : X ! C measurable

���
Z

X
|f |2 dµ < 1

�
,

and define the hermitian form

hf, gi =

Z

X
f(x)g(x) dµ(x),

then (L2(µ), h·, ·i) is a Hilbert space. This canonical space will be of use in the later sections.

Example 3.2. Let k 2 Z+ and ⌦ ⇢ Rn. The Sobolev space H2(⌦) is the collection of all L2

functions whose weak derivatives are also L2. That is,

H2(⌦) :=
�
f 2 L2(⌦) | 8 |↵|  k, @↵x f 2 L2(⌦)

 
,

for |↵| =
Pn

i=1 ↵i, where @↵x f = @↵1
x1

· · · @↵n
xn

f . Endowed with the norm

hf, gik,⌦ =
X

|↵|k

h@↵x f, @
↵
x giL2(⌦) =

X

|↵|k

Z

⌦
@↵x f@

↵
x g dµ,

H2(⌦) becomes a Hilbert space.

Example 3.3. Given two measurable spaces (X,A ), (Y,M), a measurable mapping f : X ! Y ,

and a measure µ : A ! [0,1], the push-forward of µ is defined to be the measure f⇤(µ) : M !
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[0,1] given by

f⇤(µ)(B) = µ(f�1(B)),

for all B 2 M. Using this, a natural Lebesgue measure on the unit circle S1—here thought of as

a subset of C—may be defined using a push-forward construction and Lebesgue measure µ on

R. Let � denote the restriction of the Lebesgue measure on [0, 2⇡) and let f : [0, 2⇡) ! S1 be

the natural bijection defined by f(✓) = ei✓. Then, the arising ”Lebesgue measure” on S1 is the

push-forward measure f⇤(�). Let f⇤(�) be denoted by d✓, as this push-forward measure can be

called the ”arc length measure” due to the f⇤(�)-measure of an arc in S1 yielding precisely its

arc length. The definition of the Hardy-Hilbert space utilizes a normalized Lebesgue arc-length

measure on the boundary of the open unit disk, as is demonstrated in its definition.

Let D = {z 2 C : |z| < 1}, the open unit disk. Define the Hardy-Hilbert space, H2(D), as

H2(D) =
⇢
f : D ! C analytic

���� sup
0<r<1

Z
|f(rei✓)|2

d✓

2⇡
< 1

�
,

wherein for f 2 H2(D),

||f ||2 = sup
0<r<1

Z
|f(rei✓)|2

d✓

2⇡
.

Employing the polarization identity yields that H2(D) is indeed a Hilbert space.

3.2 The Algebra of Operators

Recall that a linear transformation A from a Hilbert space H to a Hilbert space K is bounded if

there exists 0 < ↵ 2 R such that ||Ax||  ↵||x||, for all x 2 H. Moreover, the norm of A is

||A|| := inf{↵ 2 R+ : ||Ax||  ↵||x||, for all x 2 H}.

Theorem 3.8. A linear transformation A : H ! K is bounded if, and only if, it is continuous.

In the case when K = C, there is a powerful result which completely characterizes all bounded

linear functionals.

Theorem 3.9. (Riesz representation theorem). A linear functional ⇠ on H is bounded if,

and only if, there exists a y 2 H such that ⇠(x) = hx, yi for all x 2 H. Such a y, if it exists, is

unique.

Before proceeding to the adjoint of an operator, we state useful theorems regarding invertible

operators which will be employed later. Recall that an operator A is invertible if there exists an

operator B such that AB = BA = I. Exploiting the geometry a↵orded to us in a Hilbert space,

it is useful to have geometric conditions for invertibility at our disposal. Note that the range of

an operator is always a linear manifold, but it is not necessarily a subspace.
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Theorem 3.10. If A is an operator on H and ↵ 2 R+ such that ||Ax|| � ↵||x|| for all x 2 H,

then the range of A is closed.

Theorem 3.11. An operator A acting on a Hilbert space H is invertible if, and only if, its range

is dense in H and there exists ↵ 2 R+ such that ||Ax|| � ↵||x||, for all x 2 H.

3.2.1 The Adjoint

Let us build from the ground up. Take A 2 B(X,Y ), for X and Y arbitrary Hilbert spaces. Let

y 2 Y be fixed and define the linear functional  y : X ! C by  y(x) = hAx, yiY . Because A is

linear, then  y is linear, and hence h·, yiY is a linear form. Notice that

| y(x)|  ||Ax|| · ||y||  ||A|| · ||x||X · ||y||Y ,

since A is bounded. Hence,  y is bounded. Therefore,  y 2 X⇤, the dual of X. By the Riesz

representation theorem, for every y 2 Y , there exists a unique zy 2 X such that  y(x) = hx, zyiX ,

for every x 2 X. Now, define the operator A⇤ : Y ! X by zy := A⇤y. Then, the defining

property of A⇤ is

hAx, yiY = hx,A⇤yiX ,

for every x 2 X, y 2 Y . We call A⇤ the adjoint of A.

Theorem 3.12. If A is an operator on H, and if '(x, y) = hAx, yi for every x, y 2 H, then ' is

a bounded bilinear functional and ||'|| = ||A||. If, conversely, ' is a bounded bilinear functional,

then there exists a unique operator A such that '(x, y) = hAx, yi, for all x, y 2 H.

Theorem 3.13. If A is an operator on H, then there exists a unique operator A⇤, called

the adjoint of A, such that hAx, yi = hx,A⇤yi, for all x, y 2 H. Moreover, A⇤ is such that

||A⇤
|| = ||A||.

3.2.2 Hermitian and Normal Operators

Observe that Theorem 3.12 can be used to show that if A is a Hermitian operator, then

||A|| = sup
||x||=1

|hAx, xi|.

Indeed, recall that ||A|| := sup
||x||1,x2H ||Ax||. Then

sup
||x||=1

|hAx, xi|  sup
||x||=1

(||Ax|| · ||x||)  sup
||x||=1

�
||A|| · ||x||2

�
= ||A||.

To obtain the opposite inequality, observe that if x is any non-zero vector in H , then x/||x|| is

a unit vector, so that ⌧
A

x

||x||
,

x

||x||

�
 sup

||x||=1
|hAx, xi|,
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and hence for all x 2 H

hAx, xi  sup
||x||=1

|hAx, xi| · |||x||2.

Now, select any x, y 2 H such that ||x|| = ||y|| = 1. Then, by the Hermitian property of A, we

have that

hA(x+ y), x+ yi � hA(x� y), x� yi = 2hAx, yi+ 2hAy, xi

= 2hAx, yi+ 2hy,Axi

= 4 Re (hAx, yi) .

By (1) and by the Parallelogram Law, we have

4 Re (hAx, yi)  |hA(x+ y), x+ yi|+ |hA(x� y), x� yi

 sup
||x||=1

|hAx, xi| · ||x+ y||2 + sup
||x||=1

|hAx, xi| · ||x� y||2

= 2 sup
||x||=1

|hAx, xi|
�
||x||2 + ||y||2

�

= 4 sup
||x||=1

|hAx, xi|.

Hence, Re (hAx, yi)  sup
||x||=1 |hAx, xi|, for all unit vectors x and y. Let hAx, yi = |hAx, yi| exp i✓.

Then, yei✓ is simply another unit vector, so that

sup
||x||=1

|hAx, xi| � Re
�
hAx, e�i✓yi

�
= Re

�
ei✓hAx, yi

�
= |hAx, yi|.

Hence,

||Ax|| = sup
||y||=1

|hAx, yi|  sup
||x||=1

|hAx, xi|.

Because this is true for all unit vectors x 2 H , then

||A||  sup
||x||=1

|hAx, xi|,

and hence the result follows.

Definition 3.14. An operator A is Hermitian if A = A⇤.

If A is an operator, then there exist two uniquely determined Hermitian operators A1 and A2

such that A = A1 + iA2. Because the real and imaginary parts of an operator often fail to

commute, we observe that operator theory requires a lot more care than does the corresponding

theory of complex numbers. We need a definition for which this pathology does not occur. Here

it is:

Definition 3.15. An operator A is normal if A commutes with A⇤.
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For us, there is a very special class of normal operators, U , which satisfy the relation UU⇤ =

U⇤U = 1. These such operators are called unitary. Unitary operators are characterized as those

invertible operators whose inverse is equal to its adjoint. Moreover, they are of importance

because the unitary operators on a Hilbert space H are exactly the automorphisms of H.

3.3 Spectral Heuristics

Definition 3.16. Let A be an operator on a Hilbert space, H. The spectrum of A, denoted

⇤(A), is defined as

⇤(A) = {� 2 C | A� �IH is not invertible} .

that in the finite-dimensional case, a necessary and su�cient condition for the invertibility of an

operator is the vanishing of its determinant. However, this makes no sense in the not necessarily

finite dimensional case. This motivates a definition of the spectrum of an operator on any space.

In the finite-dimensional case, because the determinant of (A � �) 2 C[�], a polynomial in the

indeterminate �, whose zeros are exactly the proper values of A, it follows that in this case the

spectrum of A is exactly the set of its proper values. By way of illustration, let us consider the

following examples.

Example 3.4. Let ⌦ be a compact Hausdor↵ space and consider the Banach algebra of functions

C(⌦). Then, for any � 2 C(⌦), we have that ⇤(�) = �(⌦). To wit, let � 2 ⇤(�), for some

� 2 C(⌦). Then, (� � �) 62 Inv(C(⌦)), the group of invertible elements of C(⌦). That is,

1/(�� �) 62 C(⌦), so it must be that (�� �)(x) = 0 for some x 2 ⌦. Hence, f(x) = �, so that

� 2 �(⌦). Therefore, ⇤(�) ✓ �(⌦).

Conversely, if � 2 �(⌦), then there exists an x 2 ⌦ such that � = �(x) 2 �(⌦). Hence,

(� � �)(x) = 0, and so (� � �)(⌦) 3 0 for x 2 ⌦. Therefore, 1/(� � �) 62 C(⌦), so that

(�� �) 62 Inv(C(⌦)). Hence, � 2 ⇤(�), and consequently �(⌦) ✓ ⇤(�).

Example 3.5. Let X be a non-empty set and consider `1(X). Then, for any  2 `1(X),

⇤( ) =  (X), the closure in C. Indeed, select  2 `1(X) and suppose � 62  (X). Then,

there exists an ✏ > 0 such that for every x 2 X, then | (x) � �| � ✏. Define ⇠ : X ! C by

x 7! 1/( (x)� �). Notice that for every x 2 X

|⇠(x)| =
1

| (x)� �|
<

1

✏
.

Hence, ⇠ 2 `1(X). Moreover, a small computation shows that

⇠( � �)(x) = ( � �)⇠(x) = 1,

for all x 2 X, so that ⇠ :=  �1. Hence, (f � �) 2 Inv(`1(X)), and so � 62 ⇤( ). That is,

⇤( ) ✓  (X).
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Conversely, suppose � 2  (X). For every ✏ > 0, there exists x 2 X so that | (x) � �| < ✏.

Consequently, ⇠ is not well-defined or its norm in `1(S) is that of

||⇠||1 = sup
x2X

1

| (x)� �|
>

1

✏
.

As ✏ > 0 was arbitrary, the ⇠ is not bounded, so ⇠ 62 `1(X). Hence, ( � �) is not invertible in

`1(X), so � 2 ⇤( ). Thus,  (X) ✓ ⇤( ).

Before proceeding to spectral analysis, let us digress an consider a more elementary theory as an

illustration [1]. Recall that a real-valued, bounded, measurable function f on a finite measure

space ⌦ can be uniformly approximated by simple functions. That is, for every ✏ > 0, there exists

a finite, disjoint collection {�i}i of measurable characteristic functions, and a finite collection

{�i}i ⇢ R such that for all ! 2 ⌦

�����f(!)�
X

i2I

�i�i(!)

����� < ✏.

If, for any Borel set M ⇢ R, we set E(M) := �f�1(M), the above is simply

�����f �

X

i2I

�iE(Mi)

����� < ✏,

where {Mi}i is a finite partition of [↵,�] 3 f(!), for all ! 2 ⌦, such that for every i 2 I, we may

select �i 2 Mi. Notice that the sum and its summands look similar to those occurring in the

theory of integration— certainly for Lebesgue. The map E is a sort of measure—which we will

define later—associating a characteristic function on ⌦ with each Borel subset of R. Because

for every i 2 I, we select �i 2 Mi of a partition of [↵,�], the integral that appears to be in the

background is of the form

Z
� dE(�).

We will make sense of this integral in the proceeding sections.

3.3.1 Spectral Measures and Spectral Integrals

Before proceeding, recall that a projection on a subspace N ⇢ H is the transformation P defined,

for every z 2 H of the form x+ y, where x 2 N and y 2 N
?, by Pz = x. In this case,

N = P (N )�Ker(P ).

Definition 3.17. The projection P on a subspace N is an idempotent and Hermitian operator.

If N is the non-trivial subspace, then ||P || = 1.

If X is an arbitrary set with a Boolean �-algebra S, a spectral measure in X is a function E

mapping S to idempotent, Hermitian operators defined on H such that E(X) = 1 and where for
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a disjoint sequence {Mn}n ✓ S, then

E

 
[

n

Mn

!
=
X

n

E(Mn).

A great example to keep in mind is found by letting X be a measure space with measure µ,

considering L2(µ), and setting

E(M)� = �M�,

for every measurableM 2 S and all � 2 L2(µ). Elementary techniques of measure theory show us

that E is, indeed, a spectral measure. Let us establish conditions necessary for projection-valued

functions to be spectral measures.

Theorem 3.18. A projection-valued function E on the �-algebra S of measurable subsets of

a measurable space X is a spectral measure if, and only if, E(X) = 1 and for every x, y 2 H,

the complex-valued set function µ defined for every M 2 S by µ(M) = hE(M)x, yi is countably

additive.

For (X,S) measurable space, let B(X) denote the set of all bounded, complex-valued, measurable

functions on X.

Theorem 3.19. Let (X,S) be a measurable space. If E is a spectral measure in X and if

f 2 B(X), then there exists a unique operator A such that

hAx, yi =

Z
f(�) dhE(�)x, yi

for all x, y 2 H.

3.3.2 The Spectral Theorem

The analogs of bounded, real-valued, measurable functions in the theory of Hilbert spaces are

Hermitian operators. Because a function is the characteristic function of a set if, and only if,

it is idempotent, then—algebraically— the analogs of characteristic functions are projections.

The approximability of arbitrary functions by simple ones corresponds to the approximability

of Hermitian operators by finite, real, linear combinations of idempotent, Hermitian operators.

However, why is this useful for us? The usefulness of this development lies in its purpose:

providing a tool for understanding complicated objects in terms of simpler ones. We will be

able to recapture a Hermitian operator by constructing a spectral measure which, in turn, will

reflect properties of the given operator. We will encounter a beautiful example in Chapter 5

when considering a peculiar shift operator on `2(Z). For now, let us state the grand Spectral

theorem and various versions found in [2] which will be utilized in this manuscript.

Theorem 3.20 (Hermitian Operator). If A is a Hermitian operator, then there exists a

unique, real, compact complex spectral measure E, such that

A =

Z
� dE(�).
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Theorem 3.21 (Normal Operator). If A is a Normal operator, then there exists a unique,

compact complex spectral measure E, such that

A =

Z
� dE(�).

Before stating the other versions of the Spectral theorem, recall that for a fixed Hermitian

operator A, and ! 2 H, then ⇠ : C(⇤(A)) ! C defined by

⇠(f) = hf(A)!,!i

is a positive linear functional.

Theorem 3.22 (Riesz Markov). Let ⌦ be a locally compact Hausdor↵ space and � a posi-

tive linear functional on Cc(⌦), the space of compactly supported, complex-valued, continuous

functions on ⌦. Then, there exists a unique, positive Borel measure µ on ⌦ such that

�(f) =

Z

⌦
f(⌦) dµ(!),

for every ! 2 ⌦.

Applying the above theorem to ⇠, there exists a unique measure µ! on the compact set ⇤(A)

with the property that

hf(A)!,!i =

Z

⇤(A)
f(�) dµ!.

The measure µ! is the spectral measure associated with ! 2 H.

Definition 3.23. A vector ⇠ 2 H is called cyclic for A if finite linear combinations of elements

{(An⇠)n}1n=0 are dense in H.

Lemma 3.24. Let A be a bounded, Hermitian operator with cyclic vector ⇠. Then, there is a

unitary operator U : H ! L2(⇤(A), dµ⇠) with

(UAU�1f)(�) = �f(�),

with equality of elements in the L2-sense.

Lemma 3.25. Let A be a Hermitian operator on a separable Hilbert space, H. Then, there is

a direct sum decomposition

H =
NM

n=1

Hn

with N = 1, 2, . . . , or 1 so that:

1.  2 Hn implies A 2 Hn (Hn is invariant under A).
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2. For every n, there is a �n 2 Hn which is cyclic for A|Hn. That is,

Hn = {f(A)�n | f 2 C(⇤(A))}.

Theorem 3.26. Let A be a bounded, Hermitian operator on a separable Hilbert space, H.

Then, there exists measures {µn}
1

n=1 on ⇤(A) and a unitary operator

U : H !

1M

n=1

L2(R, dµn)

so that

(UAU�1 )n(�) = � n(�),

where  = h 1(�), . . .i 2
L

1

n=1 L
2(R, dµn).

Corollary 3.27. Let A be a Hermitian operator on a separable Hilbert space, H. Then, there

exists a finite measure space (X,µ), an essentially bounded function F on X, a unitary map

U : H ! L2(X, dµ) so that

(UAU�1f)(x) = F (x)f(x) = (MF f)(x).



Chapter 4

Algebras

Given a field, an algebra defined on this field is simply a vector space together with a bilinear

product. This algebraic structure provides a lot of robust, and rich results, which illustrate

how well-behaved these spaces are. In this chapter, we will illustrate operator algebras, Banach

algebras, and C⇤-algebras to establish a result that is the culmination of the background material

required in developing our analysis in chapter 5.

4.1 Banach Algebras

Definition 4.1. An algebra A is a vector space over a field F , together with a bilinear map

⇤ : A⇥A ! A defined by (a, b) 7! ab such that

a ⇤ (bc) = (ab) ⇤ c,

for every a, b, c 2 A.

Definition 4.2. Let A be an algebra. If we endow A with a norm that is sub-multiplicative in

the sense that for every a, b 2 A, then ||ab||  ||a||||b||, then we say (A, || · ||) is a normed algebra.

Definition 4.3. A complete normed algebra is called a Banach algebra.

In the case that A admits a unit element of norm one, then we will call A a unital normed

algebra. To illustrate, consider the following example.

Example 4.1. Let `1(Z) be the linear space of all complex-valued functions defined on Z that

are absolutely summable. For f, g 2 `1(Z), define the convolution map ⇤ : Z ! C by

(f ⇤ g)(k) =
X

n2Z
f(k � n)g(n).

22
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Considering `1(Z) with ring multiplication given by convolution, then `1(Z) is an Algebra over

C. Indeed, for �, � 2 C and f, g, h 2 `1(Z), then (�f + �g) 2 `1(Z), so

[(�f + �g) ⇤ h] (k) =
X

n2Z
(�f + �g)(k � n)h(n)

=
X

n2Z
(�f(k � n) + �g(k � n))h(n)

= �
X

n2Z
f(k � n)h(n) + �

X

n2Z
g(k � n)h(n)

= �(f ⇤ h)(k) + �(g ⇤ h)(k),

and

[f ⇤ (�g + �h)(k)] =
X

n2Z
f(k � n)(�g + �h)(n)

=
X

n2Z
f(k � n) (�g(n) + �h(n))

= �
X

n2Z
f(k � n)g(n) + �

X

n2Z
f(k � n)h(n)

= �(f ⇤ g)(k) + �(f ⇤ h)(k),

holds for every k 2 Z. Moreover, endowed with the usual pointwise operations and norm

||f || =
X

n2Z
|f(n)|, for all f 2 `1(Z),

then this is a Banach space. Because f 2 `1(Z), the above sum exists. Notice that

||f ⇤ g|| =
X

n2Z
|(f ⇤ g)(n)|

=
X

n2Z

�����
X

k2Z
f(n� k)g(k)

�����



X

n2Z

X

k2Z
|f(n� k)| · |g(k)

=
X

k2Z

X

n2Z
|f(n� k)| · |g(k)|

=
X

k2Z

 
|g(k)|

X

n2Z
|f(n� k)|

!

=
X

k2Z
|g(k)||f ||

= ||f || · ||g||.

Hence, f⇤g 2 `1(Z).Moreover, because Z is abelian under addition, then with unit �{0}, it follows

that `1(Z) is an abelian, unital Banach algebra with ring multiplication given by convolution.

Example 4.2. The algebra Mn(C) of square matrices with entries in C is identified with the

collection of all bounded linear operators on Cn, B(Cn). Hence, it is a unital Banach algebra.
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If we consider all upper triangular matrices of the form

2

66666664

�11 �12 . . . . . . �1n

0 �22 . . . . . . �2n

0 0 �33 . . . �3n
...

...
. . .

...

0 0 . . . 0 �nn

3

77777775

then these matrices form a subalgebra of Mn(C). That is, this set of matrices, Un(C), is a

subspace of Mn(C) and for any U1, U2 2 Un(C), then U1U2 2 Un(C).

4.2 C⇤-Algebras

Definition 4.4. Let A be an algebra. An involution is a conjugate-linear map a 7! a⇤ on A

such that a⇤⇤ = a and (ab)⇤ = b⇤a⇤, for every a, b 2 A. The tuple (A, ⇤) is called a ⇤-algebra.

Definition 4.5. A Banach ⇤-algebra is a ⇤-algebra A endowed with a complete, submultiplicative

norm such that for any a 2 A, then ||a⇤|| = ||a||.

Definition 4.6. A C⇤-algebra is a Banach ⇤-algebra such that for any a 2 A, then

||a⇤a|| = ||a||2.

As pointed out in [3], the C⇤ identity in the above definition is very strong. In fact, much more is

known about the struture of algebras that satisfy that identity that perhaps any other non-trivial

algebras. Because of this involution, the theory of C⇤-algebras is often motivated as the study

of real analysis in infinite dimensions.

Example 4.3. Here is an example we are all familiar with. Take C with involution given by

complex conjugation. This scalar field is a prime example of a C⇤-algebra.

Example 4.4. If ⌦ is a locally compact Hausdor↵ space, then the set of all complex-valued

functions on ⌦ that vanish at infinity, C0(⌦), is a C⇤-algebra with involution given by complex

conjugation.

Example 4.5. If H is a Hilbert space, then the set of all bounded, linear operators on H, B(H)

is a C⇤-algebra with involution given by the adjoint operation. In fact, every C⇤-algebra can be

realized as a C⇤-subalgebra of some B(H). This is the context of the Gelfand-Neimark theorem!

Before concluding, let us provide one more example illustrating the beauty in this structure. Let

⌦ be a compact Hausdor↵ space and let µ be a positive, regular Borel measure on ⌦. That is, a

positive measure for which every µ-measurable set can be approximated by open, µ-measurable

sets from above and my compact µ-measurable sets from below. For ' 2 L1(⌦, µ), define the

multiplication operator M' : L2(⌦, µ) ! L2(⌦, µ) by f 7! 'f , for every f 2 L2(⌦, µ). Notice
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that M' is bounded. Indeed,

||M'f ||
2
2 =

Z

⌦
|'f |2 dµ  ||'||2

1

Z

⌦
|f |2 dµ,

which implies that ||M'||  ||'||1. The map

 : L1(⌦, µ) ! B(L2(⌦, µ))

given by  ' = M' is a ⇤-homomorphism of C⇤-algebras. That is,  is a homomorphism of

⇤-algebras that preserves adjoints. In particular, M' is normal, whereby M⇤

' = M'. As we will

show in the spectral analysis in chapter 5, these operators are typical of all normal operators.

Is B(⌦) is the �-algebra of all Borel subsets of ⌦, and if S 2 B(⌦), then �S is a projection

in L1(⌦, µ). Hence, E(S) = M�S is a projection operator in B(L2(⌦, µ)). In fact, the map

E : B(⌦) ! B(L2(⌦, µ)) is a spectral measure relative to the tuple (⌦, L2(⌦, µ)). More can be

said, though. It can be shown that ||M'|| = ||'||1, and therefore the map  is an isometric

⇤-isomorphism of L1(⌦, µ) onto a C⇤-subalgebra of B(L2(⌦, µ)). Thus, as we will exemplify in

Example 5.1, ⇤(M') = ⇤L1(').



Chapter 5

Composition Operators

We have finally arrived at our investigation. Motivated by the investigation of the topologi-

cal space of composition operators on the Banach algebra of bounded functions defined on an

unbounded, locally finite metric space in the operator norm topology and essential norm topol-

ogy [4], we further hone in on the properties of a constructed subspace of the considered space.

Specifically, we begin by studying the weighted Banach space L1

µ via composition operators

induced by self-maps of the underlying metric space, which then allows for us to construct a

Hilbert subspace of the weighted functional Banach space. In doing so, we obtain operator-

theoretic results concerning composition operators, extend the underlying metric space to avail

ourselves of the structure, and consider the spectral structure of composition operators.

5.1 Preliminaries

Let X be a Banach algebra of functions on a domain ⌦, and S(⌦) the set of self-maps of ⌦. For

' 2 S(⌦), the induced linear operator C' : X ! X, defined by

C'f = f � ',

for all f 2 X, is called the composition operator with symbol '. This operator was first studied

in [5] on the Hardy-Hilbert space H2(D), wherein X = H2(D), and ⌦ = D ✓ C. These are

spaces which

H2(D) =
⇢
f : D ! C analytic

���� sup
0<r<1

Z
|f(rei✓)|2

d✓

2⇡
< 1

�
,

where d✓ is the Lebesgue arc-length measure on @D, and wherein the norm for f 2 H2(D) is

||f ||2 = sup
0<r<1

Z
|f(rei✓)|2

d✓

2⇡
.

Typically, regarding these operators, H2(D) and Hp(D) are the first spaces of inquiries. However,
here, we begin our investigation on a functional Banach space of complex-valued functions.

26
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Let (T, d) be an unbounded, locally finite metric space with distinguished element o. That

is, for any pair M,N > 0, there exists v 2 T with |v| := d(o, v) � M and where the set

{v 2 T | |v| < N} ✓ T is finite. Notice that because T is unbounded, then it admits sequences

whose distance from o is strictly increasing in Z�0. Moreover, if f is a self-map of T with finite

range, then there exists a positive constant M for which |f(v)|  M for every v 2 T ; we denote

this by set by SF (T ). Otherwise, f 2 SI(T ), if f has infinite range.

Let µ : T ! R+ be a positive function on T , which we will call a weight on T . Define the linear

space of bounded functions on T , L1

µ (T ), by

L1

µ (T ) =

⇢
f : T ! C

��� sup
v2T

µ(v)|f(v)| < 1

�
.

Theorem 5.1. The linear space L1

µ (T ) is a complex Banach space under

||f ||µ = sup
v2T

µ(v)|f(v)|.

Proof. Let f, g 2 L1

µ . It is clear that ||f ||µ � 0 and ||f ||µ = 0 if and only if f ⌘ 0 on T.

Moreover, for any ↵ 2 C, then

||↵f ||µ = sup
v2T

µ(v)|(↵f)(v)| = sup
v2T

µ(v)|↵f(v)| = sup
v2T

µ(v)|↵| · |f(v)| = |↵| · ||f ||µ,

and

||f + g||µ = sup
v2T

µ(v)|(f + g)(v)|

= sup
v2T

µ(v)|f(v) + g(v)|

 sup
v2T

µ(v) (|f(v)|+ |g(v)|)

= sup
v2T

µ(v)|f(v)|+ sup
v2T

µ(v)|g(v)|

= ||f ||µ + ||g||µ.

Hence, ||·||µ is indeed a norm. Let ✏ > 0 and fix w 2 T . Suppose {fn} is a Cauchy sequence in L1

µ .

By definition, there exists N 2 N such that for all n,m � N , we have that ||fn � fm||µ < ✏µ(w).

Because µ is positive, then

|fn(w)� fm(w)| =

����
µ(w)(fn(w)� fm(w))

µ(w)

���� 
1

µ(w)

✓
sup
w2T

µ(w)|fn(w)� fm(w)|

◆
< ✏.

That is, {fn(w)} is Cauchy in C and converges to f(w) 2 C. We can select w 2 T arbitrarily so

that fn ! f pointwise on T . Therefore, for a fixed w 2 T , there exists N 2 N such that for all

n � N , then |f(w)� fn(w)| < 1/µ(w). Applying the triangle inequality yields that

µ(w)|f(w)� fn(w)| < 1 =) µ(w)|f(w)| < 1 + µ(w)|fn(w)|.
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Hence,

sup
w2T

µ(w)|f(w)| < sup
w2T

(1 + µ(w)|fn(w)|) =) ||f ||µ < 1 + ||fn||µ.

Because {fn} is Cauchy, it is bounded, so that ||f ||µ is finite and hence f 2 L1

µ . To complete

the proof, we must show that the Cauchy sequence {fn} converges to f in norm on L1

µ . Aiming

for a contradiction, suppose that there exists ✏ > 0 and a subsequence {fnk} of {fn} such that

||fnk�f ||µ � ✏, for all k 2 N. For all such k, select a point vnk 2 T such that |fnk(vnk)�f(vnk)| �

✏/µ(vnk). Then, as {fnk} is a subsequence of a Cauchy sequence, it is Cauchy in L1

µ , so that

there exists M 2 N such that for all j, l � M , then ||fnj � fnl ||µ < ✏/2. Moreover, as

µ(v)|fnj (v)� fnl(v)|  sup
v2T

µ(v)|fnj (v)� fnl(v)| = ||fnj � fnl ||µ,

then, in particular for some q � M , it follows that

µ(vnM )|fnM (vnM )� fnq (vnM )| < ✏/2.

Because fnq ! f pointwise, for su�ciently large q 2 N, we notice that

µ(vnM )|fnq (vnM )� f(vnM )| < ✏/2.

Therefore,

µ(vnM )|fnM (vnM )� f(vnM )|  µ(vnM )|fnM (vnM )� fnq (vnM )|+ µ(vnM )|fnq (vnM )� f(vnM )| < ✏,

which is clearly a contradiction on our choice vnM 2 T. Thus, it must be that ||fn � f ||µ ! 0 as

n ! 1. Therefore, L1

µ is complete under || · ||µ.

It is clear that L1

µ (T ) under pointwise operations is an algebra over C. In fact, it is a Banach

algebra. Indeed, notice that for f, g 2 L1

µ (T )

||fg||µ = sup
v2T

µ(v)|f(v)g(v)|  sup
v2T

µ(v)|f(v)| · sup
v2T

µ(v)|g(v)| = ||f ||µ||g||µ.

Definition 5.2. A Banach spaceX of complex-valued functions defined on a set ⌦ is a functional

Banach space if for every x 2 ⌦, the point evaluation functional Kxf = f(x) is bounded.

Proposition 5.3. The Banach algebra (L1

µ , || · ||µ) is a Functional Banach space [6].

Proof. Fix v 2 T . Select f 2 L1

µ such that ||f ||µ = 1. Then,

|f(v)| =
µ(v)

µ(v)
· |f(v)| 

1

µ(v)
sup
v2T

µ(v)|f(v)| =
||f ||µ
µ(v)

< 1,

holds for all v 2 T , as µ is positive. By definition, the result follows.
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5.2 Construction of a Hilbert Subspace

The investigation of composition operators on L1(T ) in [7] is very interesting, and the results

are plentiful. However, availing ourselves of the theory in chapter 4, we would like to consider

composition operators on spaces which have a richer geometry, and which we can exploit to

develop more results of the class of composition operators we are considering here. Firstly, let

us establish our first result.

Theorem 5.4. Let `2µ(T ) be defined by

`2µ(T ) =

(
� : T ! C

����
X

v2T

µ(v)|�(v)|2 < 1

)
.

Endowing this space with a Hermitian form given by

h�, iµ =
X

v2T

µ(v)�(v) (v), for �, 2 `2µ(T ),

then `2µ(T ) is a Hilbert subspace of the Banach algebra L1

µ (T ).

Proof. Firstly, we will show that `2µ(T ) is a subspace of L1

µ (T ). Let  : T ! C be defined by

v 7! 0 + 0i. Clearly,  2 `2µ(T ). Moreover, let ',�, ⇠ 2 `2µ(T ) and ↵ 2 C. Then,

X

v2T

µ(v)|↵�(v)|2 = |↵|2
X

v2T

µ(v)|�(v)|2 < 1.

Additionally,

X

v2T

µ(v)|(⇠ + ')(v)|2 =
X

v2T

µ(v)|⇠(v) + '(v)|2



X

v2T

µ(v) (|⇠(v)|+ |'(v)|)2

=
X

v2T

µ(v)
�
|⇠(v)|2 + 2|⇠(v)||'(v)|+ |'(v)|2

�

=
X

v2T

µ(v)|⇠(v)|2 + 2
X

v2T

µ(v)|⇠(v)'(v)|+
X

v2T

µ(v)|'(v)|2.

Applying Hölder’s inequality (Theorem 2.7) yields that

X

v2T

µ(v)|⇠(v)'(v)| 

 
X

v2T

µ(v)|⇠(v)|2
!1/2 X

v2T

µ(v)|'(v)|2
!1/2

< 1,

and thus `2µ(T ) is a subspace.

Next, we show that the form h·, ·iµ : `2µ(T ) ⇥ `2µ(T ) ! R+ defined as above is indeed an inner

product. Notice

h�,�iµ =
X

v2T

µ(v)�(v)�(v) =
X

v2T

µ(v)|�(v)|2 � 0,
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as µ is positive on T . It is clear that h�,�iµ = 0 if, and only if, � ⌘ 0 on T. Furthermore,

h , ⇠iµ =
X

v2T

µ(v) (v)⇠(v) =
X

v2T

µ(v) (v) · ⇠(v) =
X

v2T

µ(v)⇠(v) (v) = h⇠, iµ.

Letting ↵,� 2 C, and ⇠,' 2 `2µ(T ), then (↵ + �⇠) 2 `2µ(T ), so that

h↵ + �⇠,'iµ =
X

v2T

µ(v)(↵ + �⇠)(v)'(v)

=
X

v2T

µ(v) (↵ (v) + �⇠(v))'(v)

=
X

v2T

(↵µ(v) (v) + �µ(v)⇠(v))'(v)

= ↵
X

v2T

µ(v) (v)'(v) + �
X

v2T

µ(v)⇠(v)'(v)

= ↵h ,'iµ + �h⇠,'iµ.

Finally, we show that the inner product space `2µ(T ) is a Hilbert space. Let {�n} be a Cauchy

sequence in `2µ(T ) so that as m,n ! 1, then

X

v2T

µ(v)|�m(v)� �n(v)|
2
! 0.

For all v 2 T , the sequence {�n(v)} is Cauchy in C, and hence �n converges to some �. We will

show that �n ! � in the `2µ(T ) metric induced by the inner product and that � 2 `2µ(T ). Let

✏ > 0. There exists N 2 N such that for all m,n � N , we have ||�m(v)� �n(v)||2µ  ✏. Letting

m ! 1 yields that ||� � �n||µ  ✏, and hence �n ! � on T in the induced metric. Because

�n 2 `2µ(T ) for all n 2 N, then there exists Kn 2 R+ such that

||�n||µ =

 
X

v2T

µ(v)|�n(v)|
2

!1/2

< K1/2
n .

Letting ✏ > 0, it follows that

||�||µ =

sX

v2T

µ(v)|�(v)|2

=

sX

v2T

µ(v)|�(v)� �n(v) + �n(v)|2



sX

v2T

µ(v)
�
|�(v)� �n(v)|+ |�n(v)|

�2

=

sX

v2T

µ(v)|�(v)� �n(v)|2 + 2
X

v2T

µ(v)|�n(v)[�(v)� �n(v)]|+
X

v2T

µ(v)|�n(v)|2



vuutX

v2T

µ(v)|�(v)� �n(v)|2 + 2

 
X

v2T

µ(v)|�n(v)|2

!1/2 X

v2T

µ(v)|�(v)� �n(v)|2

!1/2

+
X

v2T

µ(v)|�n(v)|2

<

q
✏(✏+ 1) +K1/2

n (2 +K1/2
n ) < 1.
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That is, ||�||µ < 1, and thus � 2 `2µ(T ). Hence, (`
2
µ(T ), h·, ·iµ) is a Hilbert subspace of L1

µ (T ).

For ' 2 S(T ), we define C' on `2µ(T ) just as we did for the Banach algebra L1

µ (T ). Linearity of

C' is clear, so we begin our investigation of the boundedness of this operator.

5.3 Boundedness of C'

Here, we investigate when C' is an element of the C⇤-algebra B(`2µ(T )). Set

�' =
X

v2T

µ(v)

µ('(v))
.

Theorem 5.5. Let ' 2 S(T ). If, �' < 1 then C' 2 B(`2µ(T )).

Proof. Let ' 2 SI(T ) and let R(') denote its range. Moreover, suppose µ is a finite measure on

T . If �' < 1, then for any f 2 `2µ(T ), it follows that

||C'f ||
2
µ =

X

v2T

µ(v)|f('(v))|2

=
X

vi2R(')

X

v2'�1({vi})

µ(v)|f('(v))|2

=
X

vi2R(')

X

v2'�1({vi})

µ(v)|f(vi)|
2

=
X

vi2R(')

X

v2'�1({vi})

µ(v)

µ('(v))
µ(vi)|f(vi)|

2

=
X

vi2R(')

2

4µ(vi)|f(vi)|2
X

v2'�1({vi})

µ(v)

µ('(v))

3

5



X

vi2R(')

µ(vi)|f(vi)|
2�'

= �'
X

vi2R(')

µ(vi)|f(vi)|
2

 �'||f ||
2
µ.

Hence, C' 2 B(`2µ(T )).

Notice that the converse of the above theorem need not be true. Consider the following example.

Example 5.1. Let ' ⌘ idT . For any f 2 `2µ(T ), we have

||C'f ||µ =

 
X

v2T

µ(v)|f('(v))|2
!1/2

=

 
X

v2T

µ(v)|f(v)|2
!1/2

= ||f ||µ < 1,

so that C' 2 B(`2µ(T )). However, �' = 1.
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Theorem 5.6. Let ' 2 SF (T ). If C' 2 B(`2µ(T )), then
P

v2T µ(v) < 1.

Proof. Suppose C' 2 B(`2µ(T )). Set f = �R('), for R(') the range of '. Then,

||f ||2µ =
X

v2T

µ(v)|f(v)|2 =
X

v2T

µ(v)|�R(')(v)|
2 =

X

w2R(')

µ(w) < 1,

so that ||C'f ||2µ < 1. That is,

||C'f ||
2
µ =

X

v2T

µ(v)|f('(v))|2 =
X

v2T

µ(v)|�R(')('(v))|
2 =

X

v2T

µ(v) < 1.

It is worthy to mention that the converse of the above theorem may fail. Indeed, if we take

' : T ! T with finite range and suppose
P

v2T µ(v) < 1, then C' being an element of the

operator algebra B(`2µ(T )) relies on '(v)  v for all v 2 T . This is all too restrictive. The

following theorem remedies this dilemma by providing a necessary condition on �' for ' to

induce a bounded composition operator on `2µ(T ).

Theorem 5.7. Let ' 2 S(T ) be one-to-one. If supv2T
µ(v)

µ('(v)) < 1, then C' 2 B(`2µ(T ))

Proof. Suppose supv2T
µ(v)

µ('(v)) < 1. Then, for all v 2 T , it holds that

µ(v) 

✓
sup
v2T

µ(v)

µ('(v))

◆
µ('(v)).

Let f 2 `2µ(T ). Then,

||C'f || =

 
X

v2T

µ(v)|f('(v))|2
!1/2



 
X

v2T

✓
sup
v2T

µ(v)

µ('(v))

◆
µ('(v))|f('(v))|2

!1/2



✓
sup
v2T

µ(v)

µ('(v))

◆1/2
 
X

v2T

µ('(v))|f('(v))|2
!1/2

 sup
v2T

µ(v)

µ('(v))

 
X

v2T

µ(v)|f(v)|2
!1/2

= sup
v2T

µ(v)

µ('(v))
||f ||µ < 1.
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Recall that given any set X, then (X,⌃) is a measurable space if we take the power set of X as

the �-algebra, ⌃. Then, the counting measure µ on (X,⌃) is the positive measure defined by

µ(E) =

8
<

:
|E|, if E is finite

+1, if E is infinite

for every E 2 ⌃. Using this, the following result was inspired by the analysis conducted in [8].

Theorem 5.8. Let ' 2 S(T ) and take µ to be the counting measure. Then, C' 2 B(`2(T )) if,

and only if, there exists an M > 0 such that for all v 2 T , then µ('�1({v})) < M.

Proof. Suppose C' 2 B(`2(T )) with ||C'|| = M. Let v0 2 T be arbitrary and consider f =

�{v0}
. Then, f 2 `2(T ) with ||f || = 1. Because C' is bounded as an operator on `2(T ), then

C'f 2 `2(T ). Furthermore, ||C'f ||  ||C'|| · ||f || = M . That is,

X

v2T

|f('(v))|2 =
X

v2T

|�{v0}
('(v))|2 =

X

v2'�1(v0)

|�{v0}('(v))|
2 = |'�1({v0})| = µ('�1({v0}))  M.

Conversely, suppose there exists an M > 0 such that µ('�1({v})) < M holds for all v 2 T .

Select f 2 `2(T ). Then,

||C'f ||
2 =

X

v2T

|f('(v))|2 =
X

w2'�1({v})

|f(w)|2µ('�1({v}))  M ||f ||2.

Hence, C' 2 B(`2(T )).

Theorem 5.9. Let µ be the counting measure on T . If C' 2 B(`2(T )), then

||C'||
2 = inf{M > 0 | µ('�1({v}))  M, for all v 2 T}.

Proof. Suppose C' 2 B(`2(T )) and let v 2 T . Let {�v}v be the sequence defined by �v(w) = �wv,

the Kronecker delta. Then,

µ('�1({v})) =
X

v2T

|�'(v)v('(v))|
2 = ||C'�

v
||
2
 ||C'||

2
· ||�v||2 = ||C'||

2.

Since this holds for all v 2 T , then

inf{M > 0 | µ('�1({v}))  M, for all v 2 T}  ||C'||
2.

Now, suppose µ('�1({v}))  M for all v 2 T . By the previous theorem, C' 2 B(`2(T )). Hence

||C'||
2
 inf{M > 0 | µ('�1({v}))  M, for all v 2 T}.

Thus, the result follows.

More can be said. Indeed, we can obtain injectivity of the self map ' under certain conditions

on its induced composition operator. Consider the following theorem.
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Theorem 5.10. Let ' 2 S(T ). Then, ' is one-to-one if, and only if, C' 2 B(`2(T )) and

||C'|| = 1.

Proof. Suppose ' is one-to-one as a self-map of T . Take f 2 `2(T ). Then,

||C'f ||
2 =

X

v2T

|f('(v))|2µ('�1({v})) = ||f ||2,

as ' is one-to-one. Hence, C' 2 B(`2(T )). Moreover, because µ('�1({v})) = 1, then

||C'||
2 = inf{M > 0 | µ('�1({v}))  M, for all v 2 T} = 1,

and hence ||C'|| = 1. Conversely, suppose C' a bounded operator of norm one on `2(T ). That

is, ||C'|| = 1, and hence µ('�1({v})) = 1, so that ' is one-to-one.

5.4 Invertibility and the Adjoint of C'

As stated and proved in [9], on Lp(�), necessary and su�cient conditions that C' be invertible

are the invertibility of ' and the inducibility of the composition operator C�1
' by '�1, where �

is a �-finite measure on a standard Borel space. In our case, as will be shown, the invertibility

of ' alone is necessary and su�cient for the invertibility of the composition operator it induces

[8]. To that e↵ect, identify T with N and consider the measure space (N,⌃, µ), where µ is the

counting measure. Recall that B(X) is the space of all linear, bounded operators defined on

X. Henceforth, the omission of µ in `2µ(T ) indicates that we are considering the space with the

counting measure.

Lemma 5.11. Let C' 2 B(`2(T )). Then, C' is invertible if, and only if, ' is invertible.

Proof. Let C' 2 B(`2(T )) and suppose ' is invertible. Then, there exists a self-map  of T such

that ' �  =  � ' = id. Because  is one-to-one, C 2 B(`2(T )). Notice

C (C'(f)) = C (f('(v))) = f('( (v))) = f(v),

for all f 2 `2(T ). Therefore, C' is invertible in B(`2(T )), with inverse (C')�1 = C'�1 .

Conversely, suppose C' is invertible. If ' is not one-to-one, then '(v) = '(w), for some v 6= w,

and—moreover— f(v) = f(w) for all f 2 C'(`2(T )). Hence, C' is not onto, a contradiction. If

' is not onto, then there exists k 2 T such that k 62 '(T ). Then,

C'�
k(v) = C'�vk = �'(v)k = 0.

Thus, C' is not one-to-one, a contradiction.

Theorem 5.12. Let C' 2 B(`2(T )). Then, C' is invertible if, and only if, C' is unitary.
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Proof. Suppose C' is invertible. For f 2 `2(T ), let R(f) and R(C'f) be the ranges of f and

C'f , respectively. By the invertibility of C'f , then ' is invertible, and hence R(f) = R(C'f).

Therefore,

||C'f || =

 
X

v2T

|f('(v))|2
!1/2

=

 
X

v2T

|f(v)|2
!1/2

= ||f ||,

so that C' is unitary. Conversely, if C' is unitary, then C⇤

'C' = C'C⇤

' = I. Hence, C' is

invertible.

For the sake of the results to come, let us digress a bit. Let H1,H2 be two Hilbert spaces over

a field F 2 {R,C}. Recall that every linear operator A : H1 ! H2 defines a Hermitian adjoint

A⇤ : H2 ! H1 with the defining property that for every x 2 H1 and y 2 H2,

hAx, yiH2 = hx,A⇤yiH1 .

Now, Let ' 2 S(T ) such that C' 2 B(`2(T )). Consider the transformation  : `2(T ) ! `2(T )

given by

 f(v) =

8
><

>:

hf, C'�vi =
P

w2'�1({v})

f(w), '�1({v}) 6= ;

0, '�1({v}) = ;

.

Notice that the invertibility of ' implies that  f(v) = f('�1({v}), which is well-defined. More-

over, it is clear that

 f(v) = hf,�'�1({v})i.

We claim that  is the adjoint of C'. Indeed, notice that for any f, g 2 `2(T ), if '�1({v}) is

non-empty, then

hC'f, gi =
X

v2T

f('(v))g(v) =
X

v2R(')

2

4f(v)
X

w2'�1({v})

g(w)

3

5 = hf, gi.

If '�1({v}) is empty,

hC'f, gi =
X

v2T

f('(v))g(v) = 0 = hf, gi.

Corollary 5.13. Let C' 2 B(`2(T )). Then, C⇤

' is a composition operator if, and only if, C' is

invertible.

Proof. Suppose C' is invertible. Then, C' is unitary, so that C⇤

'C' = C'C⇤

' = I, and therefore

C⇤

' = (C')�1 = C'�1 . That is, C⇤

' is the composition operator induced by '�1. Conversely,

suppose C⇤

' is a composition operator. By definition, C⇤

' = C , for some  2 S(T ). Then, for
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all v 2 T

�{'(v)} = C⇤

'�{v} = C �{v} = � �1({v}).

Therefore, {'(v)} =  �1({v}), so that  is invertible. Hence, C is invertible. Thus, C' is

invertible.

We end this section with a en equivalence of statements that culminates the developments of

this section.

Theorem 5.14. Suppose C' 2 `2µ(T ). Then, the following are equivalent:

i. ' is invertible.

ii. C' is invertible.

iii. C' is unitary.

Proof. The equivalence of i. and ii. is the context of the Lemma 5.11. If ' is invertible, then the

above corollary implies that C⇤

' = C'�1 , and hence C' is unitary. Now, if C' is unitary, then

C⇤

' = C�1
' , the composition operator induced by '�1. By the Lemma in section 3, it follows

that ' is invertible.

5.5 Spectral Results

In this section, we utilize the results from chapter 3 to provide two avenues of investigation that

will allow us to characterize the spectrum of a bounded composition operator on `2(T ) with µ the

counting measure. Both avenues rely on obtaining a unitarily equivalent operator on some L2

space, and availing ourselves of the Hilbert space structure it a↵ords to obtain a characterization

of the spectrum of C' via the unitarily equivalent operator. To illustrate the technique, let us

consider an example.

Example 5.2. Consider `2(Z) equipped with the counting measure. Let A : `2(Z) ! `2(Z) be
defined by A(xn)n = (xn�1 + xn+1)n. It can be shown that

⇤(A) = [�2, 2].

However, this heavily relies on the nice structure of `2(Z) and the fact that A is simply the sum

of a left and right shift operator. Let us apply the above corollary to obtain a unitarily equivalent

operator and find the spectral structure of A via a multiplication operator. Let (yn)n 2 `2(Z).
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Then,

||A(yn)n||
2 =

X

n2Z
|yn�1 + yn+1|

2



X

n2Z
(|yn�1|+ |yn+1|)

2



X

n2Z
|yn�1|

2 + 2

 
X

n2Z
|yn�1|

2

!1/2 X

n2Z
|yn+1|

2

!1/2

+
X

n2Z
|yn+1|

2

< 1,

so that A 2 B(`2(Z)). Moreover, A is Hermitian. Indeed,

hA(xn)n, (yn)ni = h(xn�1 + xn+1)n, (yn)n)i

=
X

n2Z
xnyn�1 + yn+1

= h(xn)n, (yn�1 + yn+1)ni

= h(xn)n, A(yn)ni.

Let S1 be the 1-sphere and define µ to be the normalized Lebesgue measure on S1, with �-algebra

B(S1) as the collection of all borel sets on S1. Notice that (S1,B(S1), µ) is finite, and—in fact—

µ(S1) = 1. Define  n : S1
! S1 by  n(ei✓) = eni✓. Then, { n}n2Z is an orthonormal basis of

L2(S1, µ). Let U : L2(S1, µ) ! `2(Z) be defined by

Uf =

✓Z

S1

f n dµ

◆

n

.

Notice that for any f 2 L2(S1, µ),

hUf, (xn)ni`2(Z) =
X

n2Z

✓Z

S1

f n dµ

◆

n

xn =

Z

S1

f

 
X

n2Z
 nxn

!
dµ = hf,

X

n2Z
 nxniL2(S1).

That is, U⇤(xn)n =
P

n2Z  nxn. Because { n}n2Z is an orthonormal collection, and µ(S1) = 1,

then

UU⇤(xn)n = U
X

n2Z
 nxn =

 Z

S1

 
X

n2Z
 nxn

!
 m dµ

!

m

= (xn)n.

Moreover, because f 2 L2(S1, µ), then

U⇤Uf = U⇤

✓Z

S1

f n dµ

◆

n

=
X

n2Z
 n

✓Z

S1

f n dµ

◆

n

=
X

n2Z
 nhf, niL2(S1) = f.

Therefore, U is a unitary operator. Let � : S1
! R be such that �(ei✓) = 2 cos(✓). Because

|�|  2 on S1, then � 2 L1(S1, µ). Moreover, since 2 cos(✓) = e�i✓ + ei✓, then � =  �1 +  1.
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Finally,

UM�⇠ = U( �1⇠ +  1⇠)

=

✓Z

S1

( �1⇠ +  1⇠) n dµ

◆

n

=

✓Z

S1

⇠( �1 n +  1 n) dµ

◆

n

=

✓Z

S1

⇠( n�1 +  n+1 dµ

◆

n

= A

✓Z

S1

⇠ n dµ

◆

n

= AU⇠.

That is, UM� = AU , so that A = UM�U�1 = UM�U⇤. As a multiplication operator on L2

induced by an essentially bounded function �, the spectrum of M� is simply the essential range

of �. Because S1
✓ Rn, and µ is the normalized Lebesgue measure, then the essential range of

� is the closure of the image of S1 under �. Hence,

⇤(M�) = �(S1) = [�2, 2].

Unitarily equivalent operators have the same spectral structure, so we obtain a description of

⇤(A) via the above representation.

We can go even further than that. Availing ourselves of the Spectral theorem for Hermitian

operators, we can represent A as an integral of the coordinate function against a spectral measure

over the spectrum ⇤(A) of A. To that e↵ect, let f 2 C(⇤(A)). In L2(S1, µ), f(A) is simply

multiplication by f(�(ei✓)), where �(ei✓) = 2 cos(✓). Given ' 2 L2(S1, µ) defined by

' =
X

n2Z
 nxn,

we can define a corresponding sequence (⇣n)n 2 `2(Z) by

(⇣n)n =

✓Z

S1

' n dµ

◆

n

.

Then,

Z

⇤(A)
f(A) dµ⇣n = hf(A)(⇣n)n, (⇣n)ni`2(Z)

= hf(A)UU�1(⇣n)n, UU�1(⇣n)ni`2(Z)

= h
�
U�1f(A)U

�
U�1(⇣n)n, U

�1(⇣n)niL2(S1)

= hMf(�)','iL2(S1)

= hf(�)','iL2(S1)

=

Z

S1

f(2 cos(✓))|'(✓)|2
d✓

2⇡
.
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In splitting the region of integration symmetrically, and utilizing the change of variables � =

2 cos(✓), it follows that

Z

⇤(A)
f(A) dµ⇣n =

Z 2

�2
f(�)

"����'
✓
cos�1

✓
�

2

◆◆����
2

+

����'
✓
� cos�1

✓
2⇡ +

�

2

◆◆����
2
#

d�

⇡
p
4� �2

.

That is,

dµ⇣n =
d�

⇡
p
4� �2

,

the spectral measure of A.

The ingredients necessary for our method illustrated in the example above inform us of the

usefulness of this avenue of investigation. We now introduce the first avenue as a segway into

the second.

5.5.1 Multiplication Operator

Recall the multiplication operator described in chapter 4. We established operator theoretic

results concerning the operator norm and its spectrum. However, we did not prove the latter.

Let us do that here, and in doing so, we will illustrate why this may be fruitful in describing

⇤`2(T )(C').

Example 5.3. Let (X,M, µ) be a measure space and fix ' : X ! Y an essentially bounded,

measurable function. Define the multiplication operator A' : L2(X,M, µ) ! L2(X,M, µ) by

A'f(x) = '(x)f(x),

for f 2 L1(X,M, µ). Define the spectrum of A', denoted ⇤(A'), by

⇤(A') = {� 2 C | (A' � �) is not invertible}.

If we identify (Y, T ) with C by equipping it with its usual topology, the essential range of ',

denoted R['], is given by

R['] = {� 2 C | 8✏ > 0, µ ({x 2 X : |'(x)� �| < ✏}) > 0}

We claim that ⇤(A') = R[']. Indeed, let � 2 C and suppose � 62 R[']. Then,

µ ({x 2 X : |'(x)� �| < ✏}) = 0,

for some ✏ > 0. Therefore, '(x)� � 6= 0 a.e. on X. Hence, A1/('��) is bounded. Because

A1/('��) ((A' � �) f) (x) = A1/('��) ('(x)f(x)� �f(x)) =
'(x)f(x)� �f(x)

'(x)� �
= f(x),
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and similarly,

(A' � �)
�
A1/('��)f

�
(x) = (A' � �)

✓
f(x)

'(x)� �

◆
=
'(x)f(x)� �f(x)

'(x)� �
= f(x),

then (A' � �) is invertible, so that � 62 ⇤(A'). Thus, ⇤(A') ✓ R[']. Conversely, let � 2 R['].

For any n 2 N, define
�n := {x 2 X : |'(x)� �| < 2�n

}.

Select a sequence {⌦n} such that for all n, ⌦n ✓ �n, where 0 < µ(⌦n) < 1. Let  n = �⌦n , the

characteristic function on ⌦n. Then,

||(A' � �) n||
2 =

Z

⌦n

|'(x)� �|2| n|
2 dµ(x) 

�
2�n

�2
|| n||

2 =
|| n||

2

22n
,

so that the linear transformation (A' � �)�1 is unbounded. Hence, (A' � �) is not invertible.

Therefore, � 2 ⇤(A'), so that R['] ✓ ⇤(A'). Thus, ⇤(A') = R['].

We want to describe the structure of ⇤`2(T )(C'). However, describing the spectrum of an

operator might be di�cult. Recall Theorem 3.26 and Corollary 3.27. If we obtain the right space,

the right essentially bounded function, and a unitary operator, we can represent a composition

operator on `2µ(T ) as a multiplication operator on an L2 space. The di�culty lies in finding all

the pieces necessary for our construction of a unitary equivalence. As further work, we hope to

continue this line of investigation and believe it will be fruitful. The interested reader is referred

to [6], where more on this line of inquiry can be found.

5.5.2 Weighted Composition Operator

The above results allow us to establish C' acting on `2µ(T ) as a unitarily equivalent representation

of a multiplication operator on some L2 space induced by an L1 function. However, the di�culty

comes in finding all the pieces necessary for this representation, which might not have closed

forms. In our case, there is no clear way of doing this procedure yet, but further investigation may

lead us down the path of obtaining it. Therefore, we turn to another method to to investigate the

spectral structure of composition operators. Firstly, let us consider T = N ✓ Z and ' : N ! Z.
If we define a weighted composition operator on `2µ(N) by

Wµ,'f(v) =

8
<

:

µ(v)
µ('(v))f('(v))), v 2 N

0, v 2 Z \ N

where µ : N ! R+, then it will be unitarily equivalent to a composition operator C' on L2(⌦, ⌫),

where ⌦ = N [ R(') and ⌫ is some measure on the �-algebra of the power set of ⌦. Let us

consider the follwing definitions found in [10].

Definition 5.15. For n 2 ⌦, define the orbit of ' containing n by

O[';n] = {k 2 Z | 9i, j � 0 such that 'i(k) = 'j(n)}.
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Definition 5.16. Let ' : N ! Z. If k 2 N and 'j(k) = k for some j � 1, then the cycle of '

containing k is

C(k) = {n 2 Z | 't(k) = n, for some t � 0}.

The map ' is said to have no cycles if C(k) = ;, for all k 2 N.

Theorem 5.17. Let ' : N ! Z have one orbit and no cycle, µ a weight on N, and ⌦ =

N[R('). Then, the weighted composition operator Wµ,' on `2µ(N) is unitarily equivalent to the

composition operator C' on L2(⌦, ⌫), for ⌫ a measure on the power set of ⌦.

Proof. Define the measure ⌫ by ⌫(0) = 1 and, for any w 2 N, by

⌫(w) =

2

4
k�1Y

i=0

µ('i(0))

 
n�1Y

i=0

µ('i(w))

!�1
3

5
�2

=
h
µ(0) . . . µ('k�1(0))

�
µ(w) . . . µ('n�1(w))

��1
i�2

with the convention that '0 = idN, and such that 'n(w) = 'k(0), for some k, n � 0. Define

U : `2µ(N) ! L2(⌦, ⌫) by f 7! f/
p
⌫, for all f 2 `2µ(N). For f 2 `2µ(N), notice

||Uf ||2⌫ =

Z

⌦

����
f
p
⌫

����
2

d⌫ =

Z

⌦
⌫�1

|f |2 d⌫ =

Z

⌦
|f |2 dµ = ||f ||2µ.

Now, let us select h 2 L2(⌦, ⌫). Then,

hUf, hi⌫ = h⌫�1/2f, hi⌫ =

Z

⌦
⌫�1/2fh d⌫ =

Z

⌦
f⌫1/2h dµ = hf, ⌫1/2hi = hf, U�1hi,

so that ||U || = 1 and U⇤ = U�1, implying that U is unitary. If v 2 N, then

U⇤C'Uf(v) = U⇤C'((⌫
�1/2f)(v))

= U⇤((⌫ � ')�1/2(f � ')(v)))

= ⌫1/2(⌫ � ')�1/2(v)f('(v))

=

0

BBB@

k�1Q
i=0

µ('i(0))
⇥
µ('(v)) . . . µ('n�2('(v)))

⇤�1

k�1Q
i=0

µ('i(0)) [µ('(v)) . . . µ('n�1('(v)))]�1

1

CCCA
f('(v))

=
µ(v)

µ('(v))
f('(v))

= Wµ,'f(v).

Otherwise, v 62 N, so that Wµ,'f(v) = 0 for all f 2 `2µ(T ), and also

U⇤C'Uf(v) = U⇤C'((⌫
�1/2f)(v)) = 0.

Thus, C' on L2(⌦, ⌫) is unitarily equivalent to Wµ,' on `2µ(T ).
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Notice that this result establishes something even more precise than the multiplication operator

result. This result allows us to translate the spectral structure of a class of weighted composition

operators to the spectral information of composition operators a↵orded on an L2 space. This

exemplifies another avenue of investigation that will be fruitful in further work to come.
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