
Trinity University Trinity University

Digital Commons @ Trinity Digital Commons @ Trinity

Computer Science Faculty Research Computer Science Department

6-1998

The Eight-Minute Halting Problem The Eight-Minute Halting Problem

J. Paul Myers Jr.
Trinity University, pmyers@trinity.edu

Follow this and additional works at: https://digitalcommons.trinity.edu/compsci_faculty

 Part of the Computer Sciences Commons

Repository Citation Repository Citation
Myers, P. J., Jr. (1998). The eight-minute halting problem. SIGCSE Bulletin, 30(2), 53-56. https://doi.org/
10.1145/292422.292442

This Article is brought to you for free and open access by the Computer Science Department at Digital Commons @
Trinity. It has been accepted for inclusion in Computer Science Faculty Research by an authorized administrator of
Digital Commons @ Trinity. For more information, please contact jcostanz@trinity.edu.

https://digitalcommons.trinity.edu/
https://digitalcommons.trinity.edu/compsci_faculty
https://digitalcommons.trinity.edu/compsci
https://digitalcommons.trinity.edu/compsci_faculty?utm_source=digitalcommons.trinity.edu%2Fcompsci_faculty%2F9&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.trinity.edu%2Fcompsci_faculty%2F9&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:jcostanz@trinity.edu

The Eight-Minute Halting Problem
J. Paul Myers, Jr.

Department of Computer Science
Trinity University

San Antonio, Texas USA
pmyers@cs.trinity.edu

Abstract
After years of presumed emphasis of CS theory in the curriculum, it is currently in vogue
to downplay, if not disparage, a significant role for theoretical issues. This is being done
with such vigor, however, that some are advocating an abandonment of even such topics
as unsolvability as being no longer fundamental to a well-educated computing profes-
sional. An appeal is made, using the universal acknowledgment of the importance of the
liberal arts to any well-educated person, to assert that certain theoretical topics are part of
our liberal arts heritage. Moreover, students find even a brief presentation of these topics
to be very illuminating.

Introduction

W
"e live in peculiar times; or perhaps it would be
better to say that one of the mythical pendulums
has begun its swing the other way. In informal

discussions with colleagues, over the years one hears the
complaint that computer science has been too theory-orient-
ed. At the risk of overstatement (yet trying to find explana-
tions for current developments), at earlier times when mere
programming was denigrated, theory was a large portion of
what was left. For example, many of the classic texts o f our
field were written by theoreticians (e.g., Hopcroft & Ullman
among others).

Many of these conversations over the years have been
hostile to the elevated role o f theory in computer science.
But most recently, theory-bashing has found a more formal
and public forum. For example, it 's now guaranteed to elic-
it some cheap laughter and sneering to point out that
theoretical computer science is all but useless in the curricu-
lum as Tanenbaum did in his keynote speech after accepting
file SIGCSE Award for Outstmading Cona'ibutions to Computer
Science Education at the 1997 Technical Symposium.
Evidently, a group of people challenged him after the speech,
but the damage was done; it is now fashionable to deride the-
ory in our curriculum to an extent heretofore unseen. Theory
does noteven appear on the Paper Submission Sheet (Course
Related) for the 1998 SIGCSE Symposium!

Presumably, our major focus has become training pro-
fessionals for careers in industry. The critiques against the-
ory are usually coupled with this priority. Of course, we all
have gained as more and more o f our topics have become
relevant to industry and have come to possess intellectual
significance as well. It has become enjoyable straddling the
distinctions between the theoretical and the applied. And
maybe there was once a conspirational ignoring of industry's
needs (as in the old debate between "pure" and "applied"

mathematics); but the recent backlash has been intense.
Indeed, I participated in a recent working group to de-

fine broad curricular parameters for informatics education
(seen as somewhat broader than computer science education
and considerably oriented toward the job market). In our
deliberations I made the comment that anyone in a comput-
ing profession should know about the Halting Problem.
While ul t imately such topics did make it into the
recommendations (perhaps to still my weeping and hys-
teria!), the immediate response o f a few was a joint guffaw.
Why is this?

O f course, one could go into a litany of all the reasons
why theory should be an important component of any com-
puting professional 's background; just read the preface to
any theory textbook! These reasons have to do with future
applicability, sharpening of reasoning skills, and the like.
But here we take another stance; namely that certain theo-
retical topics may not be useful at all but are part o f the
intellectual heritage of our field. We will cite only one pref-
ace, but it is a notable example as it is an indication of how
times have changed. In the late 1970's IBM sponsored a dis-
tinguished series of books called the "Systems Programming
Series" published by Addison-Wesley. One of these was a
delightful book by Frank Beckman, M~thematical
Foundations of Programming, that is more an expository
than a rigorous treatment of computer science theory [1]. He
writes of the computing practitioner:

Yet it seems that those who will spend their work-
ing lives in computing should have some curiosity
about, and acquire some understanding of, what
mathematics has to offer in providing a greater in-
sight into the phenomena surrounding the compu te r

- even when this insight has no apparent immediate
utility. [1]

Vol 30. No. 2 June 1998 53 SIGCSE Bulletin

Eight-Minute (continued from page 53)

This points to a joy in appreciating the philosophical
depths of one's endeavors whatever they may be and in
whatever field. But it's exactly this curiosity and intellectu-
al joy that seem to be absent as the field moves ever closer
to dedicating itself to industry's needs.

This turn of events seems particularly odd when one
considers that computing educators, as indeed educators in
virtually all technical fields, make continuing pleas for a
solid grounding in the liberal arts for its practitioners [2].
The oddness is that certain parts of computing theory are
precisely those aspects of the field in which the liberal arts
are interested! Colleagues in philosophy, history, English,
and art are always fascinated about topics such as the Halting
Problem or intractability - far more than a discussion of
spreadsheets or databases. Such people, when told of these
topics, find them to be part of their Western cultural heritage!
Indeed, there are a number of overview books on computing
for the "intelligent layperson" that highlight just such topics
[4,6,11 and cf. 7]. Schaffer, author of one breadth-first ele-
mentary book has written

... the first goal of most texts is to convey practical
information, much of which is rather less than
earthshaking The topics treated here are of
practical value, but they have been chosen primari-
ly on grounds of intellectual significance. I have
asked myself what ideas we computer scientists
have reason to be proud of and then attempted to
present these at an introductory level. [8]

And, of course, his is certainly not primarily a theory
text, for as computer scientists we have much to be proud of
that is applied: efficient algorithms, incredible architectures
and related technologies, the world-wide-web, multimedia,
databases, AI & expert systems, the amazing variety of com-
puting models and languages, virtual reality, etc., etc.
Unquestionably, applications are important and interesting,
increasingly so all the time.

But if programs and applications are at the heart of com-
puting, then we might say that certain theoretical issues are
at the soul of the field and are where the real philosophical
depth and permanence of the field is to be found (Harel's
book, Algorithmics, is even subtitled the Spirit of Computing
[4]). Those in liberal arts sense this; but we call for
increased attention to the liberal arts while ignoring the lib-
eral arts aspects of our own field!

Indeed, it is not only philosophical significance that is
being ignored, but even the historical roots of the field. Rea-
son is held to be the towering human achievement, at least in
the West; and the early thinking about computation was an
attempt to mechanize reasoning [5]. This, of course, intro-
duces artificial intelligence, another area in which it seems
every computing professional should have some knowledge.
[As an aside, if AI eventually succeeds, it would be hard to

say what other human achievement will ever have been more
significant.] Turing, Grdel, and others were attempting to
understand the "effective" (or algorithmic) aspects of reason
when they developed their computational models and made
their extraordinary discoveries. These were discoveries that
shook the foundation of our concepts of reason and mind that
were dearly held for millennia (at least since the ancient
Greeks). And for this work (not for his breaking the German
code), Turing is deemed to be the "father of computing" and
the namesake for the ACM's most prestigious award.

Our history and philosophical issues are at least as rich
and ancient as those in any field or discipline. Yet we call
for learning the histories, arts, and philosophies of other
fields while ignoring our own.

My students in Computers and Society (a course for hu-
manities majors) are always astonished to learn of tmsolv-
ability and intractability. There are treatments that are quite
elementary and accessible if one takes the small amount of
time needed to present and motivate them.

T h e Hal t ing P r o b l e m in E i g h t M i n u t e s

So now we come to the Eight-Minute Halting Problem.
After the guffaws of some in the informatics working group,
in a curious mixture of tongue-in-cheek and bluster, I asked
if we could spare just eight minutes out of our busy curricu-
lum to present something of such philosophical and histori-
cal importance. So, of course the topic was given the eight
minutes, though there was skepticism as to whether it could
be done. Hence this presentation is a response to the skep-
tics!

This will follow the ordering with which I present cer-
tain topics to the aforementioned humanities students. As a
background they have already seen and worked with the lin-
guistic/computational concepts of syntax, logical (semantic),
and execution (pragmatic) errors at a very elementary level
- e.g., examples in QBASIC or pseudocode. Certainly all
computing folks should know about these! But they do not
need to know about models of computation or Church's
Thesis; as current texts are pointing out, students today find
"self-evident" that their favorite models of computation are
fully robust [9].

Later in the course, when it's time to discuss the Halting
Problem, I ...

Minute 1: Remind them about syntax errors.

Minute 2: Tell them that we know how algorithmicaUy to
solve the "Syntax Problem" - i.e., is any given program syn-
tactically correct (we don't care about if it does what it's sup-
posed to). The students themselves point out that the algo-
rithrn M below is a compiler!

] - ~ yes if P is in correct syntax

Any Program P - ' ~ Algorithm M
no if P has a syntax error

SIGCSE Bulletin : 54 June 1998 Vol 30. No. 2

The students even realize that we have solved this problem
so thoroughly that the compiler does a number of other
things at the same time, and it even returns useful messages.

Minute 3: Talk about the "Semantic Problem" - does a
given program do what it's supposed to do. Might there be
an algorithm to solve this one, especially since syntax was so
easy?

j yes ifP is semantically
I

Any Program P " ~ I Algorithm A correct
L " ~ n o ifP has a semantic error

Minutes 4-6: Let them know that this one is harder and that
we might look at a small piece o f the overall problem. Is an
infinite loop an error? Generally yes, though an alert student
might point out that some programs (OS, real-time monitors,
...) are in error if they halt. In either case, one wants to know
whether a given program P will go into an infinite loop or
not. Such a loop or its absence will be an error we want to
know about, a small aspect of an overall semantic analysis.
We'd like to have as good a solution as a compiler provides,
namely not just that there is an error, but precisely the nature
o f the error. That is, we 'd like to know for what inputs does
P go into an infinite loop. But instead we're going to look at
even a simpler aspect of the problem: Given a particular
input x, will P halt on that x or go into an infinite loop?

Any Program P.,..~. ~ yes if P(x) halts

Algorithm H
Input x ' ' ~ no ifP(x) goes

into infinite loop

A couple trivial examples are created, e.g., in pseudocode, to
show that we can sometimes answer this question (and even
the more general version) for particular programs.

Minute 7: Point out that it's not really bizarre to think of a
program as being input to itself. For example, we could
compile a compiler using its own code. Or we could run a
program that counts lines-of-code (or some other metric)
through itself to count its own lines o f code. The program
has no "'awareness" that it is its own input. No problem, and
the students agree.

Minute 8: Now for the hand-waving; after all, I 'm almost
out of time! One may simply point out that by using a very
odd form of reasoning, one can set things up so that a modi-
fied version of our last program H above (Minute 5) is run
into itself leading to a contradiction from which we conclude
that H cannot exist. One can give references to elementary
treatments [3,6,11] and alert students that the mode of rea-
soning is unusual, odd. But it doesn't require solving non-
linear differential equations or triple integrals over infinite
domains or even developing a parser to be unambiguous!

It 's just weird; but an intelligent high school student can "get
it" after some consideration. But it's weird; our minds are
not accustomed to reasoning in that fashion.

My intent in the past few sentences was not to be silly.
Somehow, the repeated emphasis on the unusual (but ele-
mentary) nature of the proof is quite satisfying to these math-
ematically unsophisticated students. And if one did want to
take the additional fifteen to twenty minutes or so to present
the proof, it's quite easy to set up [again, 3,6,11].

But for many students, just knowing that they could read
and eventually understand the proof is sufficient. After all,
they do accept that the Syntax Problem is solvable by com-
pilers long before they have any idea how a compiler works.
Probably if we look at any elementary curriculum in any
field, we would notice far more hand-waving than appears at
first glance.

And now our students have seen something really inter-
esting. It can be emphasized here that now that we know
there is an unsolvable problem, Pandora's Box is forever
open; there are many such problems. This is very bad news
for the software industry; and, by the way, now gives a
meaningful answer to the bright student who just might ask
(or be led to ask by the teacher!): "Why, since programs are
mathematical objects o f a sort, can't we prove them to be
correct rather than test them for errors?" Sometimes we can,
but the unsolvability of the Halting Problem is a theoretical
limitation on that possibility for all cases.

Moreover, this simple result (and related ones) in this
century completely overthrew our view of and blind confi-
dence in mathematics and the rational mind that has been
part o f our Western heritage since ancient times. Previously
it was accepted that any well-posed problem had a solution
if we were just clever enough. And, by using the technique
of self-reference (a program running on itself), computer sci-
ence and mathematics have joined in a cultural phenomenon
of primarily the twentieth century as mind looks at mind
(psychology), art is about art, music is written about music,
and literature becomes reflexive. Students find these dis-
cussions fascinating, as indeed they should; these ideas are
fascinating. And, as a discipline we can take great pride that
some of our results have had such profound implications in
the world of the intellect and the liberal arts.

Conclusion

Much of what is written above is in a rather dramatic style,
making this somewhat fun to write! But I really do think the
issue is important and I really can't understand emphasizing
the liberal arts while withholding from students the profound
ways in which their own field has impacted those same lib-
eral arts. I f we want liberal arts to produce a well-rounded
individual, then it must be important for students to see these
aspects o f their own field.

The "eight minutes" is, o f course, not entirely serious;
but it's not far off. And it indicates that some discussion of
these basic ideas need not intrude into a computing cur-

Vol 30. No. 2 June 1998 55 SIGCSE Bulletin

Eight-Minute (continued from page 55)

riculum. It still strikes me as very odd to have to write a sen-
tence like this last one - that these ideas could ever seem
intrusive seems absurd (in the liberal arts absurdist sense!).
But as mentioned, we live in peculiar times; probably knowl-
edge of the Halting Problem does not translate well into
development of web-editors or telecommunications pack-
ages.

As a final note, I might mention that I have covered both
the Halting Problem and the presumed intractability of the
Travelling Salesman Problem (giving economic motivation
for its solution) in a single fifty-minute class. By starting
with just three, then five, cities, the students see how the
search tree develops and they themselves determine that the
growth is factorial. Then the rest is just a matter of having a
student pull out a calculator to compute, say, 48! (the capi-
tals of the contiguous US states), assuming a few billion
comparisons per second, and counting the eons! This is
probably the students' favorite lecture of the semester.

And here no talk of NP-Completeness is necessary; the
students are stunned by the news anyway!

Appendix
A wonderful alternative to augment the presentation of the
Halting Problem without adding too many extra minutes (!)
is derived from SmuUyan's very clever machine illustration
of Grdel's proof of incompleteness [10]. Grdel showed that
there can be no algorithmic all-purpose means of deter-
mining all the true statements in a sufficiently robust formal
system.

Smullyan's machine prints expressions of only four
symbols: P,N,R,*. An expression is printable if the machine
can print it. A sentence is in one of four forms, where x is
any expression constructed from the four symbols: (1) P*x
(true i f fx is printable); (2) NP*x (true i f fx is not printable);
(3) PR*x (true if the repetition xx of x is printable; and (4)
NPR*x (true iff xx is not printable). The machine is
assumed to be completely accurate: every sentence printed
by the machine is true. So now, for example, if PP is print-
able, we can additionally write P*PP and PR*E And with
these, we can now write PP*PP and PPR*P; etc.

Next consider the sentence NPR*NPR* (true iff the
repeat of NPR* is not printable). But the repeat of NPR* is
in fact NPR*NPR* which now essentially says "I am not
printable." If true, then it can't be printed and so our
machine can not print all true sentences. If, on the other
hand, NPR*NPR* is false, then it can be printed, defying the
presumed accuracy of our machine. So if the machine is
accurate, there are true sentences it can not print. This is the
odd sort of reasoning that proves that the Halting Problem is
unsolvable. In Grdel 's context, a true but unprovable sen-
tence might be "Program P will halt on input x."

Bibliography

1. Beckman, Frank S., Mathematical Foundations o f Pro-
gramming, IBM Systems Programming Series, Addison-
Wesley, Reading, MA1980.

2. Cassel, Lillian N., "Computing and Education at the University
Level," Proceedings of the IFIP WG 3.2 Working Conference,
1997, to appear.

3. Goldschlager, L. and Lister, A., Computer Science ~ A
Modern Introduction, 2nd ed., Prentice-Hall, Inc., Englewood
Cliffs, N J, 1988.

4. Harel, David., Algorithmics: The Spirit o f Computing, Addison-
Wesley, Reading, MA, 1987.

5. Haugeland, John, Artificial Intelligence: The Very Idea, MIT
Press, Cambridge, MA, 1985

6. Hofstadter, Douglas R., G6del, Escher, Bach: An Eternal
Golden Braid, Basic Books, New York, 1979.

7. Myers, J. Paul, Jr., "The New Generation of Computer
Literacy," SIGCSE Bulletin, Vol. 21, no. 1, ACM Press,
February 1989.

8. Schaffer, C., Principles of Computer Science, Prentice-Hall,
Inc., Englewood Cliffs, N J, 1988.

9. Sipser, Michael, Introduction to the Theory of Computatior~
PWS Publishing Company, Boston, 1997.

10. Smullyan, Raymond, 5000 B.C. and Other Philosophical
Fantasies, St. Martin's Press, New York, 1983.

11. Walker, Henry M., The Limits of Computing, Jones and Bartlett
Publishers, Boston, 1994.

Questions about ACM Membership?

+1-800-342-6626 (U.S. & Canada)
+ 1-212-626-0500 (outside U.S.)

SIGCSE Bulletin 56 June 1998 Vol 30. No. 2

	The Eight-Minute Halting Problem
	Repository Citation

	tmp.1544200413.pdf.p6pgn

