
Trinity University
Digital Commons @ Trinity

Computer Science Honors Theses Computer Science Department

8-17-2005

Self-Adjusting Finite State Machines: an approach
to Real-Time Autonomous Behavior in Robots
Scott Schwartz
Trinity University

Follow this and additional works at: http://digitalcommons.trinity.edu/compsci_honors

Part of the Computer Sciences Commons

This Thesis open access is brought to you for free and open access by the Computer Science Department at Digital Commons @ Trinity. It has been
accepted for inclusion in Computer Science Honors Theses by an authorized administrator of Digital Commons @ Trinity. For more information,
please contact jcostanz@trinity.edu.

Recommended Citation
Schwartz, Scott, "Self-Adjusting Finite State Machines: an approach to Real-Time Autonomous Behavior in Robots" (2005). Computer
Science Honors Theses. 9.
http://digitalcommons.trinity.edu/compsci_honors/9

http://digitalcommons.trinity.edu?utm_source=digitalcommons.trinity.edu%2Fcompsci_honors%2F9&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.trinity.edu/compsci_honors?utm_source=digitalcommons.trinity.edu%2Fcompsci_honors%2F9&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.trinity.edu/compsci?utm_source=digitalcommons.trinity.edu%2Fcompsci_honors%2F9&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.trinity.edu/compsci_honors?utm_source=digitalcommons.trinity.edu%2Fcompsci_honors%2F9&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.trinity.edu%2Fcompsci_honors%2F9&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.trinity.edu/compsci_honors/9?utm_source=digitalcommons.trinity.edu%2Fcompsci_honors%2F9&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:jcostanz@trinity.edu

Self-Adjusting Finite State Machines:
An approach to Real-Time Autonomous Behavior in Robots

Scott Schwartz
Department of Computer Science

Trinity University
One Trinity Place

San Antonio, Texas
78212-7200. USA

Faculty Advisor: Dr. Maurice Eggen

Abstract
In the Robotics industry, it is a frequent requirement that robots operate in
real-time. The usual approach to this issue involves creating robots driven
entirely by direct environmental input rather than complicated planning and
decision-making AI. This approach means that the current state of the robot
in relation to its environment exclusively determines the actions of the robot.
In the simplest terms, this approach creates a Finite State Machine (FSM).
Clearly, a standard FSM is completely pre-deterministic upon its creation.
This is a drawback which immediately disallows the robot to cope with
dynamic environments in an autonomous manner. This research suggests a
solution to this problem, while still maintaining real-time performance of the
FSM structure, through the development of a Self-Adjusting FSM (SA-
FSM). A SA-FSM is a FSM with an additional module which adds,
removes, and adjusts specific states of its FSM structure. By adjusting its
FSM the SA-FSM will have the basis for autonomous attributes. It will be
capable of coping with drastic changes in its environment by making
necessary fundamental adjustments to its behavior. Through this
mechanism, the process of learning can be implemented. In this regard, only
the inherent learning/inference algorithms the SA-FSM employs to adjust its
FSM determine the complexity of the behavior produced by a SA-FSM
based robot.

Keywords: Robots, Autonomous Robots, AI, Real-Time, FSM.

 ii

Self-Adjusting Finite State Machines:

An approach to

Real-Time Autonomous Behavior

in Robots

by

Scott Schwartz

 iii

Acknowledgements

First and Foremost, I would like to thank my parents, Mom and Dad,
for their continual support in my academic career. Their interest and
intervention is this as well as all other areas of my life brings warm feelings.
On this topic especially, their attention has been very comforting.

I would like to thank Dr. Gerald Pitts and Dr. Maurice Eggen for
initially providing the opportunity for this research. I would like to further
thank Dr. Maurice Eggen for always teaching excellent classes, and for
being my trusted advisor throughout this research. In general, I would like
to thank each member of the Computer Science faculty who I have been
involved in during my academic career here at Trinity. The same is goes for
my professors in the Mathematics department.

Also, a strong recognition of thanks must be extended to Dr. Diane
Saphire, my statistics professor. Her teaching has greatly influenced my
entire life, and thus, influenced this work.

Additionally, I have enjoyed the company of many fellow students
while here at Trinity. Thank you all for the fun times.

Finally, I would like to thank pretty Sarah Maspero for being so
pretty, and being an excellent distraction from this work.

 iv

Table of Contents

Abstract ii

Acknowledgments iv

Chapter 1: Introduction 1
1.1: Robots Today

1.1.1: Industrial Robots
1.1.2: Service Robots

1.2: Autonomous Mobile Robots
1.3: Focus

Chapter 2: Mobile Robot Mechanics 5
2.1: Acting in the Environment

2.1.1: Ground Movement
2.1.2: Other Forms of Movement and Interaction

2.2: Sensing the Environment
2.2.1: Position Location Systems
2.2.2: Compasses and Gyroscopes
2.2.3: Proximity and Touch
2.2.4: Ranging
2.2.5: Environmental Occurrence Sensors
2.2.6: Sensor Considerations

Chapter 3: Autonomous Control 12
3.1: Traditional Approach
3.2: Behavioral Approach
3.3: Hybrid Approach
3.4: Machine Learning
3.5: More on Statistics

 v

Chapter 4: Goals 18
4.1: Intelligent
4.2: Autonomous
4.3: Real Time
4.4: Motivation

Chapter 5: Methodology 22
5.1: Simulation

5.1.1: Negatives
5.1.2: Positives

5.2: Distributed Intelligent Agents (DIA)
5.3: Modularized Commands

Chapter 6: Guidelines 26
6.1: Approach

6.1.1: Reaction Side
6.1.2: Deliberation Side

6.2: Assumptions
6.3: Sensors and State
6.4: Laws
6.5: Events and Critical Events
6.6: Learning Events

6.6.1: Environment Learning
6.6.2: Self Learning

6.7: Rules
6.8: Monitors
6.9: Self-Adjusting Finite State Machine (SA-FSM)
6.10: Adjusting
6.11: Actions
6.12: Interrupts

 vi

Chapter 7: Experimentation 41
7.1: Model

7.1.1: Environment-Robot Relation
7.1.2: Robot Responses
7.1.3: Robot Knowledge
7.1.4: Robot Learning

7.2: Implementation

Outlook 48

References 49

Appendix A: Summary Paper 50
Appendix B: Project Model 56
Appendix C: Implementation Source Code 61

 vii

Chapter 1
Introduction

Robot. The word stimulates a variety of captivating thoughts. When I see this

word I think about the future, about advancement, and about better times. I think about

the benefits society would gain from conveniences that could be achieved through

robots. I think about all the difficult tasks that humans cannot perform on their own which

could be accomplished with the help of robots. And I think about dangerous situations

which would no longer require direct human intervention by instead using robots. Then, I

begin to imagine creating a conscious, intelligent robot. Or, at least maybe one that just

seems to display such characteristics. From this point the imagination can extend these

reflections into the most meaningful and intriguing realms ever considered by human

minds. But this reflection on the word robot is almost exclusively influenced by the

cartoons I watched on TV as a child and the movies I see from Hollywood today. Is any

of this real? Is any of this even possible? If it is, where is it? Where are all the robots

now? What really is happening with robots today?

1.1 Robots Today

An official summary of the state of the robotics industry today can be found in the

2004 World Robotics Survey [4]. This report was issued by the United Nations

Economic Commission for Europe (UNECE) in conjunction with the International

Federation of Robotics (IFR) [4] [5]. There is a wide range of types of robots in use

today. From the current state of the robotics community, it would appear that the world is

very close to becoming dominated by robot usage. This has not yet occurred, but the

majority of components for such a shift all appear to be in place. What this will mean on

the personal, cultural, and global level is a very interesting question. The effect of such a

move on society is not merely a black and white issue, but will have a number of varied

affects. This discussion is not the topic that is presented here, although by entering into

the robot domain it would seem that this issue should be given significant consideration

for its ethical implications. Nonetheless, we shall continue.

 1

1.1.1 Industrial Robots

The first group of these robots is the industrial robot group. There are currently

just less than one million industrial robots in use today. Sales in this market are currently

increasing at a yearly rate of 7%. In keeping with the group name, industrial robots are

used primarily in industrial factory applications. The main two areas for their use are

welding applications and assembly line applications. These areas take up 25 % and

33% of the market, respectively. The remaining industrial robots are used for other

specialized purposes. Currently, these robots are especially prevalent in the automotive

and electronics industries. Industrial robots are expected to play a major role in food

production and packaging industries in the near future.

1.1.2 Service Robots

A second classification is service oriented robots. These are robots that operate

semi or fully autonomously to perform services to humans in a non-industrial setting.

Service robots are divided into two classes.

The first are robots for professional use. There are currently only 21,000

professional use robots. But by 2007, 54,000 new units are expected to be in use!

Underwater systems make up 23% of this category. Cleaning robots make up 16%.

Laboratory robots make up 15%. Demolition and construction robots make up14%.

Medical robotics makes up 12%. Mobile robot platforms for general use make up 9%.

Defense, rescue, and security applications make up 5%. And field industry robotics like

forestry and milking machines make up 4%. Optimistic projections show that new areas

with potential for the most growth in this category involve humanoid robots and public

relations robots.

The other category of service oriented robots is those for personal and private

use. There are currently 610,000 domestic robots and 700,000 entertainment robots

today. This area of robotics is booming with a projected 4.1 million new domestic robots

and 2.5 million new entertainment robots by 2007! The main types of robots comprising

this area of robots are vacuum cleaning and lawn-mowing robots, as well as

entertainment and leisure robots.

 2

1.2 Robots Today

In the category of service oriented robots for professional use, there is currently a

growing interest in autonomous mobile robot research. An autonomous mobile robot is a

robot that independently navigates and operates in its environment in order to perform its

tasks [3]. It may also need to learn and adapt to its environment [3]. Many research

institutions and the majority of universities have projects devoted to autonomous mobile

robot projects. The underwater robots, laboratory robots, and mobile robots that are

already in operation today are just the meager beginnings of what is expected from

autonomous mobile robots. The DARPA Grand Challenge showcases a race of

unmanned vehicles [6]. There is a RoboCup which showcases robot soccer teams

playing against each other [7]. There is even an annual International Fire Fighting Robot

competition [8], as well as a numerous variety of other autonomous mobile robot

competitions.

Just as the extensive range of applications of the competitions suggests,

autonomous mobile robots will have an extensive range of application and impact and

will be useful for many purposes. They can be designed and built for a variety of

objectives in number of different environments [3]. Already, there are applications for

autonomous mobile robots in a variety of environments set in the air, underwater, and on

land. Autonomous mobile robots can be used to explore, investigate, and search areas

where, for whatever reasons, humans cannot go [2]. They can perform tasks that

humans are unable to perform such as the interaction, collection, and transportation

dealing with dangerous materials or environments [1]. On a less glamorous level,

autonomous robots can be used for more mundane tasks that are too dirty or too dull,

such as cleaning, guidance, inspection, and surveillance [1]. The possibility for their use

is limited only by our own conceptions about their goals.

1.3 Focus

While all of the goals of different types of autonomous mobile robots are not the

same, there is certainly a unifying similarity in the overall field. To facilitate the research

however, autonomous mobile robots will henceforth be approached through a specific

instance in this field. This instance will be an autonomous mobile robot for use in

planetary exploration. The current benchmark in this area is the twin robots Spirit and

Endurance which are currently operating under the Mars Robot Exploration Mission [9].

 3

However, these robots are not completely autonomous and must receive instructions

from human controllers. Additionally, they do not perform as efficiently and effectively as

a truly autonomous entity. There is still progress to be made in this area [10]. The

overriding goal is to contribute to the advancement of this type of autonomous mobile

robot. As an added benefit, progress in this area is sure to positively influence other

areas of the autonomous mobile robotics field due to the related nature of this whole

discipline. Nonetheless, from now when using the term robot, we are referring to a

mobile robot of an exploratory nature.

 4

Chapter 2
Mobile Robot Mechanics

 This section will review the engineered equipment that is available to be used in

constructing a mobile robot. Specifically this section focuses on components involved in

the mechanical movement of robots as well as components which provide a way to

perceive and represent the environment outside of the robot. These are only mechanical

pieces of the robot. They make up the ability to create a mobile robot. At this stage, the

robot will have no control over itself, but can still be operated in a useful manner through

human direction. But also at this state, the robot can be given the necessary additional

components which can provide that it will be autonomous. These mechanical

components alone are only tools for helping reach this goal of developing an

autonomous mobile robot. They present several problems of their own which must be

studied and addressed which do not relate to autonomous mobile behavior. But they are

to be used towards solving this objective, as they are necessary components for its

completion. It is worthwhile to understand or at least become familiar with the general

nature of these components so that this information can be taken into account in order to

facilitate the development process instead of hinder it.

2.1 Focus

 The whole premise of autonomous mobile robots is to allow an intelligent entity to

move about its environment in order to accomplish a series of assigned tasks [3]. How

can the robot to traverse its environment? There are a number of options for the

question of movement. The robot may possibly require some combination of various

capabilities. A tool which the robot interacts and makes changes to its environment is

called an actuator. Bringing together the correct combination of actuator capabilities will

require a carefully designed robot. The robot plan will be directly dependent upon what

the robot will need do. The robot will need to be built for its environment [1]. There are a

number of logistic issues which must be answered in order to bring all the required forms

of motion together. Issues such as overall weight, actual space available on the robot,

and energy distribution must all be addressed [1]. It is clear that the design of the robot is

 5

of the utmost importance [1]. However, the issue of energy is at least of equal, if not

greater, practical importance in the use of mobile robots. Energy is a precious

commodity in mobile robots. Creating lasting and renewable energy source for a mobile

robot is by no means solved, and is a key focus of research in robotics today [2].

2.1.1 Ground Movement

In the case of an exploration robot, it is clear that ground movement over a

diverse set of terrains will be required. The most prevalent approach to movement is to

use a wheeled robot. A wheeled robot is simple to construct and is efficient with respect

to weight capacity as well as energy use [1]. However, wheeled movement can be poor

over uneven terrain, so if this approach is used special care must be given to the design

and configuration of system in order to offset this issue [1]. There are many options to

be addressed in this type of a system. What strength shocks are required? How many

tires should be used, and in what configuration should they be arranged? What type of

tire should be used? An alternative which addresses the problem of movement over

difficult terrain is to use tread instead of tires. But this approach is generally not very

energy efficient because of the nature of treaded movement [1]. There is also a set of

questions for treaded movement similar to those for wheeled movement. A very

divergent approach to the above options is to use legged motion. This approach

generally involves biomimetics, which is the use of living creatures as inspiration for

machines [2]. This approach has already been verified through the organic creatures in

our world. But, designing these systems is much more complex than the other

approaches, and requires many more mechanical parts to be useful [1].

2.1.2 Other Forms of Movement and Interaction

In addition to land movement, the robot could also require other forms of

movement. It may be required to take to the sky in certain situations. Or, perhaps it will

need to travel on or in an ocean-like environment. Ariel robots are usually mimic

helicopters or blimps, and require a lot of design and planning, as well as a large amount

of energy. Water related robots resembling boats and submarines have already had

some success to date. The issues here will be incorporating these components into the

design of the robot. Besides general movement abilities, there will of course be other

ways the robot will be required to interact with its environment to accomplish any

 6

specialized tasks it may need to. It may need to take pictures. It may need to grab, hold,

and handle objects in the environment. It may need to protect itself. Adding these

additional layers of actuator functionality again raises logistic issues for the robot, as well

as complexity in general. Just as the nature of each of these forms of movement is very

different, so the responses they receive in the environment will be. This must be taken

into consideration. Each form of actuation must be considered on its own as well as in

conjunction with the other forms of actuation.

2.2 Other Forms of Movement and Interaction

Now that a number of possible ways a mobile robot can operate in an

environment have been briefly covered, the next logical step in the discussion is how the

autonomous mobile robot is to sense its environment in order to act in it. It has been

given the means to accomplish its tasks, but without being able to sense it will obviously

be unable to complete its goals. Humans have an effective sensors array, using vision

as the primary sense [1]. When humans build robots, they often design them in their

own image [2]. But this is not necessarily the only way, or best way, to sense the

environment. The rest of nature often does their sensing of the environment differently

[1]. Dogs use their sense of smell to an elevated degree compared to humans. Bats use

an amazing sound based system to view their world. Cockroaches use a sophisticated

feeling system to sense their near and distant surroundings. Unfortunately, robots do not

currently have access to the organic sensing systems that the creatures in our world use.

Until, that happens, we must settle for mechanical attempts and sensing. Some of these

are remarkably advanced and effective, while others have not yet quite been mastered.

What methods are available for the type of robot application in question for sensing the

environment? Sensors for Mobile Robots: Theory and Application by H. R. Everett

contains a detailed introduction into this question [13]. The following is based off

Everett’s presentation of the topic.

2.2.1 Position Location Systems

Usually mobile robots will be designed to take into account dead reckoning. This

is the process of locating where the robot currently is in relation to where it has been. A

simple technique for of dead reckoning is odometry. This is where the motion actions

are monitored and used to calculate how the robot has moved, and thus the location of

 7

the robot. Odometry sensors include, brush encoders, potentiometers, synchros,

resolvers, optical encoders, magnetic encoders, inductive encoders, and capacitive

encoders. The problem with all of this is that it is based entirely off of the movement

generated by the mobile robot. There is no way to monitor externally motivated changes

to the robots location such as slipping. This problem will require a whole new set of

sensors. Fortunately, there are different approaches to dead reckoning. These include

Doppler and internal navigation. The idea here is to compare the robots position directly

from its actions relative to the environment, instead of through only its movements.

Doppler monitors the direct environment to determine how the robot is traveling. Internal

Navigation involves sensing the accelerations of the robot, and directly computing its

resulting location.

Locating the specific location of the mobile robot can be done in other ways.

There are ground-based and satellite-based radio frequency position location systems.

There are also ultrasonic and optical position-location systems. These are forms of GPS

(Global Positioning System). This methodology locates the position of the robot in its

environment through satellite or other similar means by use of radio waves. Generally, a

chip is put into the mobile agent and is then tracked through one of the above methods.

This is a new technology, and there is currently much ongoing research in this area. So

far, this appears to be a very feasible and effective system.

2.2.2 Compasses and Gyroscopes

 In addition to the mobile robot knowing its location, it would probably also like to

know certain attributes of its orientation. This can be done with compasses and

gyroscopes. Compasses of course give a direction or a heading. There are a

remarkable number of choices in this sensor group. There are mechanical magnetic,

fluxgate, magnetoinductive magnetometers, hall-effect, magnetoresistive, and

magnetoelastic compasses. Gyroscopes on the other hand can do a little more than

compasses. They give measurements such as pitch and tilt. There are two categories

of gyroscopes, mechanical and optical. In the first category are space-stable

gyroscopes, gyrocompasses, and rate gyros. In the second category are active ring-

laser, passive ring resonator, open-loop interferometric fiber-optic, closed-loop

interferometric fiber-optic, and resonant fiber-optic gyros.

These two forms of input, compass and gyroscope, both give mobile robots a

better interpretation of their environment, and how they are situated in it. These sensors

 8

are just another step in making sure the robot is more spatially aware. This type of

information will be critical to the well being of the robot.

2.2.3 Proximity and Touch

 These sensors will be critical to the robot’s success. It would probably be a good

idea to equip the mobile robot with collision detection because it will be a bad idea to

allow the robot to smash into dangerous obstacles. It needs to be aware of obstacles

and avoid them. Further, if the robot is hit, it needs to realize that and react accordingly.

Proximity sensors alert the robot to the presence of an obstacle. Some give a general

range for the obstacle, and some do not. This is crude, but useful. There are several

categories of proximity sensors. There are magnetic, ultrasonic, optical, inductive,

microwave, and capacitive sensors. These sensors will allow the robot to be alerted

when an object is within a certain range of the sensor. Slightly more simplistic than the

proximity sensors is a tactile sensor, which can alert the robot when it has been touched.

Technology in tactile sensors includes contact closure, magnetic, piezoelectric,

capacitive, photoelectric, magnetoresistive, piezoresistive, and ultrasonic sensors.

Basically, these sensors are configured as tactile feelers, tactile bumpers, or distributed

force arrays. Proximity sensor technology is improving, so touch sensors are not quite

as useful as before when compared to proximity sensors, but there still can be uses for

them. And, in some circumstances, they will be preferred over proximity sensors. In

both types of sensors, the configuration that the sensors are applied onto the robot will

be determined as part of the design, and are based off of the needs and requirements for

the robot.

2.2.4 Ranging

 The next step beyond simply being aware of obstacles through proximity and

tactile sensors is to be able to quantify the position of the locations of objects in the

robot’s environment. This will allow intelligent movement and interaction of the

autonomous mobile robot with its environment. As in the last case of sensors, the

configuration of these types of sensors must be suited to meet the needs of the robot.

There are several techniques in this area, and each of these has several variants.

Triangulation is one such method whose variations include stereo disparity, single-point

active triangulation, structured light, known target size, and optical flow approaches.

 9

These approaches generally involve the comparison of two angles focused on an object

in a vision related methodology. Many of the techniques in this area can generally be

implemented as either active or passive sensors, with the choice depending on the

system. The first term simply means the sensors will radiate energy into the

environment they survey, such as the common approaches to radar, sonar, and lidar do.

The second term is the opposite of the first. Another method is time of flight which is

usually implemented in ultrasonic or laser form. Distance is measured by releasing a

pulse of energy and measuring the return time. Some methods which are used for

distance calculation but are not yet widely used for different reasons are interferometry,

range from focus, and return signal intensity. These approaches may become very

useful soon. An advance even beyond determining the distance of an object is to detect

any acceleration or velocity that the object possessed. This is possible through

continuous wave approaches such as phase-shift measurement and frequency

modulation. In this approach a wave is sent out and the part of the wave that is reflected

back can be used to interpret active attributes such as velocity and acceleration.

2.2.5 Environmental Occurrence Sensors

Any given autonomous mobile robot will need to be suited for the tasks it is built

to accomplish. Each of these robots will need to be equipped with the correct sensor

array so as to be able to cope with its tasks. There are many other sensors which are

used for specific tasks that are available to help a specific task robot to accomplish its

goals. Sound sensors are such a sensor. While acoustics are already used for ranging,

a passive use of sound, as well as other forms of active use can also be beneficial in

autonomous mobile robots just as it is in humans. As with sound, electromagnetic

waves are already applied for visual sensor applications. Just like sound, the

electromagnetic spectrum could be used for communication. The higher and lower

frequencies which are not used for visual applications could still be employed. Sensors

detecting temperature levels would likely be important, especially for the well being of

the robot. As with temperature, other forms of radiation sensors might be necessary.

Detecting vibrations could likely be important for the well being of the robot. Additional

presence and motion detectors could also be very useful. Odor sensors might serve

some special purpose in a certain robot. Other important and useful sensors would be

status indicator sensors which monitor the robot’s components themselves as opposed

to monitoring events that are external to the robot. The point is that are a very wide

 10

number of sensors applications that would be useful for certain mobile robots. These

sensors are available to be employed in the use of autonomous mobile robots.

Whatever the application the robot is to be used for, there is likely a sensor which will

help with that application [1].

2.2.6 Sensor Considerations

So, as far as sensors go, it appears that whatever the application, we are likely to

be able to construct a sensor which will adequately convey the situation to the

autonomous mobile robot. But is this really the case? Are all these sensors as reliable

as we would hope they should be? The simple answer is that sensors are usually not

100% reliable. They can be completely wrong, but usually the problem is simply that

their measurements are not precise. The sensors are full of noise. The causes are

different in different sensors, and they are often unavoidable. This is an issue in mobile

robots that will have to be taken into consideration and adjusted for.

So while it at first seemed that sensing the environment would be easy with all

the technology that is available to us, it may not be so easy in actuality. Further

complicating the situation is the fact that it is probable that the robot will use a vast array

of different sensor types. As the robot becomes more and more sophisticated, the

number of sensors required to maintain the higher level of sophistication also must

increase. When considering sensors, it’s important to note that just as these different

sensors are very distinct and so their input cycles will also be very distinct. The different

sensors will have different processing time. The inputs follow different cycles. This is an

issue which must be addressed, and no doubt will add additional complexity to the

functioning of the robot.

 11

Chapter 3
Autonomous Control

The preceding summaries gave a general survey of the existing mechanical

components available for autonomous mobile robots. In summary, the possibilities these

afford are quite extensive. The same can almost be said about the ways in which the

environment can be sensed by the robot. The facts about the mechanical components

by themselves are relatively unimportant in and of themselves. They are just good to be

familiar with in order to give us a knowledge and understanding about what we can

expect to be able to do. But how can we make the robot do whatever it is that we want it

to do? How do we control all these pieces so as to actually generate an autonomous

mobile robot? This question is largely a question for the field of Artificial Intelligence (AI).

And this is the question that is being explored here. We will be interested in how we can

use the potential capabilities machines give us in order to make a robot that behaves

intelligently in order to accomplish certain goals. There has already been extensive

research conducted in regard to this question. There are currently two major paradigms

for creating the intelligence required for a robot to behave autonomously [1] [3].

3.1 Traditional Approach

 The first approach is sometimes now referred to as the traditional approach

because this, simply enough, has been the approach that is traditionally used [1] [3].

The first attempts to create an intelligent program which could operate a mobile robot in

an autonomous manner involved this paradigm. In this methodology, the current state of

the environment is perceived through the sensors, and then it is modeled and a plan is of

action for how the robot should best proceed is developed [1] [3]. This is a sense, then

think, then act approach [3]. This cycle is best represented and understood in terms of

the following steps [1] [3]. The sensors record the input. Any computation required to

use the sensor input is then done, and last minute errors searched for. Once the

sensors input is in a usable form, it is all mixed together to represent the current state of

the environment for the robot [1] [3]. This model representation of the environment is

then used by the robot in order to decide how it should proceed [1] [3]. Once the plan is

 12

developed, the robot will execute the plan. The cycle will then repeat.

This approach is also sometimes called the functional approach because of the

nature of its operation. It receives an input, and returns an output. It is also sometimes

called the symbolic approach because it builds up a symbol base to represent its

environment and its own actions as they interact with the environment in order to

produce a plan of action. Additionally, it has been termed the deliberative approach,

because of the emphasis on the planning that goes into performing actions. There are a

number of problems with this approach when it is considered on its own. Because of

these drawbacks, this methodology has met with only modest success thus far in

applications related the robots discussed here. The first problem is that this type of

system is not very robust. It is an algorithm requiring correct execution from each of its

parts [3]. Also, this approach requires an intensive computational process which may

create a bottleneck which adversely affects the environmental sampling rate [1] [3]. This

same problem may also slow down the reaction time of the mobile robot [1] [3]. This

could be particularly disastrous in our application. During the time the robot is unable to

respond the environment while it processes some information about the environment it is

utterly self defenseless and useless. But a deliberative approach to problem solving

would seem to have a place somewhere [1] [3]. Planning does have some merit as a

concept [3]. So, this approach is still an important player in many areas of AI research.

It just cannot be the only approach because of the inherent problems it entails.

3.2 Behavioral Approach

Fortunately, there is another alternative. The second approach for controlling

autonomous mobile robots is called the behavioral approach. This is based on the

subsumption architecture developed by Rodney Brooks [11]. Brooks has become very

revered and respected for this idea. At its onset, this approach was quite novel

compared to the current practices of the time. Because of this, it did not gain immediate

acceptance. This is definitely no longer the case now though, as Brooks is one of the

most revered figures in robotics control, and this approach is now almost universally

accepted to be (at the very least) a key component for making autonomous robots. As

you will see, this methodology is a very straightforward and intuitive attempt to tackle the

question of autonomous behavior. The fact that this very simple approach based upon

only a straightforward observation has become so useful in this field is very promising for

future research.

 13

In this paradigm, the environment is used as its own best model, and the robot

simply reacts to occurrences in the environment [11]. For this reason this approach is

sometimes called the sub-symbolic approach and reactive approach. The behaviors all

run in parallel, simply waiting to be triggered [11]. Once a behavior is triggered, its

commands are fired and the resulting action adjusts the robot’s position relative to the

environment, possibly triggering additional behaviors. The individual behaviors are not

meant to be complex, but by combining and layering a number of reactive behaviors, an

advanced and complex intelligence begins to emerge [11]. So the instructions for the

robot’s actions and behavior are directly from the environment around the robot [11].

This seems to make enormous sense. If the robot can be equipped with the correct

sensor array in order to adequately sense the world with respect to its own well-being

and its goals, it can then perform its actions in the world as the world allows.

This approach so far appears to hold great promise. Everyone who now works in

this area of research is interested in some part of this methodology. It is simple, not

requiring megalithic hierarchical programming achievement [3]. And rather works on

simple behaviors. Because of this, it is easy to extend. Adding new behaviors does not

require in massive adjustments to the current system [3]. It supports multiple parallel

goals through independent individual behaviors [3]. It is very robust [3]. If one

component behavior has been lost, this fact need not effect the execution of the other

behaviors. There is no computation to create a time bottleneck on the system. The

robot simply receives input which it is designed to react to. This approach has already

met with impressive success because of the advantages that it offers. Insect-like

intelligence has already been demonstrated through the use of this methodology [11].

However, there is on shortcoming in this approach. The disadvantage is that this

approach does not seems to provide an easy way to allow developing and reasoning

about a plan, as the deliberative approach does [3].

3.3 Hybrid Approach

We can not likely deny that being able to plan actions in an environment is almost

a requirement for intelligence. We ourselves would say that we reason and make plans

concerning ourselves and our environment. It would appear then that at least some form

of reasoning and planning in an environment will be necessary for autonomous mobile

robots. The behavior approach, which seems so promising for so many reasons, will

likely fall short in this regard. We will use as much of that approach as possible in order

 14

to allow for continuous interaction with the environment not hindered by computational

interference, but it seems we will also need to employ the traditional approach to some

extent. An autonomous mobile robot of the nature we are interested will need to

continuously react in its environment as well as make overriding plans in order to

accomplish it goals. The approach used in this project will be a hybrid

deliberative/reactive paradigm. So, there will be a place for both approaches, but the

ways in which the different approaches can be used may be very selective. While the

hybrid deliberative/reactive paradigm was not discussed as its own category,

approaching mobile robot control through this paradigm is becoming standard for high

level applications. Continuing in this new convention seems a wise choice. While the

reactive approach is extremely appealing for all the reasons that have been given, we

need not limit our possibilities by confining ourselves to just that approach.

3.4 Machine Learning

 Coupled with the process of controlling an autonomous mobile robot, is the

concept of learning. In several situations it is plausible in that learning would be

irrelevant or unimportant. But for an autonomous mobile robot exploring a foreign planet,

it is hard to see how to proceed without some form of learning. If we didn’t need to learn

anything about the place that was being explored, why would we send a robot there in

the first place? Learning is an interdisciplinary field of very intensive study because of its

intrigue and potential importance. AI research is very involved in this field for these

reasons as well as the application to computer intelligences. When a mobile robot is

initially designed, many of the attributes and behaviors of the robot controller can be built

in by the designers of the robot. They have an idea of the types of things the robot will

be required to do and can plan accordingly. But, in robots like the exploration robot there

will certainly be things that the designers cannot plan for in the control of the robot.

There may be some things which occur that the robot is not already specifically designed

to deal with. How then is the robot to cope with these situations? The answer is that the

robot will need to learn to handle the situation. The robot will need to learn new actions

to perform in these unexpected occasions. Aside from simply being an almost

indispensable tool for an autonomous mobile robot, the topic of learning is a very

interesting and stimulating topic to explore. Autonomous mobile robots provide an

excellent opportunity for exploring this topic.

 There are a number of ways to consider the topic of leaning in mobile robots.

 15

Common approaches in mobile robots include reinforcement learning, probabilistic

reasoning, and connectionism or artificial neural networks [3]. These are all methods of

machine learning. This means that the learning is internal to the machine. This

separates the robot from the outside world because the robot has only a perceived

notion of the world. Machine learning is what goes on inside of the robot’s conception of

the world in order to acquire a new skill or a new knowledge [3]. Learning could be as

simple as building a mapping of the environment. Or, it could be learning which choice

of several choices is optimal under a certain setting. It could also be learning how

certain objects or agents in an environment effect and make changes to the

environment, and then how it should best respond to these objects and agents. There

will be a number of ways to do each of these tasks. We always want to choose the best

way. To do this, we will use aspects from the different current methods to machine

learning where they are especially useful. We will especially rely on a statistical

approach to learning. This will give us a sound theoretically based platform for building a

robot which can learn and infer about its environment. Generally, it seems that learning

is done through repetition. After touching a hot surface enough times, one generally

does not touch it again. All learning could conceptually be considered from a statistical

point of view. There are of course complications with this idea. For instance, how does

teaching fit into this thought? Would it be that some of the repetitions are weighted

higher than others? Questions similar to these will be explored while this method is

used. But the notion of statistical learning seems like a valid base to start with when

considering learning.

3.5 More on Statistics

This author believes that the application of probabilistic and statistical

approaches to learning in AI. This is turn will hold promise for decision making in AI.

The issues of decision making and learning are key in AI. There are many approaches

to these topics, but one which holds great potential benefit can be found in applying

stochastic and statistical methods to learning and decision making. To date this has not

been given adequate attention in complex AI decision making and learning. This has

been due in part to the cost of computations required for statistical methods being too

high and in part it has simply been neglected so its application in this area is unexplored.

A large part of the reason successful autonomous AI has not yet been developed is that

all efforts to date have been too deterministic. This approach conflicts with general

 16

learning. The application of statistical techniques can be used to move from a

deterministic approach to a probabilistic one. Additionally, real-time autonomous action

in complex and dynamic world environments is definitely going to be subject to a number

of aspects of uncertainty. There is no doubt the soundly based and well developed

statistical theory will be very useful in decision making and learning for autonomous

mobile robots with these hypothesis assumptions.

While this author believes that there is tremendous potential for statistical

assistance in this field, this point is not the focus of the research. Instead, the existence

of specifically applicable statistical methodologies is assumed. This is all to say that

wherever statistics would seem to be of use, we will simply acknowledge this fact and

assume it is possible to create such a capability. Statistics will perform as a sort of black

box for our purposes. In this way, we can focus on a more general overlying design view

as opposed to a much more focused and specialized view. This will be much more

advantageous to the accomplishing objectives we will set forward.

 17

Chapter 4
Goals

The ultimate success in this area of research would be to create a robot which

behaved just as the organic animals we co-exist with. This would be a machine that can

cope with an unstructured environment through adaptation to that environment. The

creatures of our world are able to do this. This is because they are equipped with all the

necessary components to handle their environments. From that point, they perform

learning on their own with no real guidance required. The creatures were made so that

they could perform all the necessary learning on their own. This is the objective in the

category of autonomous mobile robots. This is the ultimate goal. It is exactly what is of

interest here. It seems that all the grand notions related to such advancement can soon

be achieved. It appears that all the pieces are in place for such an accomplishment. But

the advance has not yet been made. This research would like to provide a step towards

this goal. This research has developed a general approach to the process of creating an

autonomous real-time mobile robot.

4.1 Intelligent

 AI is a very active and applicable field of Computer Science. Creating a

sophisticated AI for any number of purposes is a very exciting and impressive

undertaking. In several specific instances in the AI field this goal has already been

achieved. For instance, chess AI is now equal in ability to that of a human player! An

on-going point of interest in the AI field which has spilled over from the advances in

robots is the objective of creating a sophisticated autonomous mobile robot. This is

important in AI research because creating an advanced robot requires an extremely

capable controlling mechanism which will oversee the robot. The mechanism that is

required here is an advanced AI controller. As already mentioned, this objective is not

yet complete. If it were, we would see the effects and ramifications which would ensue

from such a completion. But we don’t. Where are they? They are not yet here because

the advance has not yet been made. An autonomous mobile robot AI controller is a

major target of researcher’s efforts in this area [12]. This is particularly what this

research is interested in. However, making an amazing landmark step forward in AI is

 18

not the goal here. Instead, we desire to build a framework into which the current state of

AI research can be infused in order to achieve intelligent autonomous behavior that will

exhibit advance decision making capabilities. This research aims to add to this tradition

of AI research by working to develop new approaches for applying and incorporating

advanced AI techniques in robots in order to allow the robots to perform sophisticated

tasks.

This is the first goal of this research: This research will develop a framework in

which to place existing advanced AI systems in order to allow the addition of intelligent

decision making behaviors that are required for a system to accomplish a set of

sophisticated goals.

4.2 Autonomous

Unfortunately, the majority of the successful ventures in AI involve relatively

simple situations. These involve relatively uncomplicated and straightforward problem

spaces. Further, these cases generally follow a well defined and known set of rules. But

perhaps these situations may become very complex very quickly. Again, consider

chess. This is not to say that these AI programs are unimpressive. Just that previously,

the AI that has been developed for these cases is generally completely dependent upon

the constancy of the problem space it is designed for. The AI is not made with the

intention that it be able to handle drastic changes in its environment. Because of this,

these particular AI attempts cannot maintain their functionality in a dynamic system. If

they were to be able to cope with a changing environment, they would need to be

autonomous [12]. This means that the AI would need to be a completely self-contained

mechanism that was capable of making fundamental adjustments to itself in terms of its

own behavior [12]. It would make these changes in response to changes in its

environment in order to maintain its functionality [12]. There are many autonomous

biological systems which can do just that. These systems are able to survive in places

where the rules of the environment are subject to change because they can adjust to the

changes. The robots that are of primary interest here will be those designed to operate

in new and unknown environments. The rules in these environments will not necessarily

be known in advance. The robots that encounter this type of environment will need to be

autonomous in order to deal with every possibility. This is then a particularly necessary

component for this research. Without this component, AI development is very difficult.

 19

Adding this component will add further complexity. But perhaps this will actually make AI

easier in the long run. Creating an autonomous agent will pass many of the problems of

advancement and intelligence onto the robot instead of requiring the designers to deal

with those issues. Time will tell.

This all related to the second goal of this research: This research will develop an

approach to AI systems which will allow autonomous behavior so that even under

changing and unstructured environments the system can continue to perform its function.

4.3 Real-Time

If the system was intended for use in a static environment it would not be

important whether it was autonomous or not. However, the system will be intended for a

dynamic real-time real-world environment similar to our own world. So the autonomous

nature of the robot is a must. But there is another important point, likely the most

important, that must be addressed for this very same reason. Because of this real-world

environment the robot will operate in, it must be able to satisfactorily act in real-time in

tune with its surroundings. The robot cannot ignore the events that are occurring around

it because it has not yet finished processing the last event. It must not fail to respond

appropriately to an event because the process of deciding how to respond takes too

long. These things cannot happen or else the usefulness and well being of the robot will

both be cast in doubt. Not only must the robot always superficially interact with the

environment in real-time, it must also be able to adjust its behaviors in order to cope with

changes in its environment in a way which does not hinder its real-time performance.

The robot must be able to do its self adjusting in real-time since it must be able to

actively interact with a real-time environment The primary reasons for this have already

been stated. But, additionally it must not take so long to adjust its fundamental behavior

that it is too late to be of any consequence. It cannot take so long to learn an important

new fact that by the time the fact is incorporated into the knowledge base of the robot it is

no longer of any use.

This leads to the third and final goal of this research: This research will produce

an approach to AI systems that is capable of operating satisfactorily and adequately in a

real-time environment.

 20

4.4 Motivation

To be autonomous and efficiently accomplish goals, the robot will obviously need

to be intelligent in its decision making. It must be able to learn and adapt through

learning and accordingly adjusting its behavior in order to more efficiently achieve its

goals. And it must be able to do all of this in real-time, or else it may not be practical in

important situations. Some of the successes in AI have actually occurred in dynamic

real-time environments. However, AI that does not presume a simplified world has not

yet reached the level of sophistication that is intended for our system. There are

currently no robots operating on Mars that are not dependent on the continual support of

human instruction. If there were such a robot, it could act independently to pursue its

objectives without the risk of human controller error, slow communication with the

controller, or even loss of communication with the controller. All these risks can

compromise the robot. This independent robot would eliminate the risk and expense

inherent in the controller system. The robot would need to truly act in real-time or it could

compromise itself by not responding to a danger in its environment in time. It would also

need to be autonomous so that it is able to deal with the changing environments it would

find itself a part of. And of course, it would need to behave intelligently. If an

autonomous real-time AI was developed the way robots are used would be

revolutionized!

 21

Chapter 5
Methodology

5.1 Simulation

This research involves creating a model of the robot and a simulated environment

to test the model in. The research will proceed through simulation. This seems

particularly fitting given the disciplines involved. Therefore, the research will no longer

be directly interested in the mechanical aspects of the robot, which were earlier given so

much attention. While it was important to become aware of the capabilities of modern

mechanics and sensors, this was only necessary to become familiar with the capabilities

that can be expected from a mobile robot. This helps in considering what sort of designs

can be developed and implemented as models. As the goals of this research have been

stated, there is no immediate interest in engineering an actual robot at the time. If the

approaches set forward here prove to be worthy of further study, the inclusion of real

mechanical aspects of the robot would seem to be an immediate next step. But, this is

meant to be an exploration into controlling an autonomous mobile robot. So, the focus

will now revolve around that concern. Attention will be given to how this issue relates to

the mechanical issues, but the specific mechanical issues will not be given the focus of

attention. The robot, its capabilities, and its controlling mechanism are all to be

simulated in code.

5.1.1 Negatives

 As is to be expected, approaching the project through simulation does have some

drawbacks. To begin with, it is a simulation. It is not the real thing. Producing a

simulation does not do very much to further practical robotics in our world. And even

more so, just because the program runs fine in the simulation, does not mean it will

behave similarly if it is actually implemented. In a simulation the behavior of every object

is fixed as the designer envisions [3]. It is built to behave in a certain fashion.

Everything is thoughtfully planned by the same designer who built the robot [3]. This is

definitely not the case in the real world, especially with the exploratory robot. The whole

goal of this type of entity is to discover something new. Sensors simulated in code are

 22

especially prone to errors of this nature [3]. It will be very difficult accurately reflect the

true nature of the environment. Because of all these things, it is very difficult for a

simulation to fail [3]. Also, because of the nature of a simulation, hardware defects that

occur in the real world likely to remain unaccounted for.

5.1.2 Positives

Nevertheless, it seems that in a situation such as this paper, this approach will be

a good choice. This paper is exploring a new approach to AI control of mobile robots.

The object is to see if this approach has any merit. This requires a simple verification as

to whether or not this methodology is at all worthwhile. The objective is to supply some

sort of proof of concept. The most efficient way to reach this goal is through simulation.

A simulation is altogether a much simpler task than a putting together an actual robot.

The number of factors that must be considered is extremely reduced through this

approach. Adding and adjusting additional features will be unproblematic through

programming, while it would not be so in real life. Additionally, it will be only a matter of

programming to create the desired environment, in which many interesting scenarios can

be tested. In the real world, it can be time consuming to get statistically significant

results in real robots. In this regard, simulation is much more efficient. It is also much

cheaper to run a simulation. There are no hardware cost constraints. A simulation

allows the AI component to be studied independently. This avoids many of the

mechanical difficulties that arise which are unrelated to the AI component.

5.2 Distributed Intelligent Agents (DIA)

The underlying foundation for approaching the problem of developing an

autonomous mobile robot is to use as much computing resources as possible while not

complicating the system too much. We have a lot of capabilities with computing today. It

seems silly to waste it. If it helps to use additional computing capabilities then it should

be done. This pervasive fact of this approach can be summarized in the following way.

This research suggests that to deal with all the issues involved in creating an intelligent

robot, a good approach to beating the problem is to throw all the processing capability

possible at it. This seems almost comical, but there is some seriousness associated with

this statement. For instance, intelligence is a main goal. Why limit the robot to a single

processor and limited memory to accomplish this task. We want an autonomous robot.

 23

This will involve a tremendous amount of learning. Again, why limit the computation

capabilities in this problem. We want something that is real-time. This is going to be

hard to achieve if all of the other goals of the robot are to be met. In order to do this, we

need to be able to perform all the necessary functions as fast as possible. Again, it

seems silly to limit the robot given these constraints.

Creating an autonomous real-time robot that is sophisticated enough to operate

in a dynamic real-world environment is a tremendous task. Man cannot produce a single

processor powerful enough to effectively control a complicated autonomous system in a

complex and dynamic real-time environment. So limiting the robot AI to such as design

is a ridiculous idea. But notice that if the sub-functionalities of the system could each be

independently operated in real time by a devoted agent, then all the sub-functionalities

could operate as one in parallel in real-time. The real-time behavior of this system as a

whole would depend on whether the sub-functionalities could be coordinated in real-

time. A DIA entity is a task-oriented entity whose functionality is distributed among

individual intelligent agents [10]. Each of these agents will have its own processing

power to carry out their functional actions based on inputs, a knowledge-base/inference-

engine, and general objectives. The system is divided up into components. Each of

these can perform their tasks somewhat independently of the other parts of the system.

They are given the power to do work on their own. The goals of this project will proceed

under the frame work of a DIA since this appears to be a potential way in which real-time

autonomous performance could be achieved.

Needless to say, developing an entire real-time autonomous DIA system is a

tremendous task. This project does not presume that it alone can complete this entire

undertaking. Instead, by setting some suggestions and guidelines, the research hopes

to advance this approach to autonomous mobile robots. This will contribute to a crucial

aspect of the DIA system by focusing on all the goals that have been set forward in order

to bring the completion of an entire DIA system a closer reality. This research is an

accomplishment on its own, but also a link in the chain of steps towards the completion

of a DIA system. We will focus on the outline of the system as it relates the goals that

have been aspired to.

5.3 Modularized Commands

It is now is a good time to cover an important approach this program utilizes

related to the DIA structure. The robot will take a high level approach. This means that

 24

the robot will not deal with the very low level details of its any of its actions, such as

movement. All the commands the robot will deal with will be high level modular

commands. They will be general commands not involving step by step execution

instructions. Instead, they will be general commands, such as move forward. This is a

general extension of the DIA architecture. By breaking apart sub-functionalities and

distributing them to independent processing agents, the menial details of each agent can

be hidden from the others. Instead, the agents only know the high level specifications of

any other agent. This simplifies the development of individual agent units, because they

can now interact with each other on a higher level.

The commands which are dealt with will be non-atomic commands that the

mechanical parts carry without exposing all the involved complications that the actual

execution entails. The commands the robot wishes to execute will be sent to

independent agent units which execute the instructions self-sufficiently. These

controllers manage the action completely independently. When a new command is

given to these units, they handle all the required transition adjustments and produce the

new action. If they are currently executing a command when a new command is issued,

they transition to the new command on their own, without intervention and direction from

the controller of the robot. As far as the robot is concerned, these actions are very

simple, while in actual fact, they can be as complicated as desired. It’s just that their

operation is hidden in a different layer from the robot. Developing methods for which an

agent can apply learning to its low level processes is not considered here. The actions

are completely the responsibility of a separate processing unit. This allows the individual

functionality of the independent agents to be completely self-contained.

 25

Chapter 6
Guidelines

6.1 Approach

It is now appropriate to discuss the general approach suggested by this research.

This section will begin the presentations of guidelines recommended in the creation of an

autonomous mobile robot. The robot will operate in its environment under the influence

of two distinct types of controllers. One will be the behavioral controller, and the other

will be the deliberative controller. Each of these systems will embody an independent

processing system. In this way, the behavioral approach can be followed while the

deliberative approach can be used in the background. When the robot encounters a

situation that it must immediately react to, it will. And when there is no such requirement,

it can determine on its own what to do. So the commands to the robot are generated in a

number of ways. Collisions of two possible choices in this regard are simply handled

with priorities.

6.1.1 Reaction Side

The behavioral controller will be reaction based, and will provide necessary real-

time interaction with the environment. This will be driven by input directly from the

environment. The actions performed by this component will be behaviors that are

triggered by environmental states. This type of input driven robot is common, due to

Brooks’ ideas [1] [3]. The advancement suggested is to allow the types of inputs which

trigger responses be added, adjusted, and removed as the robot sees fit through

learning. This will allow for an adaptable robot. The reactionary paradigm will be

followed, with the added bonus that the ways in which the robot can react is adjustable.

This approach is the main focus and will be discussed almost exclusively in the following

pages.

 26

6.1.2 Deliberation Side

When the robot is not under the pressure of immediate required response, the

deliberative controller will step in. It will determine how the robot will proceed. It can

generate commands on its own, and activate them. In this component, the notions of

preference and judgment based on feeling can be made. This level embodies some sort

of general will. Because of this, this system my override the reaction system in situations

which it feels compelled to do so. This level will not be considered further in much detail.

As far as this research is concerned, this portion of the robot control can be thought of as

an aspect of the robot control which just does different things. Basically, the robot just

loves to do things when not involved in the reactionary mode. It can go about behaving

as it sees fit. It develops on suggestions for the robot’s actions and performs them so

long as they don’t put the robot into extremely objectionable situations. The planning

paradigm will be followed since the robot can think about what to do when under no

pressure.

6.2 Assumptions

 When the robot is first built, the designers are aware of its structure and nature.

They know about its strong and weak points. They also know what the robot will be

intended to do. It is apparent that for the robot to be autonomous it will need to be suited

 27

and designed for tasks it is to undertake. In the design phase of the robot’s

development, the general plan for how to equip the robot will be made. The robot will

need to be built for the tasks it is meant to perform. In order for it to behave effectively

and intelligently, it will need to possess the correct set of base abilities. In the same way,

the robot will need to be equipped to understand its environment in order to accomplish

its objectives. It will need to be suited with the correct sensor capabilities to perform its

objectives.

Once all of this design has been adequately completed, the task then is to allow

the robot to use all of its functionality in an intelligent manner on its own. The robot is

given all the tools it needs for its tasks, and so now it must manage all of these tools in

order to do its task. But further, it will need to be able to detect occurrences that are

related to it fulfilling its tasks. It must be aware of its weak points in order to maintain its

safety. It has to know when it comes into contact with a hazard. The designers must

incorporate the detection of events that are important to the robot’s goals and well being.

With this done, the robot is equipped to handle these situations. If it is not, then it is of

no use for its intention.

6.3 Sensors and State

As the above suggests, the robot is bestowed with the sensors it requires for its

objective. Each of these sensors monitors a specific aspect of the environment that is

relevant to the robot. As we saw, there may be a variety of sensors. Each sensor reads

the environment in the cycle it is designed to follow. The sensors read at a very rapid

rate. We can assume that the rate is relevant and useful in real-time, or else the sensor

would not be utilized. Some sensors will give immediate feedback, while others will need

an extended period of sensor processing in order to be beneficial. At anytime, a sensor

retains its current reading. The sensors cycles may, or may not, coincide exactly. But at

anytime there is still a measurement available in every sensor. At any given time, the

current status of all the sensors indicates the state that the robot is currently in.

At this point, a nice and useful classification of sensors can be made. This is a

distinction which can accurately be based upon the measurement of the sensor as either

input or output. The input sensors measure things that are attributes of the robot’s

environment. These are pieces of knowledge that can be used to help the robot operate

better in the environment. The other category is the output sensors. These measure the

actions that a robot does. The robot can then be made aware of what its actions do and

 28

can use this information to better act in the future. The key with this category is that

these sensor readings are generated directly from the robot itself. Thus, they are output.

In the first group of input sensors a slight sub-classification can be made. This

involves measurements directly from the environment, and those that are actually taken

from the robot. Measurements from the robot are from sensors that indicate the status of

a certain piece of the robot. But these are not actions taken by the robot, and so are still

categorized as input. These distinctions will become useful further into the paper.

 The notion of a sensor reading brings several issues into play. These initially

appear to be new issues which must be individually studied. These are notions such as

velocity and acceleration of a measurement. On closer inspection however, these need

not be a special case. If needed, one sensor can provide its measurement, as well as its

velocity and acceleration measurements. These can be simply computed from the

original sensor measurement. They can then be treated just as any other sensor on the

system. They can be used in just the same way as the other sensors and need not be

considered as a special case.

6.4 Laws

 Just as the robot has been equipped with all the components necessary for its

tasks, it is equipped with intrinsic instincts related to its purpose. The robot’s creators

instill the required intrinsic characteristics, and the senses to be aware of them. They

cannot be learned or adjusted. They are the nature of the robot. These are the

behaviors that the robot automatically submits to. They are the reaction behaviors. The

robot will learn how to automatically react to these occurrences.

There is a huge static table of all the laws. It will be partially distributed to parts of

the robot which require parts of it, as will be demonstrated later. The distribution schema

can be used to develop redundancy in the system, which will help safeguard loss of

necessary data.

 29

Just as humans do not learn what the sensations of tickling or pain feels like,

these laws are the built in distinctions of the robot. These intrinsic traits are called laws.

These are certain states of the environment that have particular implications for the

robot. To the robot, they are simply a measurement range from a specific sensor, or

combination of measurement ranges from several specific sensors, which carry with

them a preference of the robot. Some sensors will be more active than others in the

laws. This preference is a score of measure of like or dislike. It denotes whether the

robot associates pain or aversion to a specific law, or whether it associates satisfaction

or pleasure with that law.

 30

6.5 Events and Critical Events

 If the robot’s current state indicates that a law has been reached, we are in a

situation which will be defined as a critical event. Because the robot knows the nature of

the law, it will know whether or not it is attracted to the current state of the sensors. The

robot will then need to immediately react accordingly. How the robot will act accordingly

will be discussed further, later. But for now this can be understood as a reaction that is

automatically generated by the robot given its state. It is environmental input driven.

There is another sort of situation which is related to the critical event. This

situation will be called simply an event. This is a state of sensor readings which in some

way connected to the critical event. They are part of a pattern we recognize as leading

up to a critical event. If the critical event is negative, then the event gives information

concerning how to avoid it. Or if the critical event is positive, it will give information

concerning how to achieve it. There is a way to behave in an event state which will help

meet the goals in the critical event state. The desired action of the critical event state

honored through actions in the event which honor the meaning of the critical event. An

event is treated as a reaction state. Given that an event happened, the robot

immediately responds to that event. The robot is driven by the event.

A good visualization of what this looks like is a web or tree of events and critical

events. Next, the creation of such an object will be discussed. The table of possible

important states is a list similar to the laws table. But this table is a dynamic list. It is

very subject change and growth. Events are learned in order to help the robot behave

better in given situations. This is a big table which is also partially distributed to add

redundancy.

 31

From now on, critical events and events will be referred to simply as events. An

event can be classified into three categories. There are environmental events. These

involve states related to the environment. Examples of these are water present, gravel

type, and slope degree. There are entity events which are states involving other agents

in the environment that are dynamic to the robot in that it can interact with them. And

there are preservation events. These are state condition necessary for the robot’s

operation such as heat, radiation, and pressure. Naturally, some sensors will be more

active than others in the events.

6.6 Learning Events

 The sensor readings are made available to be read, but they are also forwarded

to a chronicling device which will keep records of everything which happened to the

robot. This is a sort of history that is used to learn which states are actually events. Just

as the robot is given the correct mechanical modes for interaction with its environment

and is given the correct sensor array to allow it accomplish its task, the robot is pre-

equipped with all the necessary algorithms to produce these advances. These

 32

algorithms are another set of intrinsic endowments that the robot is based on. The robot

is not designed to learn how to learn. It instead already knows how to learn.

The primary vehicle for this learning will be pattern recognition based on the

sensory inputs. But, this learning is done before any real consequences can be met.

The things which need to be known are inferred whenever possible. The robot cannot

learn from being destroyed. Initially, the robot is aware only of its laws. Then learning

and inference algorithms begin to learn new states which are events. These are

additional states which are related to the laws as we said. At first, the good and bad

laws make up the whole spectrum of states. Then, in between the laws, events begin to

appear. The robot starts with only its laws, and it advances its understanding to

effectively meet the laws.

In considering learning in the robot it is important to now note the nature of

different kinds of learning which may occur. There are cases in which we need to learn

in spite of sensor inaccuracy. There are cases where the sensors can become

predictors and an event can be learned. But then, there will be times when the sensors

do not predict anything, but a change has occurred and must be learned. In these cases

a second event may replace a first event. When the behavior seems to switch back and

forth between these two events the event in use must be switched back and forth. All of

these must be handled by the inference algorithms. All of these learning possibilities can

be broken down into two classes. The first class is the events which are not under the

control of the robot. These are acts of nature which must be understood. The second

class is the actions the robot can control.

6.6.1 Environment Learning

For learning about things which are not directly caused by the robot, there will be

dedicated learning algorithms. They will learn from the sensor information if any states

require special consideration. This will proceed through statistical modeling. This will be

particularly useful because of noise with the sensors. Statistics will provide an

established way to deal with the variation. Samples concerning a specific occurrence

can be generated from the sensor readings and in order to determine if there are

predictors of that occurrence. If there is a predictor, this predictor will be used to provide

the robot with additional information concerning the state. This is now an event, and we

can use the information we learned from it to act better in that state.

 33

6.6.2 Self Learning

 The robot needs to learn what its actions do. In this way, it can it can perform the

action which is best given the current state the robot is in. Also, it can detect events

based upon the action. By knowing what an action does, the action can be related to all

the laws. Because the result of the action is known, the result of the action in regard to

the laws can also be known. If an action given the current state will result in a negative

law being reached, that action should not be performed. The current state the sensors

are in alerts the robot that it is in an event. The robot knows some information about how

to act given the state which adheres to its goals. In this case, it knows it should not

perform the action because it will result in a negative law breach. By knowing what an

action does, an action which leads to a critical event can be determined and an event

can be made out of that. In these events the robot can act in accordance with the related

laws. The value of the action determines the state of the event.

When an action is performed by the robot, the result can be seen in the sensor

readings. Specific algorithms will learn what the actions of the robot do. Once the result

of actions becomes known, the correct action can be paired with specific states. When

the robot is in a critical event, the move to do can be known since the actions results are

known. All of this must be done on the fly and be robust to all the complications which

may occur.

By having the robot constantly know how its actions effect the environment, it

need not worry about changes in the ways its actions perform, because these will

become clear. Further, no special actions must be taken in the case of a change,

because by knowing the actions results the best course of action will always present

itself. The complication is that each time an action begins behaving differently the

events related to that action are no longer applicable, and a grand overhaul of all the

related events is required.

6.7 Rules

 Rules are the way the robot should act in a given state. They are the reaction

behavior that is immediately activated by the correct environment conditions. An event’s

knowledge of what actions do will allow certain actions to be preferred or rejected. This

is how the special states that we talked about allow us to perform better actions as hinted

at earlier. If we reach an event state, we know how to best respond in that state because

 34

of what the responses will mean as far as the laws go. The rule, or behavior, is fired.

The rules force behaviors that satisfy the objectives of the laws. Each special

state may have several rules attached to it. These specify the actions that are or are not

desirable in the given state. The rules correspond to the special event and critical event

states. The rules will be given a level of importance based upon the critical event they

are related to. Rules may also appear as a parameterized unit based upon other

environmental inputs.

It is clear that this will produce a large table of rules. These will correspond to the

table involving the events and critical events. There will be a correspondence between

the related pieces. As these tables correspond in a one to one manner, the rules will be

a very dynamic table. It will be very dependent on whether the actions of the robot

continue to behave in the same manner. If an action changes, the rules will all be

subject to the change.

6.8 Monitors

 So far, there are different events which the robot is aware of, and attached to

these events are the rules of that state. The sensors only read the information from the

environment; they do not have any specific capability to detect whether or not they have

entered and important state which is relevant to an event. There is a separate unit which

will take care of this by watching the sensors to see if they are in an important state.

These are the monitors. All the events have sensor ranges which indicate the event.

The monitor is aware of all of these ranges and detects them. Some events require

separate sensors, though. So the monitor is simply detecting important states. The

robot doesn’t want to be interested in unimportant background noise that comes in that

the sensors have picked up. It just wants the important information. When a relevant

state is detected, the system will be notified. It will be determine whether this along with

 35

all the monitor input constitutes an event, and if so the appropriate rules applying to the

event will be used in order to produce an acceptable action. This will be discussed soon.

It is important to stress that this is how immediate reaction is implemented. As soon as

an important state is encountered which might involve an immediate behavior reaction,

the system is thrown into gear to respond accordingly.

As the events are developed, the events a monitor checks for are changed and

adjusted. These changes come from a number of algorithms which are learning the

different events. Each sensor is being checked for predictive power in certain situations.

Different types of algorithms are doing these checks. It’s not just one algorithm for one

sensor. This is because the sensors can be important individually, or they can be

important as a group, as far as events are concerned. The monitors need to always put

a priority on checking the sensor. But, they need to be updating there list of what to

check too. This is where separate processing capabilities can come in very handy. Both

of these tasks can be done at the same time. The trick will simply be to coordinate

everything which will soon be discussed.

 36

6.9 Self-Adjusting Finite State Machine (SA-FSM)

 The place where the monitors pass on the interesting states they come across is

the SA-FSM. This is the compilation of all the events and corresponding rules. The

base construction involved in this unit is a finite state machine. This type of a machine

encompasses all forms of computation, so it is a good unit to start with. The addition

here is that this machine may be adjusted. An SA-FSM has an addition operation which

is a module that adds, removes, and adjusts the states of the FSM.

The FSM is all the event states and the responses to those states. Each entry in

the SA-FSM is the events that were discussed earlier. As stated, these events carry with

them sets of corresponding rules. These make of the states and resulting rules which

comprise the SA-FSM. The picture of the FSM is identical to that of the event states the

robot has learned.

The SA-FSM receives the states from the monitor, and determines if an event

has been reached. If so, it will know the rules that correspond to the event and will

quickly apply them to the action to be taken. As the all the monitors send along state

warnings, the SA-FSM checks to see if an event state has been reached. If so, all the

 37

rules applying to that state are brought into effect. When an event is encountered the

FSA executes the behavioral action associated with that event. Given the state event,

there are certain actions which are preferred. This is the fast behavioral portion of the

project. This does not account for all the types of actions the robot will want to perform,

just those that are important in real-time operation. This cycle involves receiving input,

detecting the state, finding the procedure given the state, and acting to adjust the state.

6.10 Adjusting

 While the robot is in operation it is constantly learning. It is learning about the

environment and the things in it. It is developing new states which it knows an

advantage in regard to its actions. If the results of some of its actions change, the results

that it knows about in other event states need to be adjusted. If an action no longer

performs in the same way for whatever reason, the robot needs to adjust its knowledge

based on this. This may be predictable and so an event can be made which signifies an

occurrence of a change. But, perhaps it cannot be predicted. It just seems to happen.

Then all of the old information regarding the previous behavior is no longer applicable. It

may need to be saved off and things switched to reflect the new behavior. Then, it may

change back without an indication of why. The switch must be made back again. This is

a sort of context switch that may occur. The point is that there will be many different

forms of learning of event states going on. This will result in a lot of necessary

adjustment to the events.

The adjustments need to be done quickly and quietly, behind the scene. Events

based upon actions change if the actions change. Many components in this system use

this event and action specification. When it changes it needs be changed in all the

places it existed. It needs to be changed in the learning algorithms that used it. It needs

to be changed in the monitors that look for it. It needs to be changed in the SA-FSA that

responds to it. Constantly updating everything in a coordinated synchronous manner is

imperative. It adjustment must happen in unison in parallel. This is because one part of

the system cannot be changed while the other is unaware of the change. If this were to

happen, the two components would be unable to communicate to one another. Learning

and inferring these changes needs to happen quickly, and must be applied just as

quickly. It will be a very dynamic system, whose order will relate the number of sensors.

 38

6.11 Actions

It is now appropriate to go into more detail concerning how actions are created

and executed. At any given time, the robot will have received a suggested course of

action from the will level of the robot. At the given time, the exact state becomes known.

All the rules which are applicable to the state are applied to a generic action that is to be

performed. The action desired by the will is then imposed upon the current state of the

action. If it is feasible to perform the desired preferred action it is performed. If it is not,

all the rules that are now applied to the condition of the robot’s action are crunched

together to create the possible actions. The rules which dominate this compilation of

actions are those that are fired. The current state of the machine holds rules about

important and relevant actions. These are used if they exist. Otherwise, we have a

 39

general template for what to do developed on the will level of the robot. It is fine to run

this command because there are no indications otherwise. The general will gives

commands. The SA-FSM does what it can to follow these while following any reaction

states it comes across.

6.12 Interrupts

To clarify the process, there is another concept which can be discussed. This is

the concept of interrupts. Through the robot, there are many cycles occurring, and they

may all be different. The different sensors read and pass along their input in different

ways. The learning and inference algorithms proceed in their tasks in different manners.

The SA-FSM receives a state and acts on that state. Updates are made to various

components from learned information. We cannot force any of this to follow some pre-

defined cycle. Because of the possible difference, the robot performs in an

asynchronous fashion. We want the robot to appear as a synchronous unit though. All

of these differences need to be handled beneath the surface. This can be done using a

connected system which runs on interrupts. All of these pieces can function as their own

processing unit. But information for how they should proceed can be passed around like

messages.

 40

Chapter 7
Experimentation

 In order to conceptualize and experiment with the proposed ideas, a tangible

testing ground has been developed and created. This project did not have at its disposal

the necessary hardware components which allow a robot to interact with its environment.

Because of this, an actual robot could not be constructed to implement the given

approaches. However, this project did have at its disposal the necessary software

creation capabilities. The software components are what run the robot, so the

approaches were tested through their creation in software. Therefore, this research was

able to develop a programmed system through which the ideas and concepts of this

research could be considered. This allowed for testing and verification of the

approaches that are under consideration. This work is described below.

To solidify the concept approaches, and to demonstrate the various aspects of

these approaches, a system model has been constructed. This model emphasizes the

key components of a SA-FSM robotics control system as it would function in action. The

model was developed in order to develop, consider, and conceptualize the possible

interaction paradigms for the components of the system. Additionally, this was

necessary as a first step to developing a software environment in which to test the ideas.

The specifications are given graphically in Appendix B.

The model led to the development of a software environment to begin

implementing the ideas of this research. Upon completion of the abstract model, a

simplified version based off of the model was implemented in java. The implementation

reflects the overall architecture presented by the initial model. This implementation was

used to experiment with the ideas of the research. The java source code is available in

appendix C.

7.1 Model

This section describes the model used for the development of a SA-FSM robot.

This includes the interaction between a robot of this type with itself and with its

environment. Appendix B contains four figures that are a graphical representation of the

model introduced in this section. These figures will be a very useful reference for the

 41

preceding discussion.

7.1.1 Environment-Robot Relation

Please refer to Figure 1 of Appendix B for a graphical representation of the

following discussion. The basis of the model developed for this research is a model

environment. This is a necessary component because everything happens as part of the

environment. The environment is built as desired in order to consider certain types of

environments which we may wish to test the robot in.

There are three distinct types of components which comprise the environment.

The first of these types is the state related aspects of the environment. These are the

certain environmentally-related components of the environment itself. There may be any

given number of these. They are the “nature” of the environment. At any given time the

state of any given element of the environment is set at a given point. These settings may

change over time due to processes acting on them and adjusting their levels, as will be

discussed next.

The second type of entity which inhabits the environment may adjust the states of

environmental components. This type involves agents. These may simply be processes

of nature which act on the states of the environment described above. Or, they may be

actual entities which peruse their own set of objectives and goals in the environment.

There may be any given number of these. The states of the environment discussed

above are adjusted by these agents performing their tasks in the environment. These

agents themselves have a physical state in the environment at any given time. They

adjust the environment which includes parts of the environment which do not belong to

them, as well as the part of the environment that is themselves.

The final component of the environment is a single entity, the robot. Because this

research is interested in testing an approach to robot control, this is the focal point of the

model. The environment is built and designed based upon what is desired to test for the

robot. The robot acts as a part of the environment. Its actions take place as an

interaction with the environment. The robot adjusts its environment through its actions,

as well as interacts with the other agents which inhabit the environment. Because the

robot itself is a part of the environment, its physical state in the environment is also a part

of the environment.

 The robot itself is modeled with a series of components. The first of these

components relates to the way in which the robot interacts with the environment. The

 42

robot operates in the environment. The robot may operate in the environment in a

number of ways. It does so with its actuators. These mechanically based components

of the robots are the means through which the robot exists in the environment. The

robots actions produce effects in the environmental states as it desires. The robot

directs its actions in the environment by directing its actions which effect the

environment. The actions also change the robots state in the environment. The robot

becomes aware of its states and the states of its surrounding environment through its

sensors. There may be any given number of sensors. These are the mechanical means

through which the robot can interpret its world. When the sensors read the environment,

they make the information they learned available to the robot for use in deciding its

actions.

7.1.2 Robot Responses

Please refer to Figure 2 of Appendix B for a graphical representation of the

following discussion. In the robot model, the robots interface to the environment was its

mechanical components, as we saw. These are connected to the environment and the

robot, and are the conduit for interaction between the two model components. The other

model components of the robot do not directly interact with the environment. They are

contained within the robot. These are the inner workings of the robot. The rest of the

model is concerned with the interaction of these components. These parts of the robot

are the processing components which determine the way the robot will interact with the

environment. This happens separately from the environment. It occurs beneath the

surface of the robot. It is hidden from the environment.

The first layer of these inner components is the robots environment interaction

control mechanism. This has two parts. The first section is called a monitor. This is

because this part monitors the sensors for important environmental states. There may

be any given number of these. A mechanical sensor relays its reading to its monitor.

The monitor has a list of important states which it watches for. In this way, unimportant

states are simply ignored by the monitor, and so ignored by the robot. When an

important state is reached, the second part of this first layer comes into play. This is the

SA-FSM component. This component determines how to react to the given state that the

monitor saw. This is expected to be done very quickly. There is no processing involved

in this determination. The action is simply reference by the important state. This is a

complex issue in and of itself. This component of the model is concerned with this issue.

 43

This setup allows unimportant states to be ignored, while allowing for very fast

reaction to important states. By having many monitors concurrently checking for

important states, many states can be considered. If the SA-FSM component had to

check for every important state, it would never react, it would have too many things to

check. Many monitors allow everything to be checked. Then, at any given time the SA-

FSM can determine what to do from a much smaller set of inputs. These being the

important states the monitors came across.

7.1.3 Robot Knowledge

Please refer to Figure 3 of Appendix B for a graphical representation of the

following discussion. The underlying foundation for the reaction portion of the model just

discussed is the robots laws and rules. Each of these relate to an important state of the

environment which the sensors perceive. For each of these important states, the robot

learns the best way to interact and respond to the environment.

In the model, the laws are environment occurrences which are of direct

importance to the robot. Rules on the other had are environment occurrences which are

indirectly important to the robot. These are portioned out to the monitors to watch for.

The monitors are interested only in detecting such a state. The SA-FSM on the other

hand is aware of all the states, as well as the best responses to the states. The robot

has special data structures which manage this information. This portion of the model is

dedicated to the management and distribution of this knowledge. This portion of the

model is based upon a distribution of these laws and rules. Additionally, the structure

which holds them must be adjustable as the rules and laws may change with time. As

they change, all the components which contain them must be synchronously updated

with the changes. The model represents this as a single entity of information. Certain

components have access to certain parts of this data. As the data changes or new data

is added, the access is simply adjusted to reflect the changes.

7.1.4 Robot Learning

Please refer to Figure 4 of Appendix B for a graphical representation of the

following discussion. All of the above discussion left out the fact that the underlying

foundation is adjustable. The components which adjust the knowledge are preset

learning mechanisms. They have their intrinsic algorithms for learning, as well as the

 44

knowledge of past events the robot was involved in.

While the robot is running, the sensors relay all of their input to a memory

location as well as to the monitors. The history of the robot is therefore available for

consideration. It can be used as necessary. Memory management is the issue in this

component. There is so much data and so many other components which will likely be

interested using it. The distribution of this information is important.

 The components which need to use this information are the learning

components of the robot. There may be any given number of these. All of the

algorithms which learn the reactions to states, as well as learn new important rule states

are aware of certain laws and rules which pertain to them. They use these in the

background to help learn. The laws are static, but the rules are adjusted by the learners.

The laws are used, along with the memory, to determine new rules. Additionally, the

memory is used by the algorithms to determine which actions are best in a given state.

As described above, the changes to the knowledge base result in a new set of

information for the components which use it.

7.2 Implementation

A simplified implementation of the above described model was developed in java.

This allowed for the initial construction of a controller system for initial testing in this

research. The file structure of the implementation is based on the model described

above. The directory structuring which was used for the programmed code is a

multilevel tree structure which houses various components of the implementation at each

level. This structure was developed in order to facilitate the development and expansion

of the system described by the model. A discussion of the nature of the structure as well

as the implemented files which reside inside will now be undertaken. Appendix C which

contains the code described below may be referenced during the discussion of the

implementation in order to help follow the discussion. The following table shows the file

structure layout.

 45

Directory Subdirectories Files
theSIS AGENTS,

robot
ENVIRONMENT

agents
robot ai,

fsm,
mechanical

ROBOT

ai LEARNERS MEMORY
LEARNERS POWER_EVENTS
fsm MONITORS FSM
MONITORS POWER_SENSOR_MONITOR
mechanical ACTIONS,

SENSORS

ACTIONS POWER_ACTION
SENSORS POWER_SENSOR

 The base directory is named theSIS. It contains two subdirectories and the main

program. The subdirectories are agents and robot, and the program is ENVIRONMENT.

ENVIRONMENT is a class which contains all the state information in the world. It

contains the code is a program which the cycle of the entire system runs off of.

Everything which affects the environment does so in terms of its specific cycles. The

effectors of the environment are found in the agents and robot directories.

 In the robot directory we house the robots structure. This is found in the ai, fsm,

and mechanical sub-directories. The class which encapsulates and uses this structure is

found in the ROBOT program. This oversees and coordinates the overall interaction of

the components of the robot, as well as their interaction with the environment.

 The directory ai houses the deliberative components of the robot. These are the

programs which learn from the environment and adjust the overall functional behavior of

the robot. It has a subdirectory called LEARNER which house a learning mechanism

related to the power functionality implemented in the model. This inference component

is labeled POWER_EVENTS. The current implementation also keeps a database

structure called MEMORY in the ai directory which houses the history of the robot.

 The fsm directory houses the actual SA-FSM components of the implementation.

These are held in the FSM program. Related to this functionality is the

POWER_SENSOR_MONITOR held in the MONITORS directory. This is a component

of the robot as a whole which is directly related to the SA-FSM functionalities as

described above. This code monitors the input from the power sensor for important input

states.

 46

 The mechanical directory houses the pieces of the robot which directly relate to

the environment. These components are found in the ACTIONS and SENSORS sub-

directories. These directories contain POWER_ACTION and POWER_SENSOR,

respectively. Their functionality is very straight forward. The action does something with

respect to the power of the robot, while the sensor senses the power levels of the robot.

This implementation is based upon this power functionality of the robot, and so

the components of the code have been developed for this aspect of the robot. Adding

additional features to the robot simulation will involve scaling the current implementation

with the additional required components for the new ability. This is not particularly

difficult as the code is designed with a very modularized paradigm. This simply means

that new components are just dropped in as they are developed. The one piece of code

which is not yet completely modularized is the SA-FSM. Additional work needs to be

done on this component in order to allow a seamless integration of additional robot

features.

 47

Outlook

This appears to be a very promising approach to intelligent autonomous real-time

behavior in artificial creatures. But is this approach really possible? Through the above

model, it has been demonstrated that on a smaller scale it is possible to implement such

an approach. But is it feasible to extend this into more complicated realms? I believe

that the answer is yes. Of course, the effort that will be required for such undertakings

will increasingly grow as the size of the project grows, but there are certainly sufficient

computing resources available for this methodology. The point which may cause this

approach to become infeasible would be if there is more required communication among

the components of the system than can be handled in real-time. Special care must be

put into insuring that this problem does not become a reality. I do believe that this would

be possible to accomplish.

The reason such an approach has not yet been fully implemented is due to the

sheer complexity involved in the creation of such a sophisticated system. Indeed, there

is not yet any system, regardless of methodology, which can accomplish the goals set

forward in this work. Fortunately, it is almost impossible to argue that approaching the

problem in such a distributed way as proposed here won’t reduce the complexity of

developing such a system. The primary drawback of this approach is that it is based

upon the characteristics of a given robot. Many of the concepts put forward by this idea

are applicable to any given robot, but a specific instantiation of this methodology will not

be immediately reproducible on a different type of machine.

However, as the robot industry becomes more and more standardized, perhaps

developing individual robot components based upon the approach suggested here would

produce a sort of plug-and-play structure in which a standard set of robot components

could be operationally combined very simply in many ways. With such a system in

place, the inclusion of a new component type would appear to be fairly straightforward.

In essence, this approach would develop into the standard for robot components and

their assembly. In the end, this would produce a means for the mass production of

robots.

 48

References

[1] Joseph L. Jones, Bruce A. Seiger, Anita M. Flynn. Mobile robots: inspiration to
implementation. 2nd ed. Natick, Mass. : A.K. Peters, 1999.
[2] Menzel, Peter, Faith D’Alusio. Robo sapiens: evolution of a new species. Cambridge
Mass.: MIT Press 2000.
[3] Nehmzow, Ulrich. Mobile Robotics: a practical introduction. 2nd ed. New York:
Springer, 2003.
[4] http://www.unece.org/press/pr2004/04robots_index.htm
[5] http://www.ifr.org/
[6] http://www.darpa.mil/
[7] http://www.robocup.ort/
[8] http://www.trincoll.edu/events/robot/
[9] http://marsrovers.jpl.nasa.gov/home/index.html/
[10] Maurice Eggen and Gerald Pitts, Distributed Intelligent Agents: A New Approach to
Distributed Artificial Intelligence in Robotic Systems. (PDPTA: 2003), 589-595.
[11] Rodney A. Brooks, Intelligence without representation*. (Artificial Intelligence
Volume 47, Issue 1-3: 1991), 139-159.
[12] Hani Hagras and Tarek M. Sobh, Intelligent learning and control of autonomous
robotic agents operating in unstructured environments. (Information Sciences: Volume
145, Issue 1-2: 2002), 1-12.
[13] H.R. Everett. Sensors for Mobile Robots: Theory and Application. Wellesley, Mass.:
A.K. Peters, 1995.

 49

http://www.unece.org/press/pr2004/04robots_index.htm
http://www.ifr.org/
http://www.darpa.mil/
http://www.robocup.ort/
http://www.trincoll.edu/events/robot/
http://marsrovers.jpl.nasa.gov/home/index.html/

Appendix A

Summary Paper

 50

Proceedings of The National Conference
On Undergraduate Research (NCUR) 2005

Virginia Military Institute
Washington and Lee University

Lexington, Virginia
April 21 - 23, 2005

Self-Adjusting Finite State Machines:
An approach to Real-Time Autonomous Behavior in Robots

Scott Schwartz
Department of Computer Science

Trinity University
One Trinity Place

San Antonio, Texas
78212-7200. USA

Faculty Advisor: Dr. Maurice Eggen

Abstract
In the Robotics industry, it is a frequent requirement that robots operate in real-time. The usual approach to
this issue involves creating robots driven entirely by direct environmental input rather than complicated
planning and decision-making AI. This approach means that the current state of the robot in relation to its
environment exclusively determines the actions of the robot. In the simplest terms, this approach creates a
Finite State Machine (FSM). Clearly, a standard FSM is completely pre-deterministic upon its creation.
This is a drawback which immediately disallows the robot to cope with dynamic environments in an
autonomous manner. This research suggests a solution to this problem, while still maintaining real-time
performance of the FSM structure, through the development of a Self-Adjusting FSM (SA-FSM). A SA-
FSM is a FSM with an additional module which adds, removes, and adjusts specific states of its FSM
structure. By adjusting its FSM the SA-FSM will have the basis for autonomous attributes. It will be
capable of coping with drastic changes in its environment by making necessary fundamental adjustments to
its behavior. Through this mechanism, the process of learning can be implemented. In this regard, only the
inherent learning/inference algorithms the SA-FSM employs to adjust its FSM determine the complexity of
the behavior produced by a SA-FSM based robot.
Keywords: Robots, Autonomous Robots, AI, Real-Time, FSM.

1. Introduction

An Autonomous Mobile Robot (AMR) is a robot that independently navigates and operates in its
environment in order to perform its objectives. An AMR may incorporate learning and adaptation in order
to continually adjust its behaviors so that it appropriately interacts with the environment in order to
accomplishing its tasks (1).

The ideal AMR would be a robot which behaved in a way reminiscent of the earth’s organic

inhabitants. These creatures are able to cope in this unstructured situation through adaptation. They are
equipped with all the necessary components to cope with their environment through learning.

1.1. motivation

An AMR can perform tasks in dangerous environments where humans are unable to perform the tasks (2).
An AMR can be used in areas where, for whatever other reasons, humans cannot go (1). An AMR can also
be used for more mundane tasks that are too dirty or too dull for humans, such as cleaning, inspection, and
surveillance (3). An AMR would be useful for many reasons. Consider the following example. There are
currently no robots operating on Mars that are not dependent on the continual support of human instruction.
If there were and AMR for this task, it could act independently to pursue its objectives without the risk of

 51

human controller error, slow communication with the controller, or even loss of communication with the
controller. All these risks compromise the usefulness of the robot. This illustrates that if an autonomous
real-time AI was developed, the way robots are used would be revolutionized. It appears that all the
necessary pieces are in place for the creation of an AMR to be accomplished. But this advance has not yet
been made, as the lack of such an entity verifies.

1.2. requirements

For an AMR to be useful and effective there are three criteria it must meet. First, it must be intelligent.
That is, its decision making with respect to its actions must not be suspect. It must be efficient in the
manner in which it accomplishes its goals. Second, it must be autonomous. It must allow change and
adaptation in its behaviors in order to maintain its functionality under varying environments. It must be a
completely self-contained mechanism that was capable of making fundamental adjustments to its own
nature in order to sustain its goals. Finally, it must capably operate in a real-time fashion. If it does not act
in time with its environment, it may impractical for use in many important situations. If it did not truly act
in real-time, it could compromise itself by not responding to a danger in its environment in time to escape
it. The DIA will be a mechanism which must meet “hard” deadlines.

1.3. standard approaches

The mechanical hardware that is required for constructing a more than satisfactory vehicle for AMR
purposes is already in place. The problem now lies in the development of a controlling mechanism which
realizes the behaviors required for an AMR. The project of producing such a controller has thus far been
approached from two different general paradigms.
 The first of these strategies is the Deliberative approach. This approach is also known as the
Traditional, Functional, and Symbolic approach. The methodology underlying this approach is the sense-
think-act cycle (1). The approach says that the robot should proceed through the following series of steps
(3). First, the robot’s sensors record the input. Then, any computation required to format the sensors input
is done. Once the sensors input is in a usable form, it is all mixed together to represent the current state of
the environment for the robot. This model representation of the environment is then used by the robot in
order to decide how it should proceed. Once the plan is developed, the robot will execute the plan. This
cycle will then be repeated. A problem with this approach is that it requires correct execution at every step.
This type of system will not be very robust (1). This does not reflect positively on AMR goals. Also, this
approach requires an intensive computational process which may create a bottleneck which adversely
affects the environmental sampling rate (1). This same problem may also slow down the reaction time of
the mobile robot (1). This could be particularly disastrous in an AMR application. However, this approach
is not completely unappealing, because a deliberative approach to problem solving would seem to have
some merit as a concept in an AMR application.

The second of these strategies is the Reactive approach. This approach is based upon Rodney
Brooks’ Subsumption Architecture proposal (4). It is also called the Sub-Symbolic approach. In this
paradigm, the environment is used as its own best model. The robot simply reacts to occurrences in the
environment, so the instructions for the robot’s actions and behavior are directly from the environment
around the robot (4). The behaviors of the robot all run in parallel waiting to be triggered (4). Once a
behavior is triggered, its commands are fired and the resulting action adjusts the robot’s position relative to
the environment, possibly triggering additional behaviors. The individual behaviors are not meant to be
complex, but by combining and layering a number of reactive behaviors, an advanced and complex
intelligence begins to emerge (4). This approach has already met with impressive success as insect-like
intelligence has already been demonstrated through the use of this methodology (4). The disadvantage is
that this approach does not appear to provide an easy way to allow developing and reasoning about a plan,
as the Deliberative approach does (1). This attribute may be an important attribute in an AMR. However,
the advantages that this approach offers to AMR applications are extensive. This approach is simple and
doesn’t require a megalithic hierarchical programming achievement (1). Because it is based on simple
behaviors it is easy to extend. Adding new behaviors does not require in massive adjustments to the current
system (1). It supports multiple parallel goals through independent individual concurrent behaviors (1). It
is very robust (1). If one component behavior has been lost, this fact need not effect the execution of the

 52

other behaviors. There is no computation to create a time bottleneck on the system. The robot simply
receives input which it is designed to react to.
 Both of these approaches have strengths and weaknesses with respect to the AMR objectives.
Therefore, there is often some sort of combination of the two methodologies which attempts to extract the
best of each idea, and remove the negatives. These attempts employ a Hybrid Deliberative/Reactive
paradigm. Such an approach is advisable in the AMR project.

2. Concept

The approach suggested here to produce an AMR which meets the given requirements entails the
development of a Self-Adjusting Finite State Machine (SA-FSM). The primary idea behind this concept is
to extend the reaction paradigm in the following way: Instead of endowing the robot with a fixed set of
reaction behavior attributes upon creation, the robot is allowed to create, adjust, and remove the specific
reaction behavior attributes while it is operation. This system will be based on continuous background
processing which applies deliberative methods which perform the necessary adjustments to the FSM.
Additionally, this underlying foundation will also be able to influence other matters of the robots operation.
This suggestion will provide the necessary immediate interaction capabilities, while also providing a
structure for advanced behavior capabilities. Additionally, an FSM encompasses all forms of computation,
so this approach appears to be well founded, at least at this initial outset.

3. Methodology

This section presents some very broad suggestions which can be useful for developing an intelligent
autonomous real-time mobile robot based on the approach put forward above.

3.1. component distribution

When designing an AMR it would be constructive to maximize the usage of computing resources, so long
as it does not overcomplicate the system. The robot should not be limited to a single processor with limited
memory which cannot adequately meet the AMR requirements. A good design for an AMR controlling
architecture will emphasize a distribution of independent functionalities which can be organized in such a
way as to meet the requirements through concurrency and parallelization. A Distributed Intelligent Agent
(DIA) entity is a task-oriented entity whose functionality is distributed among individual intelligent agents
(5). Each of these agents will have its own processing power to carry out their functional actions based on
inputs, a knowledge-base/inference-engine, and general objectives. A DIA system is divided up into
components which behave and interact together in order to accomplish the overall objectives of the system.

3.2. modular interface

Using the DIA architecture immediately provides for a modular view of the entire system. By breaking
apart sub-functionalities and distributing them to independent processing agents, the menial details of each
agent can be hidden from the others. Instead, the agents only know the high level specifications of any
other agent. This simplifies the development of individual agent units, because they can now interact with
each other on a higher level. This offers a simplifying extension for the control of the AMR. The control
will take a high level approach. It will not deal with the very low level details of its any of its actions, such
as movement. Instead, the commands the robot issues will be high level modular commands that do not
involve step by step execution instructions, such as “move forward.” As far as the robot is concerned, these
actions are very simple, while in actual fact they can be as complicated as desired. The commands which
are dealt with will be non-atomic commands that the mechanical parts carry without exposing all the
involved complications that the actual execution entails. The commands the robot wishes to execute will
be sent to independent agent units which execute the instructions self-sufficiently. The actions are
completely the responsibility of a separate processing unit.

 53

3.3. intrinsic AMR character

An AMR is built for a specific purpose. Its designers equip the robot with all the sensors and actuators it
will require for its undertaking. Without this, the robot will not be able to behave effectively with respect
to its goals. The goals themselves are determined and equated with positive sensations for the robot. Also,
the weaknesses of the robot are determined and equated as negative sensation for the robot.

The intrinsic behavior characteristics of the robot are formed directly from the “satisfactions” and
“pains” related to the robot’s goals and weaknesses. These are components of the robot’s nature. They are
not learned or adjusted after the design stage, and are instead the behaviors that the robot automatically
submits to. Just as humans do not learn what the sensations from tickling or extreme heat, these laws are
the built in attributes of the robot. These intrinsic traits of the AMR are its laws. The AMR can base its
behaviors on its intrinsic laws.

4. Controller Considerations

The Hybrid Deliberative/Reactive approach will be employed as the underlying foundation of AMR
control. The deliberative component will be considered as an overarching entity which continually
presides over the proceedings of the robot. In this entity, notions of preference, judgment, and will can be
made. Suggestions as to the behavior of the robot are also seen to be generated in this entity. The reactive
component will be the SA-FSM that was described earlier. This will provide the necessary real-time
interaction with the environment through actions which are triggered by environmental stimuli. The
advancement to Hybrid Deliberative/Reactive paradigm is to allow the inputs which trigger responses be
added, adjusted, and removed as the robot sees fit through learning. In this way, the behavioral approach
can be followed while the deliberative approach can be used concurrently.

4.1. Reactive SA-FSM

4.1.1 states

At any given time, the current status of all the sensors indicates the state that the robot is in. Sensors can be
divided into two general classifications based upon the measurement of the sensor as either output or input.
The output sensors measure the effects of robot actions on the environment. The key with this category is
that these sensor readings are generated from changes in the environment which result directly from the
robot actions. Thus, they are output. The input sensors measure things that are attributes of the robot’s
environment. These may be measurements that indicate the status of a certain piece of the robot. But these
are not changes resulting from actions taken by the robot, and so are still categorized as input sensors.

4.1.2 events and critical events

Certain states have particular implications for the robot’s laws. A critical event is a state directly related to
a law. The nature of the law reflects the reaction which must occur in this state. A state which is related to
critical event, but is not the critical event is called an event. If the critical event is negative, then the related
event gives information concerning how to avoid it. If the critical event is positive, the information will
concern how to achieve it. Sensor states related to the robot’s laws are the stimuli for immediate SA-FSM
reactions.

An event can be classified into three categories. There are environmental events. These involve
states related to the environment such as water, gravel, slope, gravel, or anything else that can be come up
with. There are entity events which are states involving other agents in the environment that are dynamic to
the robot in that it can interact with them. And there are preservation events. These are state condition
necessary for the robot’s operation such as heat, radiation, and pressure.

4.1.3 rules

The rules correspond to the event and critical event states. Rules are reaction behavior that is immediately
activated by a SA-FSM reaction. They are the way the robot should act in a given event state. If the robot

 54

reaches an event state, it will know how to best respond through the SA-FSM and how it has been managed
by the deliberative portion of the controller. The behavior, or rule, is fired for the event state. Each special
state may have several rules attached to it. These specify the actions that are or are not desirable in the
given state.

4.2. Deliberative SA-FSM Interaction

Just as the robot is given the correct mechanical actuators for interaction with its environment and is given
the correct sensor array to allow it accomplish its task, the AMR must be endowed with all the necessary
learning algorithms. These will be run continuously in the deliberative component of the controller.
Initially, the robot is aware only of its laws. It must generate rules for those laws. It must then learn new
related events, and the corresponding rules, in order to incorporate them into the SA-FSM. Also, the
learning must be done before any real consequences can be met. The robot cannot learn from being
destroyed.

The AMR needs to learn about its environment. Certain sensor states related to the environment
will be events which will trigger necessary responses. The AMR also needs to learn about itself. If it
knows what its actions do, it can base all its rules on its knowledge of its actions. In this way, the AMR
will always perform the best action in the given current event. To use this approach, the deliberative
learning algorithms must continually monitor the results of robot’s actions so that if an actions behaves
differently than it once did, this change can be accounted for, and the correct adjustments be made.

The algorithms will need to learn in spite of sensor inaccuracy. They will need to learn when the
sensors can be used as predictors of an event. They will also need to learn when the sensors do not predict
anything even though a change has occurred and must be learned. This case may require a context switch
to allow the robot to perform adequately under both scenarios.

Changes to the system need to be made in all the relevant places. This must be done in unison and
in parallel. It must be a coordinated synchronous manner is imperative. Part of the system cannot be
changed while the other is unaware of the change. If this were to happen, the two components would be
unable to communicate to one another. The adjustments made to the SA-FSM need to be done quickly and
quietly, behind the scene in order to meet all the AMR requirements.

5. Summary

This paper suggests a new approach to AMR control. This approach builds on the best aspects of the
current practices in order to maintain the benefits they provide, while establishing a new methodology for
AMR which provides additional capabilities. The proposed methodology is the SA-FSM paradigm. This
methodology allows for an advanced reactive approach which is not subject to initial designated behavior
constraints because the behaviors can be adjusted during AMR operation.

6. References
Books

1. Ulrich Nehmzow. Mobile Robotics: a practical introduction, 2nd ed. (New York: Springer, 2003), 8-9,
11, 14-17, 20-21.
2. Peter Menzel and Faith D'Aluisio. Robo sapiens: evolution of a new species. (Cambridge, Mass.: MIT
Press, 2000), 138-141.
3. Joseph L. Jones, Bruce A. Seiger, and Anita M. Flynn. Mobile robots: inspiration to implementation, 2nd
ed. (Natick, Mass.: A.K. Peters, 1999), 337.

Journals (Print)
4. Rodney A. Brooks, Intelligence without representation*. (Artificial Intelligence
Volume 47, Issue 1-3: 1991), 139-159.
5. Maurice Eggen and Gerald Pitts, Distributed Intelligent Agents: A New Approach to Distributed
Artificial Intelligence in Robotic Systems. (PDPTA: 2003), 589-595.

 55

Appendix B

Project Model

 56

Figure 1

 57

Figure 2

 58

Figure 3

 59

Figure 4

 60

Appendix C

Implementation Source Code

 61

// ENVIRONMENT.java
// scott schwartz

//<><><><><><><><><><><><><><><><><><><><>
// The Environment
//<><><><><><><><><><><><><><><><><><><><>
// this is the base class. Everything works off this.
// it manages the state of the world that is operated in.
// this file houses all the states of the environment
// the environment manages it's state
//
// it also houses the robot, and agents, and whatever
//
// the environment recieves the actions of the robot
// and the actions of agents acting in it
// and adjusts its state as it is affected
// the environment may be very complicated and
// may manage many other things happening
//
// drastic changes to the behavior of the robot can be similated.
// broken tire, moving on ice...just adjust the result of actions
//
// environment communicates with sensors,
// gets communicated too by actions
//<><><><><><><><><><><><><><><><><><><><>

import java.io.*;
import java.util.*;
import java.net.*;

import robot.*;

//<><><><><><><><><><><><><><><><><><><><>
// ENVIRONMENT
//<><><><><><><><><><><><><><><><><><><><>
// this is the base class. Everything works off this.
// and it manages the state of the world that is operated in.
//
// the data here holds/is
// states of the environment and related functionality
//
// main is the world running
//
// here, the environment will have a set of states that
// are important to the robot.
//<><><><><><><><><><><><><><><><><><><><>
public class ENVIRONMENT{
 public double power_level;

 //initialization and setup of environment
 public ENVIRONMENT() throws Exception{
 power_level = 5;

 62

 }

 //initialization and setup of environment
 public void applyRobotActions(int action) throws Exception{
 if(action == 0)
 power_level -= 1;
 if(action == 1)
 power_level -= 2;
 if(action == 2)
 power_level += 1;
 }

 public static void main(String args[]) throws Exception{
 ENVIRONMENT world = new ENVIRONMENT();
 ROBOT i = new ROBOT();
 int j;

 //initial reading
 i.power_sensor.takeReading(world.power_level);
 //sensor reading passed on
 i.memory.getInput(i.power_sensor.relayReading());
 i.power_monitor.getReading(i.power_sensor.relayReading());

 //robot loop
 for(j=0;j<1000;j+=1){
i.power_events.print();

 //state determined
 i.power_monitor.getState(
 i.power_events.readingToState(i.power_monitor.relayReading()));

 //state sent to fsm, and reaction determined
 i.fsm.receiveState(i.power_monitor.relayState());
 i.fsm.determineReaction(
 i.power_events.stateToAction(i.fsm.relayState()));

 //action fired, and results applied
 i.power_action.receiveInstruction(i.fsm.fireReaction());
 i.memory.getOutput(i.power_action.performAction());
 world.applyRobotActions(i.power_action.performAction());

 //results read by robot
 i.power_sensor.takeReading(world.power_level);
 //sensor reading passed on
 i.memory.getInput(i.power_sensor.relayReading());
 i.power_monitor.getReading(i.power_sensor.relayReading());

 //learning based on event
 i.power_events.updateEvents(
 i.power_action.performAction(),
 i.memory.actionQuery(i.power_action.performAction()));

 63

 //cycle restarted
System.out.print("\n" + j + "\n");
 }
 }
}

 64

// ROBOT.java
// scott schwartz

//<><><><><><><><><><><><><><><><><><><><>
// The Robot
//<><><><><><><><><><><><><><><><><><><><>
// the robot houses the mechanical interaction with the environment
// the sensors are housed in the robot
// the actions the robot can perform are contained as part of the robot.
// it's just a house to group everything in.
//
// the robot also houses its ai stuff
//
// There's a important distinction between sensors:
// INPUT vs. OUTPUT, though they will be treated very similarly
// these represent different cycles
//
//<><><><><><><><><><><><><><><><><><><><>

package robot;

import java.io.*;
import java.util.*;
import java.net.*;

import robot.mechanical.SENSORS.*;
import robot.fsm.MONITORS.*;
import robot.fsm.*;
import robot.mechanical.ACTIONS.*;
import robot.ai.*;
import robot.ai.LEARNERS.*;

//<><><><><><><><><><><><><><><><><><><><>
// ROBOT
//<><><><><><><><><><><><><><><><><><><><>
// sensors and related functionality
// actions and related functionality
// ahhh....this is a nice way to group actions!!!
// turning on the robot, all sensors are started
// all mechanical interactors inititiated
// initialize parts of the robot
//<><><><><><><><><><><><><><><><><><><><>
public class ROBOT{
 //<><><><><><><><><><><><><><><><><><><><>
 // data
 //<><><><><><><><><><><><><><><><><><><><>
 // power modules
 // memory module
 //<><><><><><><><><><><><><><><><><><><><>
 public POWER_SENSOR power_sensor;
 public POWER_SENSOR_MONITOR power_monitor;
 public POWER_ACTION power_action;

 65

 public MEMORY memory;
 public POWER_EVENTS power_events;
 public FSM fsm;

 public ROBOT() throws Exception{
 power_sensor = new POWER_SENSOR();
 power_monitor = new POWER_SENSOR_MONITOR();
 power_action = new POWER_ACTION();
 memory = new MEMORY();
 power_events = new POWER_EVENTS();
 fsm = new FSM();
 }

/*
//this would preferably be a command that just tells
//all the sensors to fire
//then the sensors just take over and pass on the info
//just like they're supposed to.
 public void gather(double reading) throws Exception{
 power_sensor.takeReading(reading);
 power_monitor.getReading(power_sensor.relayReading());
 memory.getInput(power_sensor.relayReading());
 }

//this would preferably be a command that just tells
//all the actions to fire
//or maybe reads in all the actions and syncronizes them or something
 public double respond() throws Exception{
 power_action.receiveInstruction(2);
 return power_action.performAction();
 }
*/
 public static void main(String args[]) throws Exception{
 }
}

 66

// POWER_ACTION.java
// scott schwartz

//<><><><><><><><><><><><><><><><><><><><>
// ACTIONS
//<><><><><><><><><><><><><><><><><><><><>
// completely self contained modular unit
// that generates a change in the environment!
//
// receives instructions from FSM just before the
// previous instruction is finished and continues with
// new instruction.
//
// different cycles depend on action
// some cycles need to happen faster...
// others slower...
// :::The FSM continually gives commands, but
// the actions actually carry out the commands
// they've got like a buffer, to see if the command
// is actually already being done or something
//
// yes, they just wait for a new command, they
// continue what they're doing...
// now, this will get complicated as more complicated
// actions are allowed, like varying speeds and power...
//
// recieve instruction on what to do given state from AI
//<><><><><><><><><><><><><><><><><><><><>

package robot.mechanical.ACTIONS;

import java.io.*;
import java.util.*;
import java.net.*;

//<><><><><><><><><><><><><><><><><><><><>
// POWER_ACTION
//<><><><><><><><><><><><><><><><><><><><>
// This is a power action,
// it does something that effects power level of robot
//
// there is a list of possible actions related to this
// modular action...this is a dependent set of actions...
// one or the other is performed
//
//<><><><><><><><><><><><><><><><><><><><>
public class POWER_ACTION{

 //<><><><><><><><><><><><><><><><><><><><>
 // data
 //<><><><><><><><><><><><><><><><><><><><>
 // the current power action that is being performed at any time

 67

 // 0 is idle, -1 on power
 // 1 is working, -2 on power
 // 2 is resting, +1 on power
 //<><><><><><><><><><><><><><><><><><><><>
 private int action;

 //<><><><><><><><><><><><><><><><><><><><>
 // POWER_SENSOR()
 //<><><><><><><><><><><><><><><><><><><><>
 // initialization of power action
 //<><><><><><><><><><><><><><><><><><><><>
 public POWER_ACTION() throws Exception{
 }

 //<><><><><><><><><><><><><><><><><><><><>
 // void receivedInstruction(int instruction)
 //<><><><><><><><><><><><><><><><><><><><>
 // get instruction from FSM
 //<><><><><><><><><><><><><><><><><><><><>
 public void receiveInstruction(int instruction) throws Exception{
 action = instruction;
 System.out.print("[POWER_ACTION] receiveInstruction: " + action + "\n");
 }

 //<><><><><><><><><><><><><><><><><><><><>
 // void receivedInstruction(int instruction)
 //<><><><><><><><><><><><><><><><><><><><>
 // do instruction in environment
 //<><><><><><><><><><><><><><><><><><><><>
 public int performAction() throws Exception{
 System.out.print("[POWER_ACTION] performAction: " + action + "\n");
 return action;
 }

 public static void main(String args[]) throws Exception{
 }
}

 68

// POWER_SENSOR.java
// scott schwartz

//<><><><><><><><><><><><><><><><><><><><>
// SENSORS
//<><><><><><><><><><><><><><><><><><><><>
// The Sensor classes are
// abstractions or simulations of real world sensors.
//
// Noise and general realisticness of robot sensors adjusted
// in individual sensor classes
//
// There will be many sensors on a given robot
// the sensors are part of the robot which
// resides in the environment
//
// In our implementation for robot these sensors relay their
// readings directly to their Monitors and memory.
// Monitors check the measurements
//<><><><><><><><><><><><><><><><><><><><>

package robot.mechanical.SENSORS;

import java.io.*;
import java.util.*;
import java.net.*;

//<><><><><><><><><><><><><><><><><><><><>
// POWER_SENSOR
//<><><><><><><><><><><><><><><><><><><><>
// This sensor measures the overall power level of the robot
//
// To read the sensor, you run a call to environment
//<><><><><><><><><><><><><><><><><><><><>
public class POWER_SENSOR{

 //<><><><><><><><><><><><><><><><><><><><>
 // data
 //<><><><><><><><><><><><><><><><><><><><>
 // power sensor reading at any given time
 //<><><><><><><><><><><><><><><><><><><><>
 private double power_reading;

 //<><><><><><><><><><><><><><><><><><><><>
 // POWER_SENSOR()
 //<><><><><><><><><><><><><><><><><><><><>
 // initialization of power sensor reading
 //<><><><><><><><><><><><><><><><><><><><>
 public POWER_SENSOR() throws Exception{
 power_reading = 0;
 }

 69

 //<><><><><><><><><><><><><><><><><><><><>
 // void takeReading(double reading)
 //<><><><><><><><><><><><><><><><><><><><>
 // This function is called and passed the actual value
 // that the sensor is trying to read.
 //
 // Any noise that we would like to simulate will be
 // applied and then the
 //<><><><><><><><><><><><><><><><><><><><>
 public void takeReading(double reading) throws Exception{
 power_reading = sensorNoise(reading);
 System.out.print("[POWER_SENSOR] takeReading: " + power_reading + "\n");
 }

 //<><><><><><><><><><><><><><><><><><><><>
 // double sensorNoise(double reading)
 //<><><><><><><><><><><><><><><><><><><><>
 // Any noise that we would like to simulate will be
 // done so in this function
 //<><><><><><><><><><><><><><><><><><><><>
 public double sensorNoise(double reading) throws Exception{
 System.out.print("[POWER_SENSOR] sensorNoise: " + reading + "\n");
 return reading;
 }

 //<><><><><><><><><><><><><><><><><><><><>
 // double relayReading()
 //<><><><><><><><><><><><><><><><><><><><>
 // this function is called and returns the value
 // of the sensor reading
 //<><><><><><><><><><><><><><><><><><><><>
 public double relayReading() throws Exception{
 System.out.print("[POWER_SENSOR] relayReading: " + power_reading + "\n");
 return power_reading;
 }

 public static void main(String args[]) throws Exception{
 }
}

 70

// POWER_SENSOR_MONITOR.java
// scott schwartz

//<><><><><><><><><><><><><><><><><><><><>
// MONITORS
//<><><><><><><><><><><><><><><><><><><><>
// The Monitor classes monitor the the sensors on a given robot.
//
// In our implementation for robot these sensors relay their
// readings directly to their Monitors, who check the measurements
// to determinie the state they're in
//
// these classes deal directly with the sensors,
// they receive the sensor data and check it for
// an event (could events span multiple sensor receptions?)
//
// each monitor has a set of
// laws: intrinsic to the robot and its sensors
// states: special states that are related to the laws
// in some way. the states help us do somthing
// related to the laws.
//<><><><><><><><><><><><><><><><><><><><>

package robot.fsm.MONITORS;

import java.io.*;
import java.util.*;
import java.net.*;

//<><><><><><><><><><><><><><><><><><><><>
// POWER_SENSOR_MONITOR
//<><><><><><><><><><><><><><><><><><><><>
// This monitors the POWER_SENSOR
//
// when it receives an input from the sensor
// it checks if it is a special state and if so
// it generates an event...
//
// this event is sent to the FSM who determines
// the reaction to its current state
//<><><><><><><><><><><><><><><><><><><><>
public class POWER_SENSOR_MONITOR{

 //<><><><><><><><><><><><><><><><><><><><>
 // data
 //<><><><><><><><><><><><><><><><><><><><>
 // received power sensor reading at any given time
 // state of robot given monitor...
 //<><><><><><><><><><><><><><><><><><><><>
 private double power_reading;
 private int power_state;

 71

 //<><><><><><><><><><><><><><><><><><><><>
 // POWER_SENSOR_MONITOR()
 //<><><><><><><><><><><><><><><><><><><><>
 // initialization of power sensor monitor state
 //<><><><><><><><><><><><><><><><><><><><>
 public POWER_SENSOR_MONITOR() throws Exception{
 power_state = 0;
 }

 //<><><><><><><><><><><><><><><><><><><><>
 // void getReading(double reading)
 //<><><><><><><><><><><><><><><><><><><><>
 // reading received from sensor
 // the reading is then checked
 //<><><><><><><><><><><><><><><><><><><><>
 public void getReading(double reading) throws Exception{
 power_reading = reading;
 System.out.print("[POWER_SENSOR_MONITOR] getReading: " + power_reading +
"\n");
 }

 //<><><><><><><><><><><><><><><><><><><><>
 // void getState()
 //<><><><><><><><><><><><><><><><><><><><>
 // checks the just received reading from sensor
 // to see if the state is an event
 //<><><><><><><><><><><><><><><><><><><><>
 public void getState(int state) throws Exception{
 power_state = state;
 System.out.print("[POWER_SENSOR_MONITOR] getState: " + power_state + "\n");
 }

 //<><><><><><><><><><><><><><><><><><><><>
 // int relayState()
 //<><><><><><><><><><><><><><><><><><><><>
 // tells FSM the state
 // so it can react
 //<><><><><><><><><><><><><><><><><><><><>
 public int relayState() throws Exception{
 System.out.print("[POWER_SENSOR_MONITOR] relayState: " + power_state + "\n");
 return power_state;
 }

 //<><><><><><><><><><><><><><><><><><><><>
 // int relayReading()
 //<><><><><><><><><><><><><><><><><><><><>
 // used to determine state
 //<><><><><><><><><><><><><><><><><><><><>
 public double relayReading() throws Exception{
 return power_reading;
 }

 72

 public static void main(String args[]) throws Exception{
 }
}

 73

// FSM.java
// scott schwartz

//<><><><><><><><><><><><><><><><><><><><>
// FSM
//<><><><><><><><><><><><><><><><><><><><>
// laws...the "pain" or "pleasure" inherrent in sensors
// this is a constant...
// what is the form of such a thing?
// these intersecting of these is a critical event
// this generates a sample for learning
//
// events...sensor readings which predict above...general, over all...
// this is what is learned
// what is the form of such a thing?
// these are simply changes in state which we have an understinding
// of what they mean, so we have rules for what to do with this
//<><><><><><><><><><><><><><><><><><><><>

package robot.fsm;

import java.io.*;
import java.util.*;
import java.net.*;

//<><><><><><><><><><><><><><><><><><><><>
// FSM
//<><><><><><><><><><><><><><><><><><><><>
// recieves state
// knows responce
// generates responce
//<><><><><><><><><><><><><><><><><><><><>
public class FSM{
 int power_state;
 int power_action;

 public FSM() throws Exception{
 power_action = 0;
 }

 //<><><><><><><><><><><><><><><><><><><><>
 // receiveState()
 //<><><><><><><><><><><><><><><><><><><><>
 // from monitors
 //<><><><><><><><><><><><><><><><><><><><>
 public void receiveState(int state) throws Exception{
 System.out.print("[FSM] receiveState: " + state + "\n");
 power_state = state;
 }

 //<><><><><><><><><><><><><><><><><><><><>
 // determineReaction()

 74

 //<><><><><><><><><><><><><><><><><><><><>
 // given the state, we react a way fast
 //<><><><><><><><><><><><><><><><><><><><>
 public void determineReaction(int action) throws Exception{
 System.out.print("[FSM] determineReaction: " + action + "\n");
 power_action = action;
 }

 //<><><><><><><><><><><><><><><><><><><><>
 // relayState()
 //<><><><><><><><><><><><><><><><><><><><>
 // helps for determineReaction
 //<><><><><><><><><><><><><><><><><><><><>
 public int relayState() throws Exception{
 return power_state;
 }

 //<><><><><><><><><><><><><><><><><><><><>
 // fireReaction()
 //<><><><><><><><><><><><><><><><><><><><>
 // send command to actions
 //<><><><><><><><><><><><><><><><><><><><>
 public int fireReaction() throws Exception{
 System.out.print("[FSM] fireReaction: " + power_action + "\n");
 return power_action;
 }

 public static void main(String args[]) throws Exception{
 }
}

 75

// MEMORY.java
// scott schwartz

//<><><><><><><><><><><><><><><><><><><><>
// The Memory
//<><><><><><><><><><><><><><><><><><><><>
// This stores all the information from the sensors
// the place where samples are kept
//<><><><><><><><><><><><><><><><><><><><>

package robot.ai;

import java.io.*;
import java.util.*;
import java.net.*;

//<><><><><><><><><><><><><><><><><><><><>
// MEMORY
//<><><><><><><><><><><><><><><><><><><><>
// General information on the workings
//<><><><><><><><><><><><><><><><><><><><>
public class MEMORY{

 //<><><><><><><><><><><><><><><><><><><><>
 // data
 //<><><><><><><><><><><><><><><><><><><><>
 // the different history that is kept here
 //<><><><><><><><><><><><><><><><><><><><>
 double [] sensor;
 int s_count;
 int [] action;
 int a_count;

 //<><><><><><><><><><><><><><><><><><><><>
 // MEMORY()
 //<><><><><><><><><><><><><><><><><><><><>
 // initialization of the memory
 //<><><><><><><><><><><><><><><><><><><><>
 public MEMORY() throws Exception{
 sensor = new double [1001];
 s_count = 0;
 action = new int [1001];
 a_count = 0;
 }

 //<><><><><><><><><><><><><><><><><><><><>
 // void getInput(double reading)
 //<><><><><><><><><><><><><><><><><><><><>
 // this receives the sensor input
 //<><><><><><><><><><><><><><><><><><><><>
 public void getInput(double in) throws Exception{
 sensor[s_count] = in;

 76

 s_count += 1;
 System.out.print("[MEMORY] getInput: " + in + "\n");
 }

 //<><><><><><><><><><><><><><><><><><><><>
 // void getInput(double reading)
 //<><><><><><><><><><><><><><><><><><><><>
 // this receives the actions that were performed
 //<><><><><><><><><><><><><><><><><><><><>
 public void getOutput(int out) throws Exception{
 action[a_count] = out;
 a_count += 1;
 System.out.print("[MEMORY] getOutput: " + out + "\n");
 }

 //<><><><><><><><><><><><><><><><><><><><>
 // void actionQuery(double reading)
 //<><><><><><><><><><><><><><><><><><><><>
 // returns actions results sample
 // asks for action type. Determines samples for that action.
 // tells the result of that action
 //<><><><><><><><><><><><><><><><><><><><>
 public double actionQuery(int act) throws Exception{
 int sum = 0;
 int count = 0;
 int i;
 for(i=0;i<a_count;i+=1){
 if(action[i] == act){
 sum += sensor[i+1] - sensor[i];
 count += 1;
 }
 }

 System.out.print("[MEMORY] actionQuery: action " + act + " results in " + (sum /
count) + "\n");
 return (sum / count);
 }

 public static void main(String args[]) throws Exception{
 }
}

 77

//scott schwartz
//POWER_EVENTS.java

//<><><><><><><><><><><><><><><><><><><><>
// LEARNERS
//<><><><><><><><><><><><><><><><><><><><>
// this is the table of all the states and the corresponding actions
// that should be taken under the states
//
// these guys build the states/reactions
//
// they do all the necessarily learning and maintenance of this stuff
//
// These have access to the MEMORY, and they use it to build there
// rules
//
// there is a group of units which need access to this
// They are simply given this access.
// These are fsm & MONITORS
//
// this is the table of events the monitor looks for
// this is the table of events the fsm looks for when
// it receives events from the monitor
//
//<><><><><><><><><><><><><><><><><><><><>

package robot.ai.LEARNERS;

import java.io.*;
import java.util.*;
import java.net.*;

//<><><><><><><><><><><><><><><><><><><><>
// POWER_EVENTS
//<><><><><><><><><><><><><><><><><><><><>
// all the states and rules for the POWER_ACTION,
// POWER_MONITOR...
//
// it builds the events, and how to respond to them.
//<><><><><><><><><><><><><><><><><><><><>
public class POWER_EVENTS{

 //<><><><><><><><><><><><><><><><><><><><>
 // data
 //<><><><><><><><><><><><><><><><><><><><>
 // the laws
 // the states
 // the responces to the states
 //<><><><><><><><><><><><><><><><><><><><>
 private int low_law;
 private int high_law;
 private double [] power_actions_result;//effect to environment of action

 78

 private int [] states;//partitions possible states into important sets
 private int [][] states_actions;//allowable actions in a state
 private int lastState;//marker of end of state list
 private int nextAction;

 //<><><><><><><><><><><><><><><><><><><><>
 // POWER_EVENTS()
 //<><><><><><><><><><><><><><><><><><><><>
 // initialization of laws for power sensor events/states
 // we have laws 0 and 10, which are bad
 // we have 3 power actions which we will learn results for
 // we have a sigle state -- 0. 10 signifies end of states
 // this means state 0 is range (0,10)
 // in state 0, we can use all three actions...so far
 //<><><><><><><><><><><><><><><><><><><><>
 public POWER_EVENTS() throws Exception{
 low_law = 0;
 high_law = 10;

 power_actions_result = new double [3];
 power_actions_result[0] = 0;
 power_actions_result[1] = 0;
 power_actions_result[2] = 0;

 states = new int [10];
 states[0] = 0;
 states[1] = 10;
 lastState = 1;

 states_actions = new int [10][3];
 int i;
 int j;
 for(i=0;i<10;i+=1)
 for(j=0;j<3;j+=1)
 states_actions[i][j] = 1;

 nextAction = 0;//how we choose an action to use
 }

 //<><><><><><><><><><><><><><><><><><><><>
 // updateEvents()
 //<><><><><><><><><><><><><><><><><><><><>
 // determine what action does, and then
 // build state around that result so that future
 // actions reflect good decision knowledge from
 // what has become known.
 //<><><><><><><><><><><><><><><><><><><><>
 public void updateEvents(int action, double result) throws Exception{
 int i;
 int j;

 //learn current result of action

 79

 power_actions_result[action] = result;

 //solve equation to infer where action infringes on laws
 int boundary = (int) -result;

 //set for infringes on upper or lower laws
 if(boundary < 0)
 boundary += 10;

 //see if boundary exists, if so, done...
 for(i=lastState;i>=0;i-=1){
 if(boundary == states[i])
 return;
 }

 //build in this new result as a new partition, while keeping all old info
 //(an inference process)
 //where the result is respected so it doesn't break boundaries
 i = lastState;
 lastState += 1;
 while((boundary < states[i]) && (i>=0)){
 states[i+1] = states[i];
 states_actions[i+1][0] = states_actions[i][0];
 states_actions[i+1][1] = states_actions[i][1];
 states_actions[i+1][2] = states_actions[i][2];
 i -= 1;
 }

 //add the new state partition
 states[i+1] = boundary;
 states_actions[i][action] = 0;

 //make sure no original information was lost.
 //...that original partition is still imprinted on the new partition.
 //SPLIT THE PARTITION...ADD THE ADDTIONAL FEATURES, KEEP ORIGINAL
PARTION
 //AS IT WAS...JUST THE EXTRAS ARE ADDED
 if(boundary == 1)
 states_actions[0][1] = 0;//this is a hack...
 System.out.print("[POWER_EVENTS] updateEvents: did updating \n");
 }

 //<><><><><><><><><><><><><><><><><><><><>
 // readingToState()
 //<><><><><><><><><><><><><><><><><><><><>
 // searches states for ranges, then returns state with the range
 //<><><><><><><><><><><><><><><><><><><><>
 public int readingToState(double reading) throws Exception{
 int i;
 for(i=0;i<10;i+=1)
 if(states[i] >= reading){
 System.out.print("[POWER_EVENTS] readingToState: Reading "

 80

 + reading + " is State " + (i-1) + "\n");
 return i-1;
 }
 return 0;
 }

 //<><><><><><><><><><><><><><><><><><><><>
 // stateToAction()
 //<><><><><><><><><><><><><><><><><><><><>
 // We have the state, this tells us the options
 // we pick an option
 //<><><><><><><><><><><><><><><><><><><><>
 public int stateToAction(int state) throws Exception{
 int choice;

 while(states_actions[state][nextAction] == 0)
 nextAction = (nextAction+1)%3;

 choice = nextAction;
 nextAction = (nextAction+1)%3;

 System.out.print("[POWER_EVENTS] stateToAction: State "
 + state + " executes action " + choice + "\n");

 return choice;
 }

 public void print() throws Exception{
 int i;
 int j;
 for(i=0;i<10;i+=1){
 System.out.print("\n");
 for(j=0;j<3;j+=1)
 System.out.print(states_actions[i][j] + " ");
 }
 System.out.print("\n\n");
 for(j=0;j<3;j+=1)
 System.out.print(states[j] + " ");
 System.out.print("\n\n");

 }

 public static void main(String args[]) throws Exception{
 }
}

 81

	Trinity University
	Digital Commons @ Trinity
	8-17-2005

	Self-Adjusting Finite State Machines: an approach to Real-Time Autonomous Behavior in Robots
	Scott Schwartz
	Recommended Citation

	theSIS-2.pdf
	
	

