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1 Abstract

The phase diagrams for three-body and four-body systems with �-function interactions are presented. The

three-body and four body systems considered are the heavy-heavy-light (HHL) and heavy-heavy-heavy-light

(HHHL) systems, respectively. The heavy particles are assumed to be identical. Both systems are treated

within the Born-Oppenheimer approximation. The results from [16] are extended to arbitrary values of

the heavy-heavy (HH) coupling. The phase diagram presented in [8] is reproduced, and the corresponding

HHHL phase-diagram is presented. It was found that in both the three and four body systems the scattering

lengths (atom-dimer for HHL and atom-trimer for HHHL) and spectra vary smoothly as the heavy-heavy

interaction strength � is varied from 0 to 1.

2 Introduction

Few-body physics has been an important area of quantum mechanics since its inception. In few-body physics

small systems involving 2-6 particles are built up from first principles. Since the Schrödinger equation is a

DN -dimensional di↵erential equation, where D is the number of spatial dimensions and N is the number

of particles, very few quantum systems can be solved analytically. Thus, physicists have had to resort to

increasingly complicated approximations in order to probe such systems. Work in few-body physics has

relevance to many other areas of physics such as subnuclear physics, atomic physics, nuclear physics, solid-

state physics, and more [20].

There is a large body of literature on few- and many-body physics of strongly interacting 1D systems [13,

14, 24, 23, 4, 21]. These calculations are helpful in building up to full three-dimensional problems, but also

are directly related current experiments in quasi-1D cold atomic gases. The Olshanii formula [18, 1] relates

the three dimensional scattering length a3D and the transverse oscillator length a? with the one-dimensional

scattering length a:

a = � a2?
2a3D

✓
1� C

a3D
a?

◆
(1)

The scattering length, generally speaking, describes the interaction strength between two scattering

particles in the limit of zero collision energy. With �-function interactions, the scattering length is related

to the interaction strength of the delta function by:

a / �1

g
(2)
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From Eq. (2), zero scattering length corresponds to infinitely interacting particles, and infinite scattering

length corresponds to zero interaction between particles. The scattering length will be more rigorously defined

and discussed in section (3). One can refer to figure (1) for a graphical representation of the scattering length.

Current experiments with cold atoms in quasi-1D are able to independently control the three-dimensional

scattering length a3D and the transverse oscillator length a?. The Olshanii formula allows one to calculate

the exact 1D scattering length from other a3D and a?. C is a unit-less constant calculated to be ⇡ 1.46. In

this way the 1D physics is directly related to the 3D physics.

The work of Kartavtsev, et. al. [8] is particularly relevant to this thesis. In reference [8] Kartavtsev, et.

al. construct a three-body ”HHL” phase diagram which is recreated in this work using di↵erent methods.

This thesis is based on calculations performed by Mehta [16], and thus one can refer to [16].

Cold atom experiments are now sophisticated enough to directly relate to this thesis. For instance,

experiments can create one-dimensional trap geometries and control the interactions between di↵erent species

of particles [6, 5, 22, 9, 10, 11]. More and more atomic species are able to be trapped, cooled, and studied,

giving rise to a diverse set of current experiments. These include experiments being done by the groups

of D. Weiss at Pennsylvania State [19] and S. Jochim at Heidelberg [17]. [19] confine ultra-cold rubidium

atoms into tubes created by 2D optical latices. [17] manages to cool two ultra-cold fermionic atoms into an

isolated double-well potential. They have full control over the quantum state of the system (i.e. interaction

strength, tunneling rate between wells, and potential geometry).

This thesis is organized as follows: First is a small look at the two-body problem as a point of reference

for the more complicated systems. Following are the 3-body and 4-body systems, in which the coordinate

systems, the Born-Oppenheimer approximation, and calculations will be briefly outlined. Then potential

curves, spectra, atom-dimer and atom-trimer scattering lengths, and phase diagrams for each system will

be presented. Next I will present the three and four body phase diagrams. Finally I will end with my

conclusions and outlook.

3 Two-Body Problem

3.1 Delta-Functions

For this thesis, all particle-particle interactions will be modeled with delta functions. The delta function is

defined as:

Z +✏

�✏
�(x)dx = 1, ✏ > 0 (3)
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One common representation for the delta function is as follows:

�(x) = lim
✏!0

8
>><

>>:

1
2✏ |x| < ✏

0 otherwise

(4)

When the de Broglie wavelength � associated with the relative momentum of the colliding partners is

much longer than the range, r0, of the interaction (i.e. � � r0) the details of the short-range interactions

are not resolved. Without changing the long-range behavior, delta function potentials can be substituted

for the short-range potentials, reproducing the appropriate low-energy physics, specifically the scattering

length1. This idea is summarized in figures (1), (2), and (3). These figures show the wave-function inside a

typical potential well. Figures (1) and (2) show a typical potential with range r0 for negative and positive

scattering length. Figure (3) is the same, but with a � r0. In that regime (r0 ⌧ a ⌧ �), the long range

physics is controlled by the scattering length and one can consider r0 ! 0. A more in depth discussion on

the scattering length will follow once it has been mathematically defined.















       





Figure 1: Negative scattering length a in a potential of range r0.

1
For a more in depth discussion see ref [12].
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Figure 2: Positive scattering length a in a potential of range r0.















       





Figure 3: Positive scattering length a in a potential of range r0.
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3.2 �-Function Boundary Condition

With �-functions, we can now begin to describe a relevant 2-body problem in one dimension. Let particles

1 and 2 have masses m1 and m2. Particles 1 and 2 interact via a �-function potential given by:

V = g�(x1 � x2) (5)

where x1 and x2 refer to the positions of particles 1 and 2, respectively and g is the strength of the interaction.

The Hamiltonian is thus:

H =
p21
2m1

+
p22
2m2

+ V (x1 � x2) (6)

Rather than dealing with this problem in its full complexity, it is useful to reduce the problem by separating

the center of mass motion and the relative particle motion.

x = x1 � x2

xcm = m1x1+m2x2
m1+m2

(7)

The resulting Hamiltonian is:

H =
p2cm
2M

+
p2x
2µ

+ V (x) (8)

where M is the sum of the masses, µ is the reduced mass, and:

pcm = p1 + p2

px = m2p1�m1p2

m1+m2

(9)

As we can see, the center of mass is separable in this system, meaning we can deal with the inter-particle

motion separately from the center of mass motion. The relative Hamiltonian is:

Hx =
p2x
2µ

+ V (x) (10)

Now all that remains is the familiar delta-function potential problem [7]:

� 1

2µ

d2 

dx2
+ g�(x) = E (11)

6



Note that h̄ is set to 1. Multiplying through by �2µ:

d2 

dx2
+ 2µE = 2µg�(x) (12)

by integrating both sides we have:

✓
d 

dx

◆

+✏

�
✓
d 

dx

◆

�✏
= 2µg (0) (13)

Knowing that
⇣

d 
dx

⌘

+✏
= �

⇣
d 
dx

⌘

�✏
we’re left with:

✓
d 

dx

◆

✏

= µg (0) (14)

This expression gives us the log-derivative boundary condition.

lim
✏!0+

✓
 0

 

◆

✏

= µg (15)

3.3 Bound States

For E < 0 (bound states) we have the usual solutions:

 (x) = Ae�|x| (16)

From the Schrödinger equation, we define  =
p
�2µE. By normalizing Eq. (16) we find A =

p
. We

enforce the boundary condition given in Eq. (15). This gives the following bound state energies:

E = �µg2

2
(17)

and

 (x) =
p
�µgeµg|x| (18)

3.4 Scattering States and the E↵ective Range Expansion

When E > 0 we instead have scattering solutions. Begin by noting that for V (x) = 0, the positive-parity

free-particle solution is given by:

 (x) = cos(kx) (19)
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where k =
p
2µE. When V (x) 6= 0 but V (x) = 0 for some x > x0 we have:

 (x) ! cos(kx+ �), 8 x > x0 (20)

where � is the phase shift. Note we can ignore the overall normalization since these states are not normalizable

at all. We can then expand this solution using a trigonometric identity for cosine:

 (x) ! cos(kx) cos(�)� sin(kx) sin(�), 8 x > x0 (21)

Again, ignoring overall normalization,

 (x) ! cos(kx)� tan(�) sin(kx), 8 x > x0 (22)

We now substitute Eq. (22) into Eq. (15):

 0

 

����
x0

=
�k sin(kx)� k tan(�) cos(kx)

cos(kx)� tan(�) sin(kx)

����
x0

(23)

Typically the log-derivative on the left hand side is obtained from the numerical solutions to the Schrödinger

equation for x  x0. Upon solving the above equation for k tan(�) and taking the limit k ! 0, one obtains

the one-dimensional scattering length:

lim
k!0

k tan(�) =
1

a
(24)

Specifically for a �-function interaction of the form of Eq. (5), one obtains:

a = � 1

µg
(25)

Note the scattering length depends on the interaction between the scattering particles. In this way, the

scattering length can be thought of as a way of describing the particle-particle interactions. In the lab, this

1D scattering length is controlled by a3D and a? from Eq. (1).

The other important way to think about the scattering length is encapsulated in figures (1), (2), and

(3). In these figures we have the long range solutions (the straight lines) which intersect with the x-axis for

positive scattering length. For negative scattering length, one simply traces the long range solution back

down to the x-intercept. This can be seen mathematically by taking Eq. (22) and taking the limit as k ! 0.

lim
k!0

cos(kx)� tan(�) sin(kx) = 1� k tan(�)x (26)
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One then simply sets Eq. (26) to 0 and solves for x to find the x-intercept. It’s a simple matter to confirm

the same result as in Eq. (24).

When considering the scattering length from this perspective, one can use the scattering length to obtain

useful information about the number of bound states. As the wave-function shown in figures (1) and (2)

accumulates phase, the scatting length becomes more and more negative. Eventually, the wave-function will

acquire another node and the scattering length will become positive. The new node shows the presence of a

new bound state supported by the potential. Thus when the scattering length changes from �1 to 1, we

expect a new bound state to appear.

4 Three-Body Problem

4.1 Coordinates

Suppose we have three particles in one dimension. Let particles 1 and 2 have mass m1 = m2 = mH and

particle 3 has mass mL = �mH . Thus we have the mass ratio:

� ⌘ mL

mH
(27)

� is one of the main parameters in this work, as it is controllable in the lab through the choice of cooled

atoms. We assume �-function heavy-light interactions given by:

Vij = g�(xi � xj) (28)

From Eq. (24) the one-dimensional H-L scattering length is given by a = �1/(µHLg). By assuming a > 0

the heavy-light binding energy is B2 = µHLg
2/2 = 1/(2µHLa

2). The positions of particles 1, 2, and 3, are

given by x1, x2, and x3, respectively. We have the Hamiltonian:

H =
X

i

� 1

2mi

@2

@x2
i

+
X

ij

Vij (29)

9



We introduce the following change of coordinates:

y1 =

r
µ12

µ3b
(x2 � x1) (30)

y2 =

r
µ12,3

µ3b

✓
m1x1 +m2x2

m1 +m2
� x3

◆
(31)

y3 =

r
1

µ3b

✓
m1x1 +m2x2 +m3x3

m1 +m2 +m3

◆
(32)

The reduced masses are:

µ12 = mH/2 (33)

µ12,3 = mH [2�/(2 + �)] (34)

µ3b =
p
µ12µ12,3 (35)

µHL = mH [�/(1 + �)] (36)

The Hamiltonian then becomes:

H = � 1

2µ3b

✓
@2

@y21
+

@2

@y22
+

@2

@y23

◆
+ gHH�

 ✓
�

2 + �

◆1/4 p
2y1

!

+ gHL�

 p
�(2 + �)y1 � (2 + �)y2p

2(2 + �)3/4�1/4

!
+ gHL�

 p
�(2 + �)y1 + (2 + �)y2p

2(2 + �)3/4�1/4

!
(37)

At this point we ignore the center of mass motion and only consider the relative motion. The Hamiltonian

is then:

H = � 1

2µ3b

✓
@2

@y21
+

@2

@y22

◆
+ gHH�

 ✓
�

2 + �

◆1/4 p
2y1

!

+ gHL�

 p
�(2 + �)y1 � (2 + �)y2p

2(2 + �)3/4�1/4

!
+ gHL�

 p
�(2 + �)y1 + (2 + �)y2p

2(2 + �)3/4�1/4

!
(38)

After some careful algebra and repeated use of:

�(f(x)) =
�(x� x0)���@f@x

���
x0

(39)
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where x0 is the zero of f(x), we have:

H = � 1

2µ3b

✓
@2

@y21
+

@2

@y22

◆
�
p
2

✓
�

2 + �

◆1/4
"
gHH�

 
2

s
�

2 + �
y1

!

+ gHL�

 
y2 �

s
�

2 + �
y1

!
+ gHL�

 
y2 +

s
�

2 + �
y1

!#
(40)

The Hamiltonian is then scaled by the heavy-light binding energy given by:

B2 =
1

mHa2
� + 1

2�
(41)

This is accomplished by simply dividing the entire Schrödinger equation by the heavy-light binding energy.

We define our energy scale in terms of B2 simply to have an explicit energy scale. The Hamiltonian reads:

H = � 1

2 1+�

2
p
�(2+�)

 
@2

@
�
y1

a

�2 +
@2

@
�
y2

a

�2

!
� 2

p
2

✓
�

2 + �

◆1/4
"
gHH

gHL
�

 
2

s
�

2 + �

y1
a

!

+ �

 
y2
a

�

s
�

2 + �

y1
a

!
+ �

 
y2
a

+

s
�

2 + �

y1
a

!#
(42)

We introduce the following unit-less mass-scaled Jacobi coordinates and the following parameters:

x =
1

a
y1 (43)

y =
1

a
y2 (44)

µ3 =
1 + �

2
p
�(2 + �)

(45)

g3 = �2
p
2

✓
�

2 + �

◆1/4

(46)

� =
gHH

gHL
(47)

x0 = x

s
�

2 + �
(48)

thus the Hamiltonian is:

H = � 1

2µ3

✓
@2

@x2
+

@2

@y2

◆
+ g3[��(2x0) + �(y + x0) + �(y � x0)] (49)
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Finally, the Schrödinger equation reads:

� 1

2µ3

✓
@2

@x2
+

@2

@y2

◆
 (x, y) + g3[��(2x0) + �(y + x0) + �(y � x0)] (x, y) = E (x, y) (50)

�, the ratio of heavy-heavy to heavy-light couplings is of particular importance to this work. In [16], only

� = 0 and � = 1 are considered. This thesis extends the results of [16] to arbitrary �.

4.2 Born-Oppenheimer Approximation

We invoke the Born-Oppenheimer approximation:

 (x, y) = �(x; y) (x) (51)

In short, the Born-Oppenheimer approximation asserts that the heavy particles are essentially at rest when

compared to the light particle, fixing the x-coordinate. This allows us to separate  into the product seen

in Eq. (51) where �(x; y) depends adiabatically on x and  (x) depends only on x. For a more complete

description, see [3]. The wave-function �(x; y) satisfies the following fixed-x equation.


�1

2µ3

@2

@y2
+ g3[�(y + x0) + �(y � x0)]

�
�(x; y) = u(x)�(x; y) (52)

u(x) < 0 is the Born-Oppenheimer potential in units of the H-L binding energy. To solve this equation, one

fixes x and integrates over the remaining y coordinate. This is shown visually in figure (4). Inserting Eq.

(51) into Eq.(50) and using Eq. (52) we have:

0

@ �1

2µ3

@2

@x2
+ g3��(2x0) + u(x) +

⇠
Q(x)

2µ3

1

A (x) = E (x) (53)

where
⇠
Q(x) =

⌧
@�

@x

����
@�

@x

�

y

(54)

The integration of the matrix element
⇠
Q(x) is carried out over the y coordinate while the adiabatic coordinate

x is held fixed.

12



Figure 4: On the left is the x-y plane which shows the HL coalescence points as the dotted lines. On the
right is the resultant 1D double-�-function problem which is solved over y. Figures adapted from [15] with
permission.

� = 0 (Non-Interacting Bosons) � = 1 (Infinitely Repulsive Bosons)
 0|x=0 = 0  |x=0 = 0

Table 1: Previous boundary conditions on  in [16]

4.3 The 3-Body � Boundary Condition

In Ref. [16] only � ! 0 and � ! 1 were considered. For these cases, the boundary conditions on  (x) at

x = 0 are shown in Table (1). Here, we derive a new boundary condition for arbitrary � at x = 0. Notice

Eq. (53) is similar in form to Eq. (11). In order to derive a new boundary condition for Eq. (53), we use

the same method used to derive the boundary condition for Eq. (11). Rearranging Eq. (53) we have:

@2 

@x2
= 2µ3g3��(x0) + [

⇠
Q(x) + 2µ3u(x)� 2µ3E)] (55)

Integrating both sides across an interval 2✏ about 0 and implicitly considering the limit ✏! 0 we have:

d 

dx

����
+✏

� d 

dx

����
�✏

=

s
2 + �

�
µ3g3� (0) +

Z +✏

�✏
(
⇠
Q(x) + 2µ3u(x)� 2µ3E) (56)

Utilizing the fact that d 
dx

���
�✏

= � d 
dx

���
+✏

we have:

d 

dx

����
+✏

=

s
2 + �

�

µ3g3�

2
 (0) +

1

2

Z +✏

�✏
(
⇠
Q(x) + 2µ3u(x)� 2µ3E) (57)

13



We then take the limit as ✏! 0 and are left with:

 0

 

����
✏!0

=

s
2 + �

�

µ3g3�

2
+

⇠⇠⇠⇠⇠⇠⇠⇠⇠⇠⇠⇠⇠⇠⇠⇠:0

1

2

Z +✏

�✏
(
⇠
Q(x) + 2µ3u(x)� 2µ3E) (58)

Plugging in expressions for µ3 and g3 we’re left with the following boundary condition:

 0

 

����
✏!0

= � 1 + �
p
2� 4
p
�(2 + �)

� (59)

This boundary condition is shown being enforced for di↵erent values of � in figure 5.











      








Figure 5:  (x), the solution to Eq. (52), is shown for three values of �. � = 0 is the blue solid curve, � = 0.3
is the purple dashed curve, and � = 1 is the red dotted line. The solid black line is the 3-body potential
curve. All  s and potentials are calculated for � = 22.08, the mass ratio for Cs-Li mixtures.

4.4 Transcendental Equation

The solutions to Eq. (52) are:

�(x; y) =

8
>><

>>:

A sinh(y) +B cosh(y), if 0  y  x0

De�y, if x0  y

(60)

where  =
p
�2µ3u(x). By then matching these two wave-functions and imposing the derivative discon-

tinuity across the � function at y = x0, we have the following transcendental equation for the eigenvalue
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:


g3µ3
+ 1 = (�1)P+1e�2x0 (61)

Here P = 0 corresponds to the even solution (@�@y |y=0 = 0), and P = 1 corresponds to the odd solution

(�|y=0 = 0). The solutions to Eq. (61) give potential curves for the HHL system shown in figs. (9)(b), (d),

and (f).

4.5 3-Body Phase Diagram

For the scattering solutions of the HHL system the solution to Eq. (53) in the region x >> lo (lo is the

range of U(x)) is matched to

 (x) !

8
>><

>>:

cos(kx)� tan(�) sin(kx) bosons, x > 0

sin(kx) + tan(�) cos(kx) fermions, x > 0

(62)

Note the di↵erence in solutions for bosons and fermions stems simply from their even and odd nature,

respectively. These solutions are analogous to the solution from Eq. (22). Thus the atom-dimer scattering

length is

1

aAD
= lim

kAD!0

8
>><

>>:

kAD tan(�) bosons

�kAD cot(�) fermions

(63)

where kAD =
p
2µ23,1Erel and k =

p
µ3Erel.

Figure (6)(a) shows the three-body spectrum as a function of ��1/2. Figure (6)(b) shows the atom-dimer

scattering length as a function of ��1/2. The asymptotes and zeros shown in Figure (6)(b) are calculated

via a bisection root-finding algorithm. As the calculation repeats over di↵erent values of �, these asymptotes

and zeros are stored and plotted. Figure (7) agrees with the calculations of Ref. [8]. Note our figure

does not extend beyond the dotted black line. This line denotes where the HH and HL two-body energies

are equal. Our calculation does not consider this area of phase-space, as we have restricted calculation to

portions of the phase space where the lowest atom-dimer threshold corresponds to the atom-dimer collision

HL +H ! HL +H. For regions below the dotted black line the lowest two body channel corresponds to

the atom-dimer collision HH + L ! HH + L, which we do not consider. This phase diagram shows the

number of three-body bound states for a given mass ratio and interaction strength, both tunable variables

in the lab.
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Figure 6: Graph (a) shows the energy spectrum for the three-body system as a function of ��1/2. Graph
(b) shows tan�1(aAD/a)/⇡, where aAD is the atom-dimer scattering length. Solid blue curves represent the
noninteracting bosonic H particles (� = 0). The dashed purple curves represent the interacting bosonic H
particles (� = 0.3). The dotted red curves represent the noninteracting fermionic particles or fermionized H
particles with � = 1.

Figure 7: Phase diagram for the HHL system as a function of ��1/2 and arctan(�). The dash-dotted blue
line denotes the positions of the zeros (i.e. where the atom-dimer scattering length changes sign). The solid
red curves denote the positions of the asymptotes (i.e. where the system begins to support a new bound-
state). The dotted black line represents where the HH and HL two-body energies are equal. The number of
three-body bound states is indicated by n on the graph.
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5 Four-Body Problem

5.1 Coordinates

The four-body problem is set up in a similar manner to the three-body problem. Particles 1, 2, and 3 have

masses m1 = m2 = m3 = mH and particle 4 has mass m4 = mL = �mH . The scaling of the Schrödinger

equation follows as it did in the HHL problem. We begin with the familiar Hamiltonian:

H =
X

i

� 1

2mi

@2

@x2
i

+
X

ij

Vij (64)

We introduce the following change of coordinates:

y1 =

r
µ12

µ4b
(x1 � x2) (65)

y2 =

r
µ12,3

µ4b

✓
m1x1 +m2x2

m1 +m2
� x3

◆
(66)

y3 =

r
µ123,4

µ4b

✓
m1x1 +m2x2 +m3x3

m1 +m2 +m3
� x4

◆
(67)

y4 =

r
1

µ4b

✓
m1x1 +m2x2 +m3x3 +m4x4

m1 +m2 +m3 +m4

◆
(68)

Ignoring the center of mass motion, the Hamiltonian is thus:

H = � 1

2µ4b

✓
@2

@y21
+

@2

@y22
+

@2

@y23

◆
+

gHH

 
�

 ✓
�

3 + �

◆1/6 p
2y1

!
+ �

 
1p
2

✓
�

3 + �

◆1/6

(y1 +
p
3y2)

!
+

�

 
1p
2

✓
�

3 + �

◆1/6

(�y1 +
p
3y2)

!!
+

gHL

 
�

 
1

6

3
p
2�(3 + �)y1 +

p
6�(3 + �)y2 + 2

p
3(3 + �)y3

(3 + �)2/3�1/3

!
+

�

 
1

6

�3
p
2�(3 + �)y1 +

p
6�(3 + �)y2 + 2

p
3(3 + �)y3

(3 + �)2/3�1/3

!
+ �

 
� 1p

3

p
2�(3 + �)y2 � (3 + �)y3

(3 + �)2/3�1/3

!!
(69)

First we will consider the heavy-heavy interactions separately.

V12 + V13 + V23 = gHH

 
�

 ✓
�

3 + �

◆1/6 p
2y1

!
+ �

 
1p
2

✓
�

3 + �

◆1/6

(y1 +
p
3y2

!
+

�

 
1p
2

✓
�

3 + �

◆1/6

(�y1 +
p
3y2)

!!
(70)
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After some simplification we have:

V12 + V13 + V23 =
gHHp

2

✓
3 + �

�

◆1/6
 
�(y1) + �

 
1

2
y1 +

p
3

2
y2

!
+ �

 
1

2
y1 �

p
3

2
y2

!!
(71)

We then scale by the heavy-light binding energy B2.

V12 + V13 + V23

B2
= �

p
2

✓
3 + �

�

◆1/6

�

 
�
⇣y1
a

⌘
+ �

 
1

2

y1
a

+

p
3

2

y2
a

!
+ �

 
1

2

y1
a

�
p
3

2

y2
a

!!
(72)

We then move to the following unit-less mass-scaled Jacobi coordinates:

x =
1

a
y1 (73)

y =
1

a
y2 (74)

z =
1

a
y3 (75)

where µ4b = (µ12µ12,3µ123,4)1/3 is the four-body reduced mass. Thus our scaled heavy-heavy interaction is:

V12 + V13 + V23

B2
= �

p
2

✓
3 + �

�

◆1/6

�

 
� (x) + �

 
1

2
x+

p
3

2
y

!
+ �

 
1

2
x�

p
3

2
y

!!
(76)

Next we move to hyperspherical coordinates. This is equivalent to moving to spherical-polar coordinates

from Cartesian coordinates.

x = ⇢ cos(�) (77)

y = ⇢ sin(�) (78)

z = R cos(✓) (79)

⇢ =
p

x2 + y2 (80)

⇢ = R sin(✓) (81)

We can now re-write the heavy-heavy interaction as:

V12 + V13 + V23

B2
= �

p
2

✓
3 + �

�

◆1/6

� [�(⇢ cos(�)) + �(⇢ cos(�� ⇡/3)) + �(�⇢ cos(�+ ⇡/3))] (82)
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We then rearrange and have:

V12 + V13 + V23

B2
= �g4

3X

i<j

�(↵⇢| sin(�� �ij)|) (83)

with:

↵ =

s
6�

3 + �
(84)

�12 =
⇡

2
(85)

�23 = ��13 =
⇡

6
(86)

g4 = �2
p
3

✓
�

3 + �

◆1/3

(87)

Note that this formula for ↵ is a correction to [16]. Returning our attention to the rest of the Hamiltonian

we’re left with:

� 1

2µ4b

✓
@2

@y21
+

@2

@y22
+

@2

@y23

◆
+ gHL

 
�

 
1

6

3
p
2�(3 + �)y1 +

p
6�(3 + �)y2 + 2

p
3(3 + �)y3

(3 + �)2/3�1/3

!
+

�

 
1

6

�3
p
2�(3 + �)y1 +

p
6�(3 + �)y2 + 2

p
3(3 + �)y3

(3 + �)2/3�1/3

!
+ �

 
� 1p

3

p
2�(3 + �)y2 � (3 + �)y3

(3 + �)2/3�1/3

!!
(88)

After some simplifications we end up with:

� 1

2µ4b

✓
@2

@y21
+

@2

@y22
+

@2

@y23

◆
+ gHL

p
3

✓
�

3 + �

◆1/3
 
�

 
y3 +

s
�

2(3 + �)
(
p
3y1 + y2)

!
+

�

 
y3 +

s
�

2(3 + �)
(�

p
3y1 + y2)

!
+ �

 
y3 �

s
2�

3 + �
y2

!!
(89)

We then scale the Hamiltonian with the heavy-light binding energy B2:

� 1

2

2�2/3(3 + �)1/3

� + 1

 
@2

@
�
y1

a

� + @2

@
�
y2

a

� + @2

@
�
y3

a

�
!

� 2
p
3

✓
�

3 + �

◆1/3

 
�

 
y3
a

+

s
�

2(3 + �)

⇣p
3
y1
a

+
y2
a

⌘!
+ �

 
y3
a

+

s
�

2(3 + �)

⇣
�
p
3
y1
a

+
y2
a

⌘!
+

�

 
y3
a

�

s
2�

3 + �

y2
a

!!
(90)
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We then move to the Jacobi coordinates from Eqs. (73), (74), and (75).

� 1

2µ4

✓
@2

@x2
+

@2

@y2
+

@2

@z2

◆
+ g4

 
�

 
z +

s
�

2(3 + �)

⇣p
3x+ y

⌘!
+

�

 
z +

s
�

2(3 + �)

⇣
�
p
3x+ y

⌘!
+ �

 
z �

s
2�

3 + �
y

!!
(91)

with:

µ4 =
� + 1

2�2/3(3 + �)1/3
(92)

Next we move to x and y to the hyperspherical coordinates in Eqs. (77), (78), (79), (80), and (81).

� 1

2µ4

✓
1

⇢

@

@⇢
⇢
@

@⇢
+

1

⇢2
@2

@�2
+

@2

@z2

◆
+ g4

 
�

 
z +

s
2�

3 + �
⇢

 p
3

2
cos(�) +

1

2
sin(�)

!!
+

�

 
z +

s
2�

3 + �
⇢

 
�
p
3

2
cos(�) +

1

2
sin(�)

!!
+ �

 
z �

s
2�

3 + �
⇢ sin(�)

!!
(93)

Utilizing trigonometric substitutions, the Hamiltonian becomes:

� 1

2µ4
r2 + g4

3X

i=1

�(z � zi) (94)

with:

zi =

s
2�

3 + �
⇢ sin (�� �i) (95)

where �1 = �4⇡/3, �2 = 0, and �3 = �2⇡/3. We rescaled the Schrödinger equation by the heavy-light

binding energy B2. Finally the full four-body Schrödinger equation reads:

� 1

2µ4
r2 (⇢,�, z) +

2

4g4
3X

i=1

�(z � zi) + �g4

3X

i<j

�(↵⇢| sin�� �ij |)

3

5 (⇢,�, z) = E (⇢,�, z) (96)

5.2 Born-Oppenheimer Approximation

By fixing x and y, one equivalently fixes ⇢, and �. We make the Born-Oppenheimer factorization:

 = �(⇢,�; z) (⇢,�) (97)
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where the adiabatic equation for the Born-Oppenheimer surface is:

 
� 1

2µ4

@2

@z2
+ g4

3X

i=1

�(z � zi)

!
�(⇢,�; z) = U(⇢,�)�(⇢,�; z) (98)

The heavy-particle eigenstates now live on the potential-energy surface U(⇢,�), and satisfy (in the extreme

adiabatic approximation (EAA)):

� 1

2µ4

✓
1

⇢

@

@⇢
⇢
@

@⇢
+

1

⇢2
@2

@�2

◆
 (⇢,�)

+

2

4U(⇢,�) + �g4

3X

i<j

�(↵⇢| sin(�� �ij)|)

3

5 (⇢,�) = EEAA (⇢,�) (99)

Finally, we describe  (⇢,�) as a sum over adiabatic channel function:

 (⇢,�) =
1X

n=0

⇢�1/2fn(⇢)�(⇢;�) (100)

where �(⇢;�) satisfy the fixed-⇢ equation:

� 1

2µ4⇢2
@2�n

@�2
+ U(⇢,�)�n + �g4

3X

i<j

�(↵⇢| sin(�� �ij)|)�n = Un(⇢)�n (101)

As it’s name suggests, the fixed-⇢ equation fixes ⇢, and the system is solved over the remaining coordinate

�. This is shown graphically in figure (8).

5.3 The 4-Body � Boundary Condition

In order to incorporate arbitrary heavy-heavy couplings (or �), one must enforce a delta function boundary

condition at � = ⇡/6. This is done using the method outlined in section (3) and is very similar to the �

boundary condition in section (4). We begin by rearranging Eq. (101)

@2�n

@�2
= 2µ4g4⇢

2�
3X

i<j

�(↵⇢| sin(�� �ij)|)�n + 2µ4⇢
2[U(⇢,�)� Un(⇢)]�n (102)
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Figure 8: The coordinate space in both Cartesian and spherical-polar. It is easy to see that when ⇢ is fixed,
the resulting red line is where Eq. (101) is solved on. Figure adapted from [15] with permission.
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We then integrate both sides across an interval 2✏ about ⇡/6 we have:

@�n

@�

����
⇡/6+✏

� @�n

@�

����
⇡/6�✏

=
2µ4g4⇢

2�

|↵⇢|

Z ⇡/6+✏

⇡/6�✏

3X

i<j

�(sin(�� �ij))

| sgn(�� �ij)|
�n

+ 2µ4⇢
2

Z ⇡/6+✏

⇡/6�✏
[U(⇢,�)� Un(⇢)]�n (103)

Since @�n

@�

���
⇡/6�✏

= � @�n

@�

���
⇡/6+✏

, we have:

@�n

@�

����
⇡/6+✏

=
µ4g4⇢�

↵

Z ⇡/6+✏

⇡/6�✏
�(�� ⇡/6)�n@�+ µ4⇢

2

Z ⇡/6+✏

⇡/6�✏
[U(⇢,�)� Un(⇢)]�n (104)

As before we then take the limit as ✏! 0:

1

�n

@�n

@�

����
⇡/6

=
µ4g4⇢�

↵
+

⇠⇠⇠⇠⇠⇠⇠⇠⇠⇠⇠⇠⇠⇠⇠:0

µ4⇢
2

Z ⇡/6+✏

⇡/6�✏
[U(⇢,�)� Un(⇢)]�n (105)

Plugging in expressions for µ4, g4, and ↵, we’re left with:

1

�n

@�n

@�

����
⇡/6

=
⇢�(1 + �)p

2�

✓
�

3 + �

◆1/6

(106)

Eq. (106) is a correction to the formula presented in [16]. This correction is due to the correction in Eq.

(84).

The 4-body boundary conditions presented for di↵erent parity and interactions are summarized in table

(2). For an in depth discussion of these boundary conditions, see ref. [16]. The boundary condition in

Eq. (106) is for positive parity bosons at � = ⇡/6, as the boundary condition at � = 0 does not change

when the interaction strength of the heavy particles changes. Note how Eq. (106) satisfies both boson

boundary conditions (non-interacting and infinitely repulsive) for � = 0 (non-interacting) and � = 1

(infinitely repulsive). Also note that the boundary conditions for infinitely repulsive bosons and fermions are

the same. Thus we expect as the interaction is increased by increasing �, the 4-body spectrum and atom-

trimer scattering length should vary smoothly to the infinitely repulsive fermionic solution. This mapping

of solutions can be seen in the HHHL phase diagram in the following section.

5.4 4-Body Phase Diagram

Figures 9(a), 9(c), and 9(e) show the hyperradial potential curves Un(⇢) obtained by solving the fixed-⇢ Eq.

(101) using the potential energy surface. At large ⇢, the lowest potential curves converge to the appropriate
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Figure 9: Graph (a) shows the bosonic hyperradial potential curves describing the heavy-particle dynamics
in the HHHL system (� = 0), while graph (b) shows the corresponding Born-Oppenheimer potential curve
for the HHL system. Graphs (c) and (d) show similar curves except for a intermediate bosonic case (� = 0.3).
Graphs (e) and (f) show similar curves except for fermions (� = 1) All graphs are for ��1 = 22.08.
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� = 0 Positive Parity (+) Negative Parity (-)

Bosons d�
d�

���
0
= 0 �|0 = 0

Fermions �|0 = 0 d�
d�

���
0
= 0

� = ⇡/6 Non-Interacting Infinitely Repulsive

Bosons @�
@�

���
⇡/6

= 0 �|⇡/6 = 0

Fermions �|⇡/6 = 0 �|⇡/6 = 0

Table 2: Boundary conditions on �

HHL bound-state energy. Figure 10 shows the spectrum and atom-trimer scattering lengths of the HHHL










         


 















         



 
 









Figure 10: Graph (a) shows the energy spectrum for the four-body system as a function of ��1/2. Graph
(b) shows tan�1(aAT /a)/⇡, where aAT is the atom-trimer scattering length. Solid blue curves represent the
noninteracting bosonic H particles (� = 0). The dashed purple curves represent the interacting bosonic H
particles (� = 10). The dotted red curves represent the noninteracting fermionic particles or fermionized H
particles with � = 1.

system with noninteracting positive-parity bosonic heavy atoms for 0, 0.3, and 1 values of �.

Figure 11 shows the HHHL phase diagram. The phase diagram is constructed in an analogous way as

the HHL phase diagram. However, the dotted black line now represents where the three-body bound state

energies of the HHH and HHL trimers are equal. The HHH energies were calculated from the work of ref.

[14], and the HHL energies were simply the values found in the three-body stage of the total calculation.

The number of four-body bound states is indicated by n on the graph.
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Figure 11: Phase diagram for the HHHL system as a function of ��1/2 and arctan(�). The dash-dotted
blue line denotes the positions of the zeros (i.e. where the atom-trimer scattering length changes sign). The
solid red curves denote the positions of the asymptotes (i.e. where the system begins to support a new
bound-state). The dotted black line represents where the HHH and HHL three-body energies are equal.

6 Boundary Conditions with B-Splines

The boundary condition shown in Eqns. (59) and (106) are enforced using B-splines. B-splines, or basis

splines, are a subset of splines, which are piecewise polynomial functions with a high degree of smoothness

where the piecewise sections intersect. These intersections are known as knots. A spline can be expressed as

a linear combination of B-splines. A typical set of B-splines are shown in figure (12). Note the low support

of the individual B-splines. This means that each B-spline is non-zero for only a small range. Thus, only

a few B-splines overlap at any given position. For this thesis,  (x) and �(�) are both expanded in a basis

Figure 12: Typical B-splines used in this thesis and [16].
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of B-splines. The following section will explicitly show how to enforce a derivative discontinuity in  (x) at

x = 0. The same process is used to enforce the derivative discontinuity on �(�) at � = ⇡/6.

 (x) =
X

n

CnBn(x) (107)

Along the boundaries, there are only two non-zero B-splines:

 (x)|x=0 =
⇠
B = C1B2 + C2B2 (108)

Here only the left boundary is considered, since that is where the derivative discontinuity is enforced. It is

worthwhile to consider some of the properties of these two B-splines. For this thesis and [16], these B-splines

were chosen such that B1 has the equal and opposite slope of B2. This makes the boundary conditions

considered in [16] very easy to enforce. To enforce a zero-value boundary condition, one simply sets C1 = 0

and C2 = 1, since B2 has a value of 0 at x = 0. In order to enforce a zero-derivative boundary condition

one simply sets C1 = C2 = 1. This ensures that the slope at x = 0 is 0. In order to consider arbitrary � Eq.

(108) is substituted into Eq. (59).

 0

 

����
✏!0

=
C1B

0
1(0) + C2B

0
2(0)

C1B1(0) + C2B2(0)
= K (109)

Here K is the right-hand-side of Eq. (59). One then solves Eq. (109) for C2/C1.

C2

C1
=

B1(0)�KB0
1(0)

B2(0)�KB0
2(0)

(110)

B1(0) and B2(0) and their derivatives are calculated using routines from [2]. Eq. (110) ensures that  (x)

satisfies the derivative discontinuity specified by Eq. (59). By examining equations (110) and (59) it is clear

that this general boundary condition satisfies the previous edge-cases considered in [16]. This also applies

to the HHHL system, where one considers Eq. (106) rather than Eq. (59).

7 Conclusion

The three-body and four-body spectra, atom-dimer, and atom-trimer scattering lengths were calculated

for the HHL and HHHL systems for arbitrary values of lambda. The heavy particles were considered to

be positive parity bosons with arbitrary interaction strengths throughout. In the HHL system, the Born-

Oppenheimer method has good agreement with the results of [8]. An HHL phase diagram shares the same
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qualitative features as the phase diagram presented by [8] who used analytical methods. A similar HHHL

phase diagram was found. As in the HHL system, it was found that the the spectrum and atom-trimer

scattering length varied smoothly as � ! 1. Thus the extension of arbitrary HH particle interaction in

Mehta’s [16] work has been realized.

This work was done in the ”3+1” branch of the few-component problem. It is possible that similar

methods could be used to approach systems in other branches, such as the ”2+2” (HHLL) system. Further

work could also be done to increase the accuracy of these results, by calculating the diagonal correction for

the HHHL system.
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